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THEY	SAY,	WHAT	THEY	SAY,	LET	THEM	SAY
(Motto	of	Marischal	College,	Aberdeen)

The	 science	 of	 Pure	 Mathematics,	 in	 its	 modern	 developments,	 may
claim	 to	 be	 the	 most	 original	 creation	 of	 the	 human	 spirit.—A.	 N.
WHITEHEAD	(Science	and	the	Modern	World,	1925)

A	mathematical	truth	is	neither	simple	nor	complicated	in	itself,	it	is.—
ÉMILE	LEMOINE

A	mathematician	who	 is	 not	 also	 something	of	 a	 poet	will	 never	 be	 a
complete	mathematician.—KARL	WEIERSTRASS

I	 have	 heard	 myself	 accused	 of	 being	 an	 opponent,	 an	 enemy	 of
mathematics,	 which	 no	 one	 can	 value	 more	 highly	 than	 I,	 for	 it
accomplishes	 the	 very	 thing	 whose	 achievement	 has	 been	 denied	me.—
GOETHE
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I	regret	that	 it	has	been	necessary	for	me	in	this	 lecture	to	administer
such	 a	 large	 dose	 of	 four-dimensional	 geometry.	 I	 do	 not	 apologise,
because	 I	 am	 really	 not	 responsible	 for	 the	 fact	 that	 nature	 in	 its	 most
fundamental	aspect	is	four-dimensional.	Things	are	what	they	are	.	.	.	.—A.
N.	WHITEHEAD	(The	Concept	of	Nature,	1920)

*		*		*

Number	rules	the	universe.—THE	PYTHAGOREANS

Mathematics	is	the	Queen	of	the	Sciences,	and	Arithmetic	the	Queen	of
Mathematics.—C.	F.	GAUSS

Thus	number	may	be	said	to	rule	the	whole	world	of	quantity,	and	the
four	 rules	 of	 arithmetic	may	 be	 regarded	 as	 the	 complete	 equipment	 of
the	mathematician.—JAMES	CLERK	MAXWELL

The	 different	 branches	 of	 Arithmetic—Ambition,	 Distraction,
Uglification,	and	Derision.—THE	MOCK	TURTLE	(Alice	in	Wonderland)



God	 made	 the	 integers,	 all	 the	 rest	 is	 the	 work	 of	 man.—LEOPOLD

KRONECKER

[Arithmetic]	 is	 one	 of	 the	 oldest	 branches,	 perhaps	 the	 very	 oldest
branch,	of	human	knowledge;	and	yet	some	of	its	most	abstruse	secrets	lie
close	to	its	tritest	truths.—H.	J.	S.	SMITH

*		*		*

Plato’s	 writings	 do	 not	 convince	 any	mathematician	 that	 their	 author
was	 strongly	 addicted	 to	 geometry.	 .	 .	 .	 We	 know	 that	 he	 encouraged
mathematics.	 .	 .	 .	 But	 if—which	 nobody	 believes—the	

	 [Let	 no	 man	 ignorant	 of	 geometry	 enter]	 of
Tzetzes	had	been	written	over	his	gate,	 it	would	no	more	have	 indicated
the	 geometry	 within	 than	 a	 warning	 not	 to	 forget	 to	 bring	 a	 packet	 of
sandwiches	 would	 now	 give	 promise	 of	 a	 good	 dinner.—AUGUSTUS	 DE

MORGAN

There	 is	no	 royal	 road	 to	geometry.—MENAECHMUS	(to	ALEXANDER	 THE

GREAT)

*		*		*

He	studied	and	nearly	mastered	the	six	books	of	Euclid	since	he	was	a
member	of	Congress.

He	began	a	course	of	rigid	mental	discipline	with	the	intent	to	improve
his	 faculties,	 especially	 his	 powers	 of	 logic	 and	 language.	 Hence	 his
fondness	for	Euclid,	which	he	carried	with	him	on	the	circuit	till	he	could
demonstrate	with	ease	all	the	propositions	in	the	six	books;	often	studying
far	 into	 the	night,	with	a	candle	near	his	pillow,	while	his	 fellow-lawyers,
half	a	dozen	in	a	room,	filled	the	air	with	interminable	snoring.—ABRAHAM

LINCOLN	(Short	Autobiography,	1860)

*		*		*

Strange	as	it	may	sound,	the	power	of	mathematics	rests	on	its	evasion
of	 all	 unnecessary	 thought	 and	 on	 its	 wonderful	 saving	 of	 mental
operations.—ERNST	MACH

A	 single	 curve,	 drawn	 in	 the	manner	of	 the	 curve	of	prices	of	 cotton,
describes	 all	 that	 the	 ear	 can	 possibly	 hear	 as	 the	 result	 of	 the	 most



complicated	musical	 performance.	 .	 .	 .	 That	 to	my	mind	 is	 a	 wonderful
proof	of	the	potency	of	mathematics.—LORD	KELVIN

*		*		*

The	 mathematician,	 carried	 along	 on	 his	 flood	 of	 symbols,	 dealing
apparently	 with	 purely	 formal	 truths,	 may	 still	 reach	 results	 of	 endless
importance	for	our	description	of	the	physical	universe.—KARL	PEARSON

Examples	.	.	.	which	might	be	multiplied	ad	libitum,	show	how	difficult	it
often	 is	 for	 an	 experimenter	 to	 interpret	 his	 results	 without	 the	 aid	 of
mathematics.—LORD	RAYLEIGH

But	 there	 is	 another	 reason	 for	 the	 high	 repute	 of	mathematics:	 it	 is
mathematics	 that	 offers	 the	 exact	 natural	 sciences	 a	 certain	measure	 of
security	 which,	 without	 mathematics,	 they	 could	 not	 attain.—ALBERT

EINSTEIN

Mathematics	 is	 the	 tool	 specially	 suited	 for	 dealing	 with	 abstract
concepts	of	any	kind	and	there	is	no	limit	to	its	power	in	this	field.	For	this
reason	 a	 book	 on	 the	 new	 physics,	 if	 not	 purely	 descriptive	 of
experimental	 work,	 must	 be	 essentially	 mathematical.—P.	 A.	 M.	 DIRAC

(Quantum	Mechanics,	1930)
As	I	proceeded	with	the	study	of	Faraday,	I	perceived	that	his	method	of

conceiving	 the	 phenomena	 [of	 electromagnetism]	 was	 also	 a
mathematical	 one,	 though	 not	 exhibited	 in	 the	 conventional	 form	 of
mathematical	 symbols.	 I	 also	 found	 that	 these	methods	 were	 capable	 of
being	expressed	in	the	ordinary	mathematical	forms,	and	thus	compared
with	 those	 of	 the	 professed	 mathematicians.—JAMES	 CLERK	 MAXWELL	 (A
Treatise	on	Electricity	and	Magnetism,	1873)

*		*		*

Query	 64	 .	 .	 .	 .	Whether	mathematicians	 .	 .	 .	 have	not	 their	mysteries,
and,	 what	 is	 more,	 their	 repugnances	 and	 contradictions?—BISHOP

BERKELEY

To	create	 a	healthy	philosophy	 you	 should	 renounce	metaphysics	 but
be	a	good	mathematician.—BERTRAND	RUSSELL	(in	a	lecture,	1935)

Mathematics	is	the	only	good	metaphysics.—LORD	KELVIN

How	 can	 it	 be	 that	mathematics,	 being	 after	 all	 a	 product	 of	 human
thought	independent	of	experience,	is	so	admirably	adapted	to	the	objects



of	reality?—ALBERT	EINSTEIN	(1920)
Every	new	 body	of	discovery	 is	mathematical	 in	 form,	because	 there	 is

no	other	guidance	we	can	have.—C.	G.	DARWIN	(1931)
The	infinite!	No	other	question	has	ever	moved	so	profoundly	the	spirit

of	man.—DAVID	HILBERT	(1921)
The	notion	of	infinity	is	our	greatest	friend;	it	is	also	the	greatest	enemy

of	our	peace	of	mind.	.	.	 .	Weierstrass	taught	us	to	believe	that	we	had	at
last	 thoroughly	 tamed	 and	 domesticated	 this	 unruly	 element.	 Such
however	 is	not	 the	 case;	 it	has	broken	 loose	 again.	Hilbert	 and	Brouwer
have	 set	 out	 to	 tame	 it	 once	 more.	 For	 how	 long?	 We	 wonder.—JAMES

PIERPONT	(Bulletin	of	the	American	Mathematical	Society,	1928)
In	 my	 opinion	 a	 mathematician,	 in	 so	 far	 as	 he	 is	 a	 mathematician,

need	 not	 preoccupy	 himself	 with	 philosophy—an	 opinion,	 moreover,
which	has	been	expressed	by	many	philosophers.—HENRI	LEBESGUE	(1936)

God	ever	geometrizes.—PLATO

God	ever	arithmetizes.—C.	G.	J.	JACOBI

The	Great	 Architect	 of	 the	Universe	 now	 begins	 to	 appear	 as	 a	 pure
mathematician.—J.	H.	JEANS	(The	Mysterious	Universe,	1930)

Mathematics	is	the	most	exact	science,	and	its	conclusions	are	capable
of	absolute	proof.	But	this	is	so	only	because	mathematics	does	not	attempt
to	 draw	 absolute	 conclusions.	 All	 mathematical	 truths	 are	 relative,
conditional.—CHARLES	PROTEUS	STEINMETZ	(1923)

It	 is	 a	 safe	 rule	 to	 apply	 that,	 when	 a	mathematical	 or	 philosophical
author	 writes	 with	 a	 misty	 profundity,	 he	 is	 talking	 nonsense.—A.	 N.
WHITEHEAD	(1911)



CHAPTER	ONE

Introduction

THIS	SECTION	IS	HEADED	Introduction	rather	than	Preface	(which	it	really	is)	in
the	 hope	 of	 decoying	 habitual	 preface-skippers	 into	 reading—for	 their
own	comfort—at	 least	 the	 following	paragraphs	down	 to	 the	 first	 row	of
stars	before	going	on	to	meet	some	of	the	great	mathematicians.	I	should
like	to	emphasize	first	that	this	book	is	not	intended,	in	any	sense,	to	be	a
history	of	mathematics,	or	any	section	of	such	a	history.

The	 lives	 of	 mathematicians	 presented	 here	 are	 addressed	 to	 the
general	 reader	 and	 to	 others	 who	may	 wish	 to	 see	 what	 sort	 of	 human
beings	 the	men	were	 who	 created	modern	mathematics.	Our	 object	 is	 to
lead	 up	 to	 some	 of	 the	 dominating	 ideas	 governing	 vast	 tracts	 of
mathematics	as	it	exists	today	and	to	do	this	through	the	lives	of	the	men
responsible	for	those	ideas.

Two	 criteria	 have	 been	 applied	 in	 selecting	 names	 for	 inclusion:	 the
importance	for	modern	mathematics	of	a	man’s	work;	the	human	appeal
of	 the	 man’s	 life	 and	 character.	 Some	 qualify	 under	 both	 heads,	 for
example	 Pascal,	 Abel,	 and	 Galois;	 others,	 like	 Gauss	 and	 Cayley,	 chiefly
under	 the	 first,	 although	both	had	 interesting	 lives.	When	 these	 criteria
clash	 or	 overlap	 in	 the	 case	 of	 several	 claimants	 to	 remembrance	 for	 a
particular	 advance,	 the	 second	 has	 been	 given	 precedence	 as	 we	 are
primarily	interested	here	in	mathematicians	as	human	beings.

Of	recent	years	there	has	been	a	tremendous	surge	of	general	interest
in	 science,	 particularly	 physical	 science,	 and	 its	 bearing	 on	 our	 rapidly
changing	 philosophical	 outlook	 on	 the	 universe.	 Numerous	 excellent
accounts	 of	 current	 advances	 in	 science,	 written	 in	 as	 untechnical
language	 as	 possible,	 have	 served	 to	 lessen	 the	 gap	 between	 the
professional	scientist	and	those	who	must	make	their	livings	at	something
other	 than	 science.	 In	 many	 of	 these	 expositions,	 especially	 those
concerned	with	 relativity	and	 the	modern	quantum	theory,	names	 occur



with	which	the	general	reader	cannot	be	expected	to	be	familiar—Gauss,
Cayley,	 Riemann,	 and	 Hermite,	 for	 instance.	 With	 a	 knowledge	 of	 who
these	 men	 were,	 their	 part	 in	 preparing	 for	 the	 explosive	 growth	 of
physical	science	since	1900,	and	an	appreciation	of	their	rich	personalities,
the	magnificent	achievements	of	science	fall	 into	a	 truer	perspective	and
take	on	a	new	significance.

The	 great	 mathematicians	 have	 played	 a	 part	 in	 the	 evolution	 of
scientific	and	philosophic	thought	comparable	to	that	of	the	philosophers
and	 scientists	 themselves.	 To	 portray	 the	 leading	 features	 of	 that	 part
through	 the	 lives	 of	 master	 mathematicians,	 presented	 against	 a
background	 of	 some	 of	 the	 dominant	 problems	 of	 their	 times,	 is	 the
purpose	 of	 the	 following	 chapters.	 The	 emphasis	 is	 wholly	 on	 modern
mathematics,	 that	 is,	 on	 those	 great	 and	 simple	 guiding	 ideas	 of
mathematical	 thought	 that	 are	 still	 of	 vital	 importance	 in	 living,	 creative
science	and	mathematics.

It	must	 not	 be	 imagined	 that	 the	 sole	 function	 of	mathematics—“the
handmaiden	 of	 the	 sciences”—is	 to	 serve	 science.	Mathematics	 has	 also
been	 called	 “the	Queen	 of	 the	 Sciences.”	 If	 occasionally	 the	Queen	 has
seemed	to	beg	from	the	sciences	she	has	been	a	very	proud	sort	of	beggar,
neither	 asking	nor	 accepting	 favors	 from	any	of	her	more	 affluent	 sister
sciences.	What	she	gets	she	pays	for.	Mathematics	has	a	light	and	wisdom
of	 its	 own,	 above	 any	 possible	 application	 to	 science,	 and	 it	 will	 richly
reward	 any	 intelligent	 human	 being	 to	 catch	 a	 glimpse	 of	 what
mathematics	means	 to	 itself.	 This	 is	 not	 the	 old	doctrine	 of	 art	 for	 art’s
sake;	it	is	art	for	humanity’s	sake.	After	all,	the	whole	purpose	of	science	is
not	technology—God	knows	we	have	gadgets	enough	already;	science	also
explores	 depths	 of	 a	 universe	 that	 will	 never,	 by	 any	 stretch	 of	 the
imagination,	be	visited	by	human	beings	or	affect	our	material	existence.
So	 we	 shall	 attend	 also	 to	 some	 of	 the	 things	 which	 the	 great
mathematicians	have	considered	worthy	of	loving	understanding	for	their
intrinsic	beauty.

Plato	is	said	to	have	inscribed	“Let	no	man	ignorant	of	geometry	enter
here”	 above	 the	 entrance	 to	 his	 Academy.	 No	 similar	 warning	 need	 be
posted	here,	but	a	word	of	advice	may	save	some	over-conscientious	reader
unnecessary	anguish.	The	gist	of	the	story	is	in	the	lives	and	personalities
of	 the	 creators	 of	modern	mathematics,	 not	 in	 the	 handful	 of	 formulas
and	 diagrams	 scattered	 through	 the	 text.	 The	 basic	 ideas	 of	 modern



mathematics,	from	which	the	whole	vast	and	intricate	complexity	has	been
woven	by	thousands	of	workers,	are	 simple,	of	boundless	 scope,	and	well
within	 the	understanding	of	 any	human	being	with	normal	 intelligence.
Lagrange	(whom	we	 shall	meet	 later)	believed	 that	a	mathematician	has
not	thoroughly	understood	his	own	work	till	he	has	made	it	so	clear	that
he	can	go	out	and	explain	 it	effectively	 to	the	first	man	he	meets	on	the
street.

This	 of	 course	 is	 an	 ideal	 and	 not	 always	 attainable.	 But	 it	 may	 be
recalled	 that	 only	 a	 few	 years	 before	 Lagrange	 said	 this	 the	 Newtonian
“law”	 of	 gravitation	 was	 an	 incomprehensible	 mystery	 to	 even	 highly
educated	 persons.	 Yesterday	 the	 Newtonian	 “law”	 was	 a	 commonplace
which	every	educated	person	accepted	as	simple	and	true;	today	Einstein’s
relativistic	 theory	 of	 gravitation	 is	where	Newton’s	 “law”	was	 in	 the	 early
decades	 of	 the	 eighteenth	 century;	 tomorrow	or	 the	 day	 after	 Einstein’s
theory	will	seem	as	“natural”	as	Newton’s	“law”	seemed	yesterday.	With	the
help	of	time	Lagrange’s	ideal	is	not	unattainable.

Another	great	French	mathematician,	conscious	of	his	own	difficulties
no	 less	 than	his	 readers’,	 counselled	 the	 conscientious	not	 to	 linger	 too
long	 over	 anything	 hard	 but	 to	 “Go	 on,	 and	 faith	will	 come	 to	 you.”	 In
brief,	 if	 occasionally	 a	 formula,	 a	 diagram,	 or	 a	 paragraph	 seems	 too
technical,	skip	it.	There	is	ample	in	what	remains.

Students	 of	 mathematics	 are	 familiar	 with	 the	 phenomenon	 of	 “slow
development,”	or	subconscious	assimilation:	the	first	time	something	new
is	studied	the	details	seem	too	numerous	and	hopelessly	confused,	and	no
coherent	impression	of	the	whole	is	left	on	the	mind.	Then,	on	returning
after	a	rest,	it	is	found	that	everything	has	fallen	into	place	with	its	proper
emphasis—like	 the	development	of	a	photographic	 film.	The	majority	of
those	who	attack	analytic	geometry	seriously	for	the	first	time	experience
something	of	the	sort.	The	calculus	on	the	other	hand,	with	its	aims	clearly
stated	 from	 the	 beginning,	 is	 usually	 grasped	 quickly.	 Even	 professional
mathematicians	 often	 skim	 the	 work	 of	 others	 to	 gain	 a	 broad,
comprehensive	 view	of	 the	whole	before	 concentrating	on	 the	details	 of
interest	 to	 them.	 Skipping	 is	 not	 a	 vice,	 as	 some	 of	 us	 were	 told	 by	 our
puritan	teachers,	but	a	virtue	of	common	sense.

As	to	the	amount	of	mathematical	knowledge	necessary	to	understand
everything	that	some	will	wisely	skip,	I	believe	it	may	be	said	honestly	that	a
high	school	course	in	mathematics	is	sufficient.	Matters	far	beyond	such	a



course	 are	 frequently	 mentioned,	 but	 wherever	 they	 are,	 enough
description	 has	 been	 given	 to	 enable	 anyone	 with	 high	 school
mathematics	to	follow.	For	some	of	the	most	important	ideas	discussed	in
connection	 with	 their	 originators—groups,	 space	 of	 many	 dimensions,
non-Euclidean	 geometry,	 and	 symbolic	 logic,	 for	 example	—less	 than	 a
high	 school	 course	 is	 ample	 for	an	understanding	of	 the	basic	 concepts.
All	 that	 is	 needed	 is	 interest	 and	 an	 undistracted	 head.	 Assimilation	 of
some	of	these	invigorating	ideas	of	modern	mathematical	thought	will	be
found	as	refreshing	as	a	drink	of	cold	water	on	a	hot	day	and	as	inspiring
as	any	art.

To	 facilitate	 the	 reading,	 important	 definitions	 have	 been	 repeated
where	 necessary,	 and	 frequent	 references	 to	 earlier	 chapters	 have	 been
included	from	time	to	time.

The	 chapters	 need	 not	 be	 read	 consecutively.	 In	 fact,	 those	 with	 a
speculative	 or	 philosophical	 turn	 of	 mind	 may	 prefer	 to	 read	 the	 last
chapter	first.	With	a	few	trivial	displacements	to	fit	the	social	background
the	chapters	follow	the	chronological	order.

It	would	be	impossible	to	describe	all	the	work	of	even	the	least	prolific
of	 the	men	considered,	nor	would	 it	be	profitable	 in	an	account	 for	 the
general	reader	to	attempt	to	do	so.	Moreover,	much	of	the	work	of	even
the	greater	mathematicians	of	 the	past	 is	now	of	only	historical	 interest,
having	 been	 included	 in	more	 general	 points	 of	 view.	 Accordingly	 only
some	 of	 the	 conspicuously	 new	 things	 each	man	did	 are	 described,	 and
these	have	been	selected	 for	 their	originality	and	 importance	 in	modern
thought.

Of	 the	 topics	 selected	 for	 description	 we	may	mention	 the	 following
(among	 others)	 as	 likely	 to	 interest	 the	 general	 reader:	 the	 modern
doctrine	 of	 the	 infinite	 (chapters	 2,	 29);	 the	 origin	 of	 mathematical
probability	(chapter	5);	the	concept	and	importance	of	a	group	(chapter
15);	 the	 meanings	 of	 invariance	 (chapter	 21);	 non-Euclidean	 geometry
(chapter	 16	 and	 part	 of	 14);	 the	 origin	 of	 the	 mathematics	 of	 general
relativity	 (last	 part	 of	 chapter	 26);	 properties	 of	 the	 common	 whole
numbers	(chapter	4),	and	their	modern	generalization	(chapter	25);	 the
meaning	 and	 usefulness	 of	 so-called	 imaginary	 numbers—like	
(chapters	 14,	 19);	 symbolic	 reasoning	 (chapter	 23).	 But	 anyone	 who
wishes	 to	 get	 a	 glimpse	 of	 the	 power	 of	 the	 mathematical	 method,
especially	as	applied	to	science,	will	be	repaid	by	seeing	what	the	calculus



is	about	(chapters	2,	6).
Modern	mathematics	began	with	two	great	advances,	analytic	geometry

and	the	calculus.	The	former	took	definite	shape	in	1637,	the	latter	about
1666,	 although	 it	 did	 not	 become	 public	 property	 till	 a	 decade	 later.
Though	 the	 idea	 behind	 it	 all	 is	 childishly	 simple,	 yet	 the	 method	 of
analytic	geometry	 is	so	powerful	that	very	ordinary	boys	of	seventeen	can
use	it	to	prove	results	which	would	have	baffled	the	greatest	of	the	Greek
geometers—Euclid,	 Archimedes,	 and	 Apollonius.	 The	 man,	 Descartes,
who	 finally	 crystallized	 this	 great	 method	 had	 a	 particularly	 full	 and
interesting	life.

In	 saying	 that	 Descartes	 was	 responsible	 for	 the	 creation	 of	 analytic
geometry	we	do	not	mean	to	imply	that	the	new	method	sprang	fullarmed
from	 his	 mind	 alone.	 Many	 before	 him	 had	 made	 significant	 advances
toward	 the	 new	method,	 but	 it	 remained	 for	Descartes	 to	 take	 the	 final
step	and	actually	to	put	out	the	method	as	a	definitely	workable	engine	of
geometrical	 proof,	 discovery,	 and	 invention.	 But	 even	 Descartes	 must
share	the	honor	with	Fermat.

Similar	 remarks	 apply	 to	 most	 of	 the	 other	 advances	 of	 modern
mathematics.	 A	 new	 concept	 may	 be	 “in	 the	 air”	 for	 generations	 until
some	 one	 man—occasionally	 two	 or	 three	 together—sees	 clearly	 the
essential	detail	that	his	predecessors	missed,	and	the	new	thing	comes	into
being.	 Relativity,	 for	 example,	 is	 sometimes	 said	 to	 have	 been	 the	 great
invention	 reserved	 by	 time	 for	 the	 genius	 of	 Minkowski.	 The	 fact	 is,
however,	 that	Minkowski	 did	 not	 create	 the	 theory	 of	 relativity	 and	 that
Einstein	did.	It	seems	rather	meaningless	to	say	that	So-and-so	might	have
done	this	or	that	if	circumstances	had	been	other	than	they	were.	Any	one
of	us	no	doubt	could	jump	over	the	moon	if	we	and	the	physical	universe
were	 different	 from	what	 we	 and	 it	 are,	 but	 the	 truth	 is	 that	 we	 do	 not
make	the	jump.

In	 other	 instances,	 however,	 the	 credit	 for	 some	 great	 advance	 is	 not
always	 justly	 placed,	 and	 the	 man	 who	 first	 used	 a	 new	 method	 more
powerfully	than	its	inventor	sometimes	gets	more	than	his	due.	This	seems
to	be	the	case,	for	instance,	in	the	highly	important	matter	of	the	calculus.
Archimedes	had	the	fundamental	notion	of	limiting	sums	from	which	the
integral	calculus	springs,	and	he	not	only	had	the	notion	but	showed	that
he	 could	 apply	 it.	 Archimedes	 also	 used	 the	method	 of	 the	 differential
calculus	 in	one	of	his	problems.	As	we	approach	Newton	and	Leibniz	 in



the	 seventeenth	 century	 the	 history	 of	 the	 calculus	 becomes	 extremely
involved.	 The	 new	 method	 was	 more	 than	 merely	 “in	 the	 air”	 before
Newton	and	Leibniz	brought	it	down	to	earth;	Fermat	actually	had	it.	He
also	 invented	 the	 method	 of	 Cartesian	 geometry	 independently	 of
Descartes.	 In	 spite	 of	 indubitable	 facts	 such	 as	 these	 we	 shall	 follow
tradition	 and	 ascribe	 to	 each	 great	 leader	 what	 a	 majority	 vote	 says	 he
should	have,	even	at	the	risk	of	giving	him	a	little	more	than	his	just	due.
Priority	 after	 all	 gradually	 loses	 its	 irritating	 importance	 as	we	 recede	 in
time	from	the	men	to	whom	it	was	a	hotly	contested	cause	of	verbal	battles
while	they	and	their	partisans	lived.

*		*		*

Those	 who	 have	 never	 known	 a	 professional	 mathematician	 may	 be
rather	 surprised	 on	 meeting	 some,	 for	 mathematicians	 as	 a	 class	 are
probably	less	familiar	to	the	general	reader	than	any	other	group	of	brain
workers.	The	mathematician	is	a	much	rarer	character	in	fiction	than	his
cousin	the	scientist,	and	when	he	does	appear	 in	the	pages	of	a	novel	or
on	the	screen	he	is	only	too	apt	to	be	a	slovenly	dreamer	totally	devoid	of
common	sense—comic	relief.	What	sort	of	mortal	 is	he	in	real	 life?	Only
by	seeing	in	detail	what	manner	of	men	some	of	the	great	mathematicians
were	 and	 what	 kind	 of	 lives	 they	 lived,	 can	 we	 recognize	 the	 ludicrous
untruth	of	the	traditional	portrait	of	a	mathematician.

Strange	as	it	may	seem,	not	all	of	the	great	mathematicians	have	been
professors	 in	 colleges	 or	 universities.	 Quite	 a	 few	 were	 soldiers	 by
profession;	 others	 went	 into	 mathematics	 from	 theology,	 the	 law,	 and
medicine,	and	one	of	the	greatest	was	as	crooked	a	diplomat	as	ever	lied
for	the	good	of	his	country.	A	few	have	had	no	profession	at	all.	Stranger
yet,	not	all	professors	of	mathematics	have	been	mathematicians.	But	this
should	 not	 surprise	 us	 when	 we	 think	 of	 the	 gulf	 between	 the	 average
professor	of	poetry	drawing	a	comfortable	salary	and	the	poet	starving	to
death	in	his	garret.

The	lives	that	follow	will	at	least	suggest	that	a	mathematician	can	be	as
human	 as	 anybody	 else—sometimes	 distressingly	 more	 so.	 In	 ordinary
social	contacts	the	majority	have	been	normal.	There	have	been	eccentrics
in	 mathematics,	 of	 course;	 but	 the	 percentage	 is	 no	 higher	 than	 in
commerce	or	 the	professions.	As	a	group	 the	great	mathematicians	have



been	men	of	 all-round	 ability,	 vigorous,	 alert,	 keenly	 interested	 in	many
things	outside	of	mathematics	and,	in	a	fight,	men	with	their	full	share	of
backbone.	 As	 a	 rule	 mathematicians	 have	 been	 bad	 customers	 to
persecute;	they	have	usually	been	capable	of	returning	what	they	received
with	 compound	 interest.	 For	 the	 rest	 they	 were	 geniuses	 of	 tremendous
accomplishment	marked	off	 from	 the	majority	 of	 their	 gifted	 fellowmen
only	 by	 an	 irresistible	 impulse	 to	 do	 mathematics.	 On	 occasion
mathematicians	have	been	(and	some	still	 are	 in	France)	extremely	able
administrators.

In	 their	politics	 the	great	mathematicians	have	ranged	over	 the	whole
spectrum	 from	 reactionary	 conservatism	 to	 radical	 liberalism.	 It	 is
probably	correct	to	say	that	as	a	class	they	have	tended	slightly	to	the	left	in
their	 political	 opinions.	 Their	 religious	 beliefs	 have	 included	 everything
from	 the	 narrowest	 orthodoxy—sometimes	 shading	 into	 the	 blackest
bigotry—to	 complete	 skepticism.	 A	 few	 were	 dogmatic	 and	 positive	 in
their	 assertions	 concerning	 things	 about	 which	 they	 knew	 nothing,	 but
most	have	tended	to	echo	the	great	Lagrange’s	“I	do	not	know.”

Another	 characteristic	 calls	 for	 mention	 here,	 as	 several	 writers	 and
artists	(some	from	Hollywood)	have	asked	that	 it	be	treated—the	sex	life
of	 great	mathematicians.	 In	particular	 these	 inquirers	wish	 to	 know	how
many	 of	 the	 great	 mathematicians	 have	 been	 perverts—a	 somewhat
indelicate	 question,	 possibly,	 but	 legitimate	 enough	 to	 merit	 a	 serious
answer	in	these	times	of	preoccupation	with	such	topics.	None.	Some	lived
celibate	lives,	usually	on	account	of	economic	disabilities,	but	the	majority
were	 happily	 married	 and	 brought	 up	 their	 children	 in	 a	 civilized,
intelligent	manner.	The	children,	 it	may	be	noted	in	passing,	were	often
gifted	far	above	the	average.	A	few	of	the	great	mathematicians	of	bygone
centuries	 kept	mistresses	when	 such	was	 the	 fashionable	 custom	of	 their
times.	 The	 only	 mathematician	 discussed	 here	 whose	 life	 might	 offer
something	of	interest	to	a	Freudian	is	Pascal.

Returning	 for	 a	 moment	 to	 the	 movie	 ideal	 of	 a	 mathematician,	 we
note	 that	 sloppy	 clothes	 have	 not	 been	 the	 invariable	 attire	 of	 great
mathematicians.	All	through	the	long	history	of	mathematics	about	which
we	 have	 fairly	 detailed	 knowledge,	 mathematicians	 have	 paid	 the	 same
amount	 of	 attention	 to	 their	 personal	 appearance	 as	 any	 other	 equally
numerous	 group	 of	 men.	 Some	 have	 been	 fops,	 others	 slovens;	 the
majority,	 decently	 inconspicuous.	 If	 today	 some	 earnest	 individual



affecting	 spectacular	 clothes,	 long	 hair,	 a	 black	 sombrero,	 or	 any	 other
mark	 of	 exhibitionism,	 assures	 you	 that	 he	 is	 a	mathematician,	 you	may
safely	wager	that	he	is	a	psychologist	turned	numerologist.

The	psychological	peculiarities	of	great	mathematicians	is	another	topic
in	 which	 there	 is	 considerable	 interest.	 Poincaré	 will	 tell	 us	 something
about	the	psychology	of	mathematical	creation	in	a	later	chapter.	But	on
the	general	 question	not	much	 can	be	 said	 till	 psychologists	 call	 a	 truce
and	agree	among	 themselves	 as	 to	what	 is	what.	On	 the	whole	 the	great
mathematicians	have	 lived	richer,	more	virile	 lives	 than	 those	 that	 fall	 to
the	 lot	 of	 the	 ordinary	 hard-working	mortal.	Nor	 has	 this	 richness	 been
wholly	 on	 the	 side	 of	 intellectual	 adventuresomeness.	 Several	 of	 the
greater	mathematicians	have	had	more	than	their	share	of	physical	danger
and	excitement,	and	some	of	them	have	been	implacable	haters—or,	what
is	ultimately	the	same,	expert	controversialists.	Many	have	known	the	lust
of	battle	in	their	prime,	reprehensibly	enough,	no	doubt,	but	still	humanly
enough,	and	 in	knowing	 it	 they	have	experienced	something	no	 jellyfish
has	 ever	 felt:	 “Damn	 braces,	 Bless	 relaxes,”	 as	 that	 devout	 Christian
William	Blake	put	it	in	his	Proverbs	of	Hell.

This	brings	us	to	what	at	first	sight	(from	the	conduct	of	several	of	the
men	considered	here)	may	seem	like	a	significant	trait	of	mathematicians
—their	hair-trigger	quarrelsomeness.	Following	the	lives	of	several	of	these
men	we	get	the	impression	that	a	great	mathematician	is	more	likely	than
not	 to	 think	others	are	 stealing	his	work,	or	disparaging	 it,	or	not	doing
him	sufficient	honor,	and	to	start	a	row	to	recover	imaginary	rights.	Men
who	should	have	been	above	such	brawls	seem	to	have	gone	out	of	their
way	 to	 court	 battles	 over	 priority	 in	 discovery	 and	 to	 accuse	 their
competitors	of	plagiarism.	We	shall	see	enough	dishonesty	to	discount	the
superstition	that	the	pursuit	of	truth	necessarily	makes	a	man	truthful,	but
we	shall	not	find	indubitable	evidence	that	mathematics	makes	a	man	bad-
tempered	and	quarrelsome.

Another	“psychological”	detail	of	a	similar	sort	is	more	disturbing.	Envy
is	 carried	 up	 to	 a	 higher	 level.	 Narrow	 nationalism	 and	 international
jealousies,	even	in	impersonal	pure	mathematics,	have	marred	the	history
of	discovery	and	invention	to	such	an	extent	that	it	is	almost	impossible	in
some	important	 instances	to	get	at	 the	facts	or	 to	form	a	 just	estimate	of
the	 significance	 of	 a	 particular	 man’s	 work	 for	 modern	 thought.	 Racial
fanaticism—especially	 in	 recent	 times—has	 also	 complicated	 the	 task	 of



anyone	who	may	attempt	to	give	an	unbiased	account	of	the	lives	and	work
of	scientific	men	outside	his	own	race	or	nation.

An	 impartial	 account	 of	western	mathematics,	 including	 the	 award	 to
each	man	and	to	each	nation	of	its	just	share	in	the	intricate	development,
could	 be	 written	 only	 by	 a	 Chinese	 historian.	He	 alone	 would	 have	 the
patience	 and	 the	 detached	 cynicism	 necessary	 for	 disentangling	 the
curiously	perverted	pattern	 to	discover	whatever	 truth	may	be	concealed
in	our	variegated	occidental	boasting.

*		*		*

Even	in	restricting	our	attention	to	the	modern	phase	of	mathematics
we	 are	 faced	with	 a	 problem	of	 selection	 that	must	 be	 solved	 somehow.
Before	 the	 solution	 adopted	 here	 is	 indicated	 it	 will	 be	 of	 interest	 to
estimate	the	amount	of	labor	that	would	be	required	for	a	detailed	history
of	 mathematics	 on	 a	 scale	 similar	 to	 that	 of	 a	 political	 history	 for	 any
important	epoch,	say	that	of	the	French	Revolution	or	the	American	Civil
War.

When	 we	 begin	 unravelling	 a	 particular	 thread	 in	 the	 history	 of
mathematics	we	soon	get	a	discouraged	 feeling	 that	mathematics	 itself	 is
like	a	vast	necropolis	to	which	constant	additions	are	being	made	for	the
eternal	preservation	of	 the	newly	dead.	The	 recent	 arrivals,	 like	 some	of
the	 few	 who	 were	 shelved	 for	 perpetual	 remembrance	 5000	 years	 ago,
must	 be	 so	 displayed	 that	 they	 shall	 seem	 to	 retain	 the	 full	 vigor	 of	 the
manhood	in	which	they	died;	in	fact	the	illusion	must	be	created	that	they
have	not	yet	ceased	living.	And	the	deception	must	be	so	natural	that	even
the	most	 skeptical	 archaeologist	prowling	 through	 the	mausoleums	 shall
be	 moved	 to	 exclaim	 with	 living	 mathematicians	 themselves	 that
mathematical	 truths	 are	 immortal,	 imperishable;	 the	 same	 yesterday,
today,	 and	 forever;	 the	 very	 stuff	 of	 which	 eternal	 verities	 are	 fashioned
and	the	one	glimpse	of	changelessness	behind	all	 the	recurrent	cycles	of
birth,	death,	and	decay	our	race	has	ever	caught.	Such	may	indeed	be	the
fact;	 many,	 especially	 those	 of	 the	 older	 generation	 of	 mathematicians,
hold	it	to	be	no	less.

But	the	mere	spectator	of	mathematical	history	is	soon	overwhelmed	by
the	 appalling	 mass	 of	 mathematical	 inventions	 that	 still	 maintain	 their
vitality	and	importance	for	modern	work,	as	discoveries	of	the	past	in	any



other	 field	 of	 scientific	 endeavor	 do	 not,	 after	 centuries	 and	 tens	 of
centuries.

A	span	of	less	than	a	hundred	years	covers	everything	of	significance	in
the	 French	 Revolution	 or	 the	 American	 Civil	 War,	 and	 less	 than	 five
hundred	 leaders	 in	 either	 played	 parts	 sufficiently	 memorable	 to	 merit
recording.	 But	 the	 army	 of	 those	 who	 have	 made	 at	 least	 one	 definite
contribution	to	mathematics	as	we	know	it	soon	becomes	a	mob	as	we	look
back	over	history;	6000	or	8000	names	press	forward	for	some	word	from
us	to	preserve	them	from	oblivion,	and	once	the	bolder	leaders	have	been
recognized	it	becomes	largely	a	matter	of	arbitrary,	illogical	legislation	to
judge	who	of	 the	 clamoring	multitude	 shall	 be	permitted	 to	 survive	 and
who	be	condemned	to	be	forgotten.

This	problem	scarcely	presents	 itself	 in	describing	the	development	of
the	physical	 sciences.	They	also	 reach	 far	back	 into	antiquity;	 yet	 for	 the
most	 of	 them	 350	 years	 is	 a	 sufficient	 span	 to	 cover	 everything	 of
importance	to	modern	thought.	But	whoever	attempts	to	do	full,	human
justice	to	mathematics	and	mathematicians	will	have	a	wilderness	of	6000
years	 in	which	 to	exercise	 such	 talents	as	he	may	have,	with	 that	mob	of
6000	 to	 8000	 claimants	 before	 him	 for	 discrimination	 and	 attempted
justice.

The	problem	becomes	more	desperate	as	we	approach	our	own	times.
This	 is	 by	 no	means	 due	 to	 our	 closer	 proximity	 to	 the	men	of	 the	 two
centuries	 immediately	 preceding	 our	 own,	 but	 to	 the	 universally
acknowledged	 fact	 (among	 professional	 mathematicians)	 that	 the
nineteenth	century,	prolonged	into	the	twentieth,	was,	and	is,	the	greatest
age	of	mathematics	the	world	has	ever	known.	Compared	to	what	glorious
Greece	 did	 in	mathematics	 the	nineteenth	 century	 is	 a	 bonfire	 beside	 a
penny	candle.

What	 threads	 shall	 we	 follow	 to	 guide	 us	 through	 this	 labyrinth	 of
mathematical	 inventions?	 The	 main	 thread	 has	 already	 been	 indicated:
that	which	leads	from	the	half-forgotten	past	to	some	of	those	dominating
concepts	 which	 now	 govern	 boundless	 empires	 of	 mathematics—but
which	may	themselves	be	dethroned	tomorrow	to	make	room	for	yet	vaster
generalizations.	Following	this	main	thread	we	shall	pass	by	the	developers
in	favor	of	the	originators.

Both	 inventors	 and	 perfectors	 are	 necessary	 to	 the	 progress	 of	 any
science.	Every	explorer	must	have,	 in	addition	to	his	scouts,	his	 followers



to	 inform	the	world	as	 to	what	he	has	discovered.	But	 to	 the	majority	of
human	beings,	whether	justly	or	not	is	beside	the	point,	the	explorer	who
first	shows	the	new	way	is	the	more	arresting	personality,	even	if	he	himself
stumbles	 forward	 but	 half	 a	 step.	 We	 shall	 follow	 the	 originators	 in
preference	to	the	developers.	Fortunately	for	historical	justice	the	majority
of	the	great	originators	in	mathematics	have	also	been	peerless	developers.

Even	with	this	restriction	the	path	from	the	past	to	the	present	may	not
always	be	clear	to	those	who	have	not	already	followed	it.	So	we	may	state
here	 briefly	 what	 the	 main	 guiding	 clue	 through	 the	 whole	 history	 of
mathematics	is.

From	 the	 earliest	 times	 two	 opposing	 tendencies,	 sometimes	 helping
one	 another,	 have	 governed	 the	 whole	 involved	 development	 of
mathematics.	Roughly	these	are	the	discrete	and	the	continuous.

The	 discrete	 struggles	 to	 describe	 all	 nature	 and	 all	 mathematics
atomistically,	 in	 terms	 of	 distinct,	 recognizable	 individual	 elements,	 like
the	 bricks	 in	 a	wall,	 or	 the	 numbers	 1,2,3,	 .	 .	 .	 The	 continuous	 seeks	 to
apprehend	 natural	 phenomena—the	 course	 of	 a	 planet	 in	 its	 orbit,	 the
flow	 of	 a	 current	 of	 electricity,	 the	 rise	 and	 fall	 of	 the	 tides,	 and	 a
multitude	 of	 other	 appearances	 which	 delude	 us	 into	 believing	 that	 we
know	 nature—in	 the	 mystical	 formula	 of	 Heraclitus:	 “All	 things	 flow.”
Today	(as	will	be	seen	in	the	concluding	chapter),	“flow,”	or	its	equivalent,
“continuity,”	is	so	unclear	as	to	be	almost	devoid	of	meaning.	However,	let
this	pass	for	the	moment.

Intuitively	we	feel	that	we	know	what	is	meant	by	“continuous	motion”—as
of	a	bird	or	a	bullet	through	the	air,	or	the	fall	of	a	raindrop.	The	motion
is	smooth;	 it	does	not	proceed	by	 jerks;	 it	 is	unbroken.	 In	continuous	motion	or,
more	 generally,	 in	 the	 concept	 of	 continuity	 itself,	 the	 individualized
numbers	1,2,3,	 .	 .	 .	 ,	are	not	 the	appropriate	mathematical	 image.	All	 the
points	on	a	segment	of	a	straight	line,	for	instance,	have	no	such	clear-cut
individualities	as	have	the	numbers	of	the	sequence	1,2,3,	.	 .	 .	 ,	where	the
step	from	one	member	of	the	sequence	to	the	next	is	the	same	(namely	1:	1	+	2	=	3,
1	+	3	=	4,	and	so	on);	for	between	any	two	points	on	the	line	segment,	no
matter	how	close	together	the	points	may	be,	we	can	always	find,	or	at	least
imagine,	another	point:	there	is	no	“shortest”	step	from	one	point	to	the	“next.”	In
fact	there	is	no	next	point	at	all.

The	last—the	conception	of	continuity,	“no	nextness”—when	developed
in	the	manner	of	Newton,	Leibniz,	and	their	successors	leads	out	into	the



boundless	 domain	 of	 the	 calculus	 and	 its	 innumerable	 applications	 to
science	and	technology,	and	to	all	that	is	today	called	mathematical	analysis.
The	 other,	 the	 discrete	 pattern	 based	 on	 1,2,3,	 .	 .	 .	 ,	 is	 the	 domain	 of
algebra,	the	theory	of	numbers,	and	symbolic	logic.	Geometry	partakes	of
both	the	continuous	and	the	discrete.

A	major	task	of	mathematics	today	is	to	harmonize	the	continuous	and
the	discrete,	to	include	them	in	one	comprehensive	mathematics,	and	to
eliminate	obscurity	from	both.

*		*		*

It	 may	 be	 doing	 our	 predecessors	 an	 injustice	 to	 emphasize	 modern
mathematical	 thought	with	but	 little	 reference	 to	 the	pioneers	who	 took
the	first	and	possibly	the	most	difficult	steps.	But	nearly	everything	useful
that	was	done	in	mathematics	before	the	seventeenth	century	has	suffered
one	of	two	fates:	either	it	has	been	so	greatly	simplified	that	it	is	now	part
of	every	regular	school	course,	or	it	was	long	since	absorbed	as	a	detail	in
work	of	greater	generality.

Things	that	now	seem	as	simple	as	common	sense—our	way	of	writing
numbers,	 for	 instance,	 with	 its	 “place	 system”	 of	 value	 and	 the
introduction	of	a	symbol	for	zero,	which	put	the	essential	finishing	touch
to	the	place	system—cost	incredible	labor	to	invent.	Even	simpler	things,
containing	 the	 very	 essence	 of	 mathematical	 thought	 —abstractness	 and
generality,	 must	 have	 cost	 centuries	 of	 struggle	 to	 devise;	 yet	 their
originators	 have	 vanished	 leaving	 not	 a	 trace	 of	 their	 lives	 and
personalities.	 For	 example,	 as	 Bertrand	 Russell	 observed,	 “It	 must	 have
taken	many	ages	to	discover	that	a	brace	of	pheasants	and	a	couple	of	days
were	 both	 instances	 of	 the	 number	 two.”	 And	 it	 took	 some	 twenty	 five
centuries	of	civilization	to	evolve	Russell’s	own	logical	definition	of	“two”	or
of	any	cardinal	number	(reported	in	the	concluding	chapter).

Again,	the	conception	of	a	point,	which	we	(erroneously)	think	we	fully
understand	when	we	begin	school	geometry	must	have	come	very	 late	 in
man’s	career	as	an	artistic,	cave-painting	animal.	Horace	Lamb,	an	English
mathematical	 physicist,	 would	 “erect	 a	 monument	 to	 the	 unknown
mathematical	 inventor	of	 the	mathematical	point	as	 the	supreme	type	of
that	 abstraction	which	 has	 been	 a	 necessary	 condition	 of	 scientific	 work
from	the	beginning.”



Who,	 by	 the	 way,	 did	 invent	 the	 mathematical	 point?	 In	 one	 sense
Lamb’s	 forgotten	man;	 in	 another,	Euclid	with	his	 definition	 “a	point	 is
that	which	has	no	parts	and	which	has	no	magnitude”;	in	yet	a	third	sense
Descartes	with	his	invention	of	the	“coordinates	of	a	point”:	until	finally	in
geometry	as	experts	practise	it	today	the	mysterious	“point”	has	joined	the
forgotten	man	and	all	his	gods	 in	everlasting	oblivion,	 to	be	replaced	by
something	more	usable—a	set	of	numbers	written	in	a	definite	order.

The	last	is	a	modern	instance	of	the	abstractness	and	precision	toward
which	mathematics	strives	constantly,	only	to	realize	when	abstractness	and
precision	are	attained	that	a	higher	degree	of	abstractness	and	a	sharper
precision	are	demanded	for	clear	understanding.	Our	own	conception	of
a	 “point”	will	no	doubt	 evolve	 into	 something	 yet	more	 abstract.	 Indeed
the	 “numbers”	 in	 terms	 of	 which	 points	 are	 described	 today	 dissolved
about	 the	 beginning	 of	 this	 century	 into	 the	 shimmering	 blue	 of	 pure
logic,	which	in	its	turn	seems	about	to	vanish	in	something	rarer	and	even
less	substantial.

It	 is	 not	 necessarily	 true	 then	 that	 a	 step-by-step	 following	 of	 our
predecessors	 is	 the	 sure	 way	 to	 understand	 either	 their	 conception	 of
mathematics	or	our	own.	Such	a	retracing	of	the	path	that	has	 led	up	to
our	present	outlook	would	undoubtedly	be	of	great	interest	in	itself.	But	it
is	 quicker	 to	 glance	 back	 over	 the	 terrain	 from	 the	hilltop	on	which	we
now	 stand.	 The	 false	 steps,	 the	 crooked	 trails,	 and	 the	 roads	 that	 led
nowhere	 fade	out	 in	 the	distance,	and	only	 the	broad	highways	are	 seen
leading	 straight	 back	 to	 the	 past,	 where	 we	 lose	 them	 in	 the	 mists	 of
uncertainty	 and	 conjecture.	 Neither	 space	 nor	 number,	 nor	 even	 time,
have	 the	same	significance	 for	us	 that	 they	had	for	 the	men	whose	great
figures	appear	dimly	through	the	mist.

A	Pythagorean	of	the	sixth	century	before	Christ	could	intone	“Bless	us,
divine	 Number,	 thou	 who	 generatest	 gods	 and	 men”;	 a	 Kantian	 of	 the
nineteenth	century	could	refer	confidently	 to	“space”	as	a	 form	of	“pure
intuition”;	a	mathematical	astronomer	could	announce	a	decade	ago	that
the	 Great	 Architect	 of	 the	Universe	 is	 a	 pure	mathematician.	 The	most
remarkable	 thing	 about	 all	 of	 these	 profound	 utterances	 is	 that	 human
beings	no	stupider	than	ourselves	once	thought	they	made	sense.

To	a	modern	mathematician	such	all-embracing	generalities	mean	less
than	nothing.	Yet	in	parting	with	its	claim	to	be	the	universal	generator	of



gods	and	men	mathematics	has	gained	something	more	substantial,	a	faith
in	itself	and	in	its	ability	to	create	human	values.

Our	 point	 of	 view	 has	 changed—and	 is	 still	 changing.	 To	 Descartes’
“Give	me	 space	 and	motion	 and	 I	 will	 give	 you	 a	world,”	 Einstein	 today
might	 retort	 that	 altogether	 too	 much	 is	 being	 asked,	 and	 that	 the
demand	 is	 in	 fact	 meaningless:	 without	 a	 “world”—matter—there	 is
neither	 “space”	 nor	 “motion.”	 And	 to	 quell	 the	 turbulent,	 muddled
mysticism	of	Leibniz	in	the	seventeenth	century,	over	the	mysterious	 :
“The	Divine	Spirit	 found	a	sublime	outlet	 in	 that	wonder	of	analysis,	 the
portent	 of	 the	 ideal,	 that	mean	 between	 being	 and	not-being,	 which	we
call	the	imaginary	[square]	root	of	negative	unity,”	Hamilton	in	the	1840’s
constructed	a	number-couple	which	any	 intelligent	child	can	understand
and	manipulate,	and	which	does	for	mathematics	and	science	all	that	the
misnamed	 “imaginary”	 ever	 did.	 The	 mystical	 “not-being”	 of	 the
seventeenth	century	Leibniz	is	seen	to	have	a	“being”	as	simple	as	ABC.

Is	this	a	 loss?	Or	does	a	modern	mathematician	lose	anything	of	value
when	 he	 seeks	 through	 the	 postulational	 method	 to	 track	 down	 that
elusive	 “feeling”	 described	 by	Heinrich	Hertz,	 the	 discoverer	 of	 wireless
waves:	 “One	cannot	escape	 the	 feeling	 that	 these	mathematical	 formulas
have	an	independent	existence	and	an	intelligence	of	their	own,	that	they
are	wiser	than	we	are,	wiser	even	than	their	discoverers,	that	we	get	more
out	of	them	than	was	originally	put	into	them”?

Any	 competent	mathematician	 will	 understand	Hertz’	 feeling,	 but	 he
will	 also	 incline	 to	 the	 belief	 that	whereas	 continents	 and	wireless	waves
are	 discovered,	 dynamos	 and	mathematics	 are	 invented	 and	do	what	we
make	 them	 do.	 We	 can	 still	 dream	 but	 we	 need	 not	 deliberately	 court
nightmares.	 If	 it	 is	 true,	 as	 Charles	 Darwin	 asserted,	 that	 “Mathematics
seems	 to	 endow	one	with	 something	 like	 a	new	 sense,”	 that	 sense	 is	 the
sublimated	common	sense	which	 the	physicist	and	engineer	Lord	Kelvin
declared	mathematics	to	be.

Is	it	not	closer	to	our	own	habits	of	thought	to	agree	temporarily	with
Galileo	that	“Nature’s	great	book	is	written	in	mathematical	symbols”	and
let	 it	go	at	that,	 than	to	assert	with	Plato	that	“God	ever	geometrizes,”	or
with	Jacobi	that	“God	ever	arithmetizes”?	If	we	care	to	inspect	the	symbols
in	nature’s	great	book	through	the	critical	eyes	of	modern	science	we	soon
perceive	that	we	ourselves	did	the	writing,	and	that	we	used	the	particular
script	we	did	because	we	 invented	it	 to	fit	our	own	understanding.	Some



day	 we	 may	 find	 a	 more	 expressive	 shorthand	 than	 mathematics	 for
correlating	our	experiences	of	the	physical	universe—unless	we	accept	the
creed	 of	 the	 scientific	mystics	 that	 everything	 is	mathematics	 and	 is	 not
merely	 described	 for	 our	 convenience	 in	 mathematical	 language.	 If
“Number	rules	the	universe”	as	Pythagoras	asserted,	Number	is	merely	our
delegate	to	the	throne,	for	we	rule	Number.

When	 a	 modern	 mathematician	 turns	 aside	 for	 a	 moment	 from	 his
symbols	 to	communicate	 to	others	 the	 feeling	that	mathematics	 in	spires
in	him,	he	does	not	 echo	Pythagoras	 and	 Jeans,	 but	he	may	quote	what
Bertrand	 Russell	 said	 about	 a	 quarter	 of	 a	 century	 ago:	 “Mathematics,
rightly	viewed,	possesses	not	only	truth	but	supreme	beauty—a	beauty	cold
and	 austere,	 like	 that	 of	 sculpture,	 without	 appeal	 to	 any	 part	 of	 our
weaker	nature,	without	 the	 gorgeous	 trappings	of	painting	or	music,	 yet
sublimely	pure,	and	capable	of	a	stern	perfection	such	as	only	the	greatest
art	can	show.”

Another,	 familiar	 with	 what	 has	 happened	 to	 our	 conception	 of
mathematical	 “truth”	 in	 the	 years	 since	 Russell	 praised	 the	 beauty	 of
mathematics,	 might	 refer	 to	 the	 “iron	 endurance”	 which	 some	 acquire
from	 their	 attempt	 to	 understand	 what	 mathematics	 means,	 and	 quote
James	Thomson’s	 lines	(which	close	 this	book)	 in	description	of	Dürer’s
Melencolia	 (the	 frontispiece).	 And	 if	 some	 devotee	 is	 reproached	 for
spending	his	life	on	what	to	many	may	seem	the	selfish	pursuit	of	a	beauty
having	 no	 immediate	 reflection	 in	 the	 lives	 of	 his	 fellowmen,	 he	 may
repeat	Poincaré’s	“Mathematics	 for	mathematics’	 sake.	People	have	been
shocked	by	this	formula	and	yet	it	is	as	good	as	life	for	life’s	sake,	if	life	is
but	misery.”

*		*		*

To	form	an	estimate	of	what	modern	mathematics	compared	to	ancient
has	accomplished,	we	may	 first	 look	at	 the	mere	bulk	of	 the	work	 in	 the
period	 after	 1800	 compared	 to	 that	 before	 1800.	 The	 most	 extensive
history	of	mathematics	 is	 that	of	Moritz	Cantor,	Geschichte	der	Mathematik,
in	 three	 large	 closely	 printed	 volumes	 (a	 fourth,	 by	 collaborators,
supplements	 the	 three).	The	 four	 volumes	 total	 about	 3600	pages.	Only
the	outline	of	the	development	is	given	by	Cantor;	there	is	no	attempt	to
go	into	details	concerning	the	contributions	described,	nor	are	technical



terms	explained	so	that	an	outsider	could	understand	what	the	whole	story
is	about,	and	biography	is	cut	to	the	bone;	the	history	is	addressed	to	those
who	have	some	technical	training.	This	history	ends	with	the	year	1799—just
before	modern	mathematics	began	to	feel	its	freedom.	What	if	the	outline
history	of	mathematics	in	the	nineteenth	century	alone	were	attempted	on
a	similar	scale?	It	has	been	estimated	that	nineteen	or	twenty	volumes	the
size	of	Cantor’s	would	be	required	to	tell	the	story,	say	about	17,000	pages.
The	 nineteenth	 century,	 on	 this	 scale,	 contributed	 to	 mathematical
knowledge	about	five	times	as	much	as	was	done	in	the	whole	of	preceding
history.

The	 beginningless	 period	 before	 1800	 breaks	 quite	 sharply	 into	 two.
The	break	occurs	about	the	year	1700,	and	is	due	mainly	to	Isaac	Newton
(1642-1727).	 Newton’s	 greatest	 rival	 in	 mathematics	 was	 Leibniz	 (1646-
1716).	According	to	Leibniz,	of	all	mathematics	up	to	the	time	of	Newton,
the	 more	 important	 half	 is	 due	 to	 Newton.	 This	 estimate	 refers	 to	 the
power	of	Newton’s	general	methods	rather	 than	to	 the	bulk	of	his	work;
the	Principia	is	still	rated	as	the	most	massive	addition	to	scientific	thought
ever	made	by	one	man.

Continuing	 back	 into	 time	 beyond	 1700	we	 find	 nothing	 comparable
till	 we	 reach	 the	 Golden	 Age	 of	 Greece—a	 step	 of	 nearly	 2000	 years.
Farther	back	 than	600	B.C.	we	quickly	pass	 into	 the	 shadows,	coming	out
into	the	light	again	for	a	moment	in	ancient	Egypt.	Finally	we	arrive	at	the
first	great	age	of	mathematics,	about	2000	B.C.,	in	the	Euphrates	Valley.

The	descendants	of	the	Sumerians	in	Babylon	appear	to	have	been	the
first	 “moderns”	 in	 mathematics;	 certainly	 their	 attack	 on	 algebraic
equations	is	more	in	the	spirit	of	the	algebra	we	know	than	anything	done
by	 the	 Greeks	 in	 their	 Golden	 Age.	More	 important	 than	 the	 technical
algebra	 of	 these	 ancient	 Babylonians	 is	 their	 recognition—as	 shown	 by
their	work—of	the	necessity	for	proof	in	mathematics.	Until	recently	it	had
been	 supposed	 that	 the	Greeks	 were	 the	 first	 to	 recognize	 that	 proof	 is
demanded	 for	 mathematical	 propositions.	 This	 was	 one	 of	 the	 most
important	steps	ever	taken	by	human	beings.	Unfortunately	it	was	taken	so
long	ago	that	it	led	nowhere	in	particular	so	far	as	our	own	civilization	is
concerned—unless	 the	Greeks	 followed	consciously,	which	they	may	well
have	done.	They	were	not	particularly	generous	to	their	predecessors.

Mathematics	then	has	had	four	great	ages:	 the	Babylonian,	the	Greek,
the	Newtonian	(to	give	the	period	around	1700	a	name),	and	the	recent,



beginning	 about	 1800	 and	 continuing	 to	 the	 present	 day.	 Competent
judges	have	called	the	last	the	Golden	Age	of	Mathematics.

Today	 mathematical	 invention	 (discovery,	 if	 you	 prefer)	 is	 going
forward	more	 vigorously	 than	 ever.	The	only	 thing,	 apparently,	 that	 can
stop	its	progress	is	a	general	collapse	of	what	we	have	been	pleased	to	call
civilization.	If	that	comes,	mathematics	may	go	underground	for	centuries,
as	 it	did	after	 the	decline	of	Babylon;	but	 if	history	 repeats	 itself,	 as	 it	 is
said	to	do,	we	may	count	on	the	spring	bursting	forth	again,	fresher	and
clearer	 than	 ever,	 long	 after	 we	 and	 all	 our	 stupidities	 shall	 have	 been
forgotten.



CHAPTER	TWO

Modern	Minds	in	Ancient	Bodies

ZENO,	EUDOXUS,	ARCHIMEDES

.	.	.	the	glory	that	was	Greece
And	the	grandeur	that	was	Rome.

—E.	A.	POE

To	 APPRECIATE	 our	 own	Golden	 Age	 of	mathematics	 we	 shall	 do	 well	 to
have	 in	 mind	 a	 few	 of	 the	 great,	 simple	 guiding	 ideas	 of	 those	 whose
genius	prepared	the	way	for	us	 long	ago,	and	we	shall	glance	at	the	lives
and	works	of	three	Greeks:	Zeno	(495–435	B.C.),	Eudoxus	(408–355	B.C.),
and	Archimedes	(287–212	B.C.).	Euclid	will	be	noticed	much	later,	where
his	best	work	comes	into	its	own.

Zeno	and	Eudoxus	are	representative	of	two	vigorous	opposing	schools
of	mathematical	thought	which	flourish	today,	the	critical-destructive	and
the	critical-constructive.	Both	had	minds	as	penetratingly	critical	as	 their
successors	 in	 the	nineteenth	and	twentieth	centuries.	This	 statement	can
of	 course	be	 inverted:	Kronecker	 (18231891)	 and	Brouwer	 (1881-	 ),	 the
modern	critics	of	mathematical	analysis—the	theories	of	 the	 infinite	and
the	 continuous—are	 as	 ancient	 as	 Zeno;	 the	 creators	 of	 the	 modern
theories	of	continuity	and	the	infinite,	Weierstrass	(1815-1897),	Dedekind
(1831-1916),	 and	 Cantor	 (1845-1918)	 are	 intellectual	 contemporaries	 of
Eudoxus.

Archimedes,	 the	greatest	 intellect	of	 antiquity,	 is	modern	 to	 the	 core.
He	 and	Newton	would	have	understood	one	 another	perfectly,	 and	 it	 is
just	possible	that	Archimedes,	could	he	come	to	life	long	enough	to	take	a
post-graduate	 course	 in	 mathematics	 and	 physics,	 would	 understand
Einstein,	 Bohr,	 Heisenberg,	 and	 Dirac	 better	 than	 they	 understand
themselves.	Of	all	the	ancients	Archimedes	is	the	only	one	who	habitually
thought	 with	 the	 unfettered	 freedom	 that	 the	 greater	 mathematicians



permit	 themselves	 today	 with	 all	 the	 hard-won	 gains	 of	 twenty	 five
centuries	to	smooth	their	way,	for	he	alone	of	all	the	Greeks	had	sufficient
stature	and	strength	to	stride	clear	over	the	obstacles	thrown	in	the	path	of
mathematical	 progress	 by	 frightened	geometers	who	had	 listened	 to	 the
philosophers.

Any	 list	 of	 the	 three	 “greatest”	 mathematicians	 of	 all	 history	 would
include	 the	 name	 of	 Archimedes.	 The	 other	 two	 usually	 associated	 with
him	are	Newton	 (1642-1727)	 and	Gauss	 (1777-1855).	 Some,	 considering
the	 relative	 wealth—or	 poverty—of	mathematics	 and	 physical	 science	 in
the	 respective	 ages	 in	 which	 these	 giants	 lived,	 and	 estimating	 their
achievements	 against	 the	 background	 of	 their	 times,	 would	 put
Archimedes	 first.	Had	 the	Greek	mathematicians	 and	 scientists	 followed
Archimedes	rather	than	Euclid,	Plato,	and	Aristotle,	they	might	easily	have
anticipated	 the	age	of	modern	mathematics,	which	began	with	Descartes
(1596-1650)	 and	 Newton	 in	 the	 seventeenth	 century,	 and	 the	 age	 of
modern	physical	science	inaugurated	by	Galileo	(1564-1642)	in	the	same
century,	by	two	thousand	years.

*		*		*

Behind	all	three	of	these	precursors	of	the	modern	age	looms	the	half-
mythical	 figure	 of	 Pythagoras	 (569?-500?	 B.C.),	 mystic,	 mathematician,
investigator	of	nature	to	the	best	of	his	self-hobbled	ability,	“one	tenth	of
him	 genius,	 nine-tenths	 sheer	 fudge.”	 His	 life	 has	 become	 a	 fable,	 rich
with	 the	 incredible	 accretions	 of	 his	 prodigies;	 but	 only	 this	much	 is	 of
importance	for	the	development	of	mathematics	as	distinguished	from	the
bizarre	number-mysticism	in	which	he	clothed	his	cosmic	speculations:	he
travelled	extensively	in	Egypt,	learned	much	from	the	priests	and	believed
more;	 visited	Babylon	and	repeated	his	Egyptian	experiences;	 founded	a
secret	 Brotherhood	 for	 high	 mathematical	 thinking	 and	 nonsensical
physical,	 mental,	 moral,	 and	 ethical	 speculation	 at	 Croton	 in	 southern
Italy;	 and,	 out	 of	 all	 this,	 made	 two	 of	 the	 greatest	 contributions	 to
mathematics	in	its	entire	history.	He	died,	according	to	one	legend,	in	the
flames	of	his	own	school	fired	by	political	and	religious	bigots	who	stirred
up	 the	 masses	 to	 protest	 against	 the	 enlightenment	 which	 Pythagoras
sought	to	bring	them.	Sic	transit	gloria	mundi.



Before	 Pythagoras	 it	 had	 not	 been	 clearly	 realized	 that	 proof	 must
proceed	 from	 assumptions.	 Pythagoras,	 according	 to	 persistent	 tradition,
was	the	first	European	to	insist	that	the	axioms,	the	postulates,	be	set	down
first	 in	developing	 geometry	 and	 that	 the	 entire	development	 thereafter
shall	proceed	by	applications	of	close	deductive	reasoning	to	the	axioms.
Following	 current	 practice	 we	 shall	 use	 “postulate,”	 instead	 of	 “axiom”
hereafter,	 as	 “axiom”	 has	 a	 pernicious	 historical	 association	 of	 “self-
evident,	necessary	truth”	which	“postulate”	does	not	have;	a	postulate	is	an
arbitrary	assumption	laid	down	by	the	mathematician	himself	and	not	by
God	Almighty.

Pythagoras	 then	 imported	 proof	 into	mathematics.	 This	 is	 his	 greatest
achievement.	Before	him	geometry	had	been	largely	a	collection	of	rules
of	thumb	empirically	arrived	at	without	any	clear	indication	of	the	mutual
connections	of	the	rules,	and	without	the	slightest	suspicion	that	all	were
deducible	from	a	comparatively	small	number	of	postulates.	Proof	is	now
so	commonly	 taken	for	granted	as	 the	very	 spirit	of	mathematics	 that	we
find	it	difficult	to	imagine	the	primitive	thing	which	must	have	preceded
mathematical	reasoning.

Pythagoras’	 second	 outstanding	 mathematical	 contribution	 brings	 us
abreast	of	 living	problems.	This	was	 the	discovery,	which	humiliated	and
devastated	him,	that	the	common	whole	numbers	1,2,3,	.	.	.	are	insufficient
for	 the	 construction	 of	 mathematics	 even	 in	 the	 rudimentary	 form	 in
which	he	 knew	 it.	 Before	 this	 capital	 discovery	 he	had	preached	 like	 an
inspired	 prophet	 that	 all	 nature,	 the	 entire	 universe	 in	 fact,	 physical,
metaphysical,	 mental,	 moral,	 mathematical—everything—is	 built	 on	 the
discrete	 pattern	of	 the	 integers	1,2,3,	 .	 .	 .	 and	 is	 interpretable	 in	 terms	of
these	God-given	bricks	alone;	God,	he	declared	indeed,	is	“number,”	and
by	 that	 he	 meant	 common	 whole	 number.	 A	 sublime	 conception,	 no
doubt,	 and	 beautifully	 simple,	 but	 as	 unworkable	 as	 its	 echo	 in	 Plato
—“God	 ever	 geometrizes,”	 or	 in	 Jacobi—“God	 ever	 arithmetizes,”	 or	 in
Jeans—“The	Great	 Architect	 of	 the	Universe	 now	 begins	 to	 appear	 as	 a
mathematician.”	 One	 obstinate	 mathematical	 discrepancy	 demolished
Pythagoras’	 discrete	 philosophy,	 mathematics,	 and	 metaphysics.	 But,
unlike	some	of	his	successors,	he	finally	accepted	defeat—after	struggling
unsuccessfully	to	suppress	the	discovery	which	abolished	his	creed.

This	was	what	knocked	his	theory	flat:	it	is	impossible	to	find	two	whole
numbers	such	that	the	square	of	one	of	them	is	equal	to	twice	the	square



of	the	other.	This	can	be	proved	by	a	simple	argumentI	within	the	reach	of
anyone	 who	 has	 had	 a	 few	 weeks	 of	 algebra,	 or	 even	 by	 anyone	 who
thoroughly	understands	elementary	arithmetic.	Actually	Pythagoras	found
his	stumbling-block	in	geometry:	the	ratio	of	the	side	of	a	square	to	one	of
its	diagonals	cannot	be	expressed	as	the	ratio	of	any	two	whole	numbers.
This	is	equivalent	to	the	statement	above	about	squares	of	whole	numbers.
In	another	form	we	would	say	that	the	square	root	of	2	is	irrational,	that	is,
is	not	equal	to	any	whole	number	or	decimal	fraction,	or	sum	of	the	two,
got	 by	 dividing	 one	 whole	 number	 by	 another.	 Thus	 even	 so	 simple	 a
geometrical	concept	as	that	of	the	diagonal	of	a	square	defies	the	integers
1,2,3,	 .	 .	 .	and	negates	 the	earlier	Pythagorean	philosophy.	We	can	easily
construct	 the	 diagonal	 geometrically,	 but	 we	 cannot	 measure	 it	 in	 any	 finite
number	 of	 steps.	 This	 impossibility	 sharply	 and	 clearly	 brought	 irrational
numbers	and	the	infinite	(non-terminating)	processes	which	they	seem	to
imply	to	the	attention	of	mathematicians.	Thus	the	square	root	of	two	can
be	 calculated	 to	 any	 required	 finite	 number	 of	 decimal	 places	 by	 the
process	 taught	 in	 school	or	by	more	powerful	methods,	 but	 the	decimal
never	 “repeats”	 (as	 that	 for	 1/7	 does,	 for	 instance),	 nor	 does	 it	 ever
terminate.	 In	 this	 discovery	 Pythagoras	 found	 the	 taproot	 of	 modern
mathematical	analysis.

Issues	were	raised	by	this	simple	problem	which	are	not	yet	disposed	of
in	 a	 manner	 satisfactory	 to	 all	 mathematicians.	 These	 concern	 the
mathematical	 concepts	 of	 the	 infinite	 (the	unending,	 the	 uncountable),
limits,	and	continuity,	concepts	which	are	at	the	root	of	modern	analysis.
Time	after	time	the	paradoxes	and	sophisms	which	crept	into	mathematics
with	these	apparently	indispensable	concepts	have	been	regarded	as	finally
eliminated,	 only	 to	 reappear	 a	 generation	 or	 two	 later,	 changed	 but	 yet
the	 same.	 We	 shall	 come	 across	 them,	 livelier	 than	 ever,	 in	 the
mathematics	of	our	time.	The	following	is	an	extremely	simple,	intuitively
obvious	picture	of	the	situation.

Consider	a	 straight	 line	 two	 inches	 long,	and	 imagine	 it	 to	have	been
traced	by	the	“continuous”	“motion”	of	a	“point.”	The	words	in	quotes	are
those	 which	 conceal	 the	 difficulties.	 Without	 analysing	 them	 we	 easily



persuade	 ourselves	 that	 we	 picture	what	 they	 signify.	Now	 label	 the	 left-
hand	end	of	the	line	0	and	the	right-hand	end	2.	Half-way	between	0	and	2
we	naturally	put	1;	half-way	between	0	and	1	we	put	½;	half-way	between	0
and	½	we	put	¼,	and	so	on.	Similarly,	between	1	and	2	we	mark	the	place
1½,	between	1½	and	2,	the	place	1½	and	so	on.	Having	done	this	we	may
proceed	in	the	same	way	to	mark	⅓,	⅔,	1⅓,	1⅔,	and	then	split	each	of
the	 resulting	 segments	 into	 smaller	 equal	 segments.	 Finally,	 “in
imagination,”	we	can	conceive	of	this	process	having	been	carried	out	for
all	the	common	fractions	and	common	mixed	numbers	which	are	greater
than	0	and	less	than	2;	the	conceptual	division-points	give	us	all	the	rational
numbers	between	0	and	2.	There	are	an	infinity	of	them.	Do	they	completely
“cover”	the	line?	No.	To	what	point	does	the	square	root	of	2	correspond?
No	point,	because	this	square	root	is	not	obtainable	by	dividing	any	whole
number	by	another.	But	 the	 square	 root	of	2	 is	obviously	a	 “number”	of
some	sort;II	its	representative	point	lies	somewhere	between	1.41	and	1.42,
and	 we	 can	 cage	 it	 down	 as	 closely	 as	 we	 please.	 To	 cover	 the	 line
completely	 we	 are	 forced	 to	 imagine	 or	 to	 invent	 infinitely	 more
“numbers”	 than	 the	 rationals.	 That	 is,	 if	 we	 accept	 the	 line	 as	 being
continuous,	and	postulate	that	to	each	point	of	it	corresponds	one,	and	only
one,	“real	number.”	The	same	kind	of	imagining	can	be	carried	on	to	the
entire	plane,	and	farther,	but	this	is	sufficient	for	the	moment.

Simple	 problems	 such	 as	 these	 soon	 lead	 to	 very	 serious	 difficulties.
With	 regard	 to	 these	difficulties	 the	Greeks	were	divided,	 just	 as	we	 are,
into	 two	 irreconcilable	 factions;	 one	 stopped	 dead	 in	 its	 mathematical
tracks	and	refused	to	go	on	to	analysis—the	integral	calculus,	at	which	we
shall	 glance	 when	 we	 come	 to	 it;	 the	 other	 attempted	 to	 overcome	 the
difficulties	and	succeeded	in	convincing	 itself	 that	 it	had	done	so.	Those
who	stopped	committed	but	few	mistakes	and	were	comparatively	sterile	of
truth	 no	 less	 than	 of	 error;	 those	 who	 went	 on	 discovered	much	 of	 the
highest	interest	to	mathematics	and	rational	thought	in	general,	some	of
which	 may	 be	 open	 to	 destructive	 criticism,	 however,	 precisely	 as	 has
happened	 in	our	own	generation.	From	the	earliest	 times	we	meet	 these
two	 distinct	 and	 antagonistic	 types	 of	mind:	 the	 justifiably	 cautious	 who
hang	 back	 because	 the	 ground	 quakes	 under	 their	 feet,	 and	 the	 bolder
pioneers	who	 leap	 the	chasm	 to	 find	 treasure	and	comparative	 safety	on
the	other	side.	We	shall	look	first	at	one	of	those	who	refused	to	leap.	For



penetrating	subtlety	of	 thought	we	 shall	not	meet	his	equal	 till	we	 reach
the	twentieth	century	and	encounter	Brouwer.

Zeno	 of	 Elea	 (495–435	 B.C.)	 was	 a	 friend	 of	 the	 philosopher
Parmenides,	 who,	 when	 he	 visited	 Athens	 with	 his	 patron,	 shocked	 the
philosophers	 out	 of	 their	 complacency	 by	 inventing	 four	 innocent
paradoxes	which	 they	 could	not	dissipate	 in	words.	 Zeno	 is	 said	 to	have
been	a	self-taught	country	boy.	Without	attempting	to	decide	what	was	his
purpose	 in	 inventing	 his	 paradoxes—authorities	 hold	 widely	 divergent
opinions—we	shall	merely	state	them.	With	these	before	us	it	will	be	fairly
obvious	 that	 Zeno	 would	 have	 objected	 to	 our	 “infinitely	 continued”
division	of	that	two-inch	line	a	moment	ago.	This	will	appear	from	the	first
two	of	his	paradoxes,	the	Dichotomy	and	the	Achilles.	The	last	two,	however,
show	 that	 he	 would	 have	 objected	 with	 equal	 vehemence	 to	 the	 opposite
hypothesis,	namely	that	the	line	is	not	“infinitely	divisible”	but	is	composed
of	 a	 discrete	 set	 of	 points	 that	 can	 be	 counted	 off	 1,2,3,	 .	 .	 .	 .	 All	 four
together	 constitute	 an	 iron	 wall	 beyond	 which	 progress	 appears	 to	 be
impossible.

First,	the	Dichotomy.	Motion	is	impossible,	because	whatever	moves	must
reach	 the	middle	 of	 its	 course	 before	 it	 reaches	 the	 end;	 but	 before	 it	 has
reached	 the	middle	 it	 must	 have	 reached	 the	 quarter-mark,	 and	 so	 on,
indefinitely.	Hence	the	motion	can	never	even	start.

Second,	 the	 Achilles.	 Achilles	 running	 to	 overtake	 a	 crawling	 tortoise
ahead	of	him	can	never	overtake	it,	because	he	must	first	reach	the	place
from	 which	 the	 tortoise	 started;	 when	 Achilles	 reaches	 that	 place,	 the
tortoise	 has	 departed	 and	 so	 is	 still	 ahead.	 Repeating	 the	 argument	 we
easily	see	that	the	tortoise	will	always	be	ahead.

Now	for	the	other	side.
The	Arrow.	A	moving	arrow	at	any	instant	is	either	at	rest	or	not	at	rest,

that	is,	moving.	If	the	instant	is	indivisible,	the	arrow	cannot	move,	for	if	it
did	 the	 instant	 would	 immediately	 be	 divided.	 But	 time	 is	 made	 up	 of
instants.	As	the	arrow	cannot	move	in	any	one	instant,	 it	cannot	move	in
any	time.	Hence	it	always	remains	at	rest.

The	Stadium.	“To	prove	that	half	the	time	may	be	equal	to	double	the
time.	Consider	three	rows	of	bodies

First	Position Second	Position

(A) 0 0 0 0 (A) 	 0 0 0 0 	



(B) 0 0 0 0 (B) 0 0 0 0 	 	 	

(C) 0 0 0 0 (C) 	 	 0 0 0 0

one	of	which	(A)	 is	at	rest	while	 the	other	two	(B),	(C)	are	moving	with
equal	velocities	in	opposite	directions.	By	the	time	they	are	all	in	the	same
part	of	the	course	(B)	will	have	passed	twice	as	many	of	the	bodies	in	(C)
as	in	(A).	Therefore	the	time	which	it	takes	to	pass	(A)	is	twice	as	long	as
the	time	it	takes	to	pass	(C).	But	the	time	which	(B)	and	(C)	take	to	reach
the	position	of	(A)	is	the	same.	Therefore	double	the	time	is	equal	to	half
the	time.”	(Burnet’s	translation.)	It	is	helpful	to	imagine	(A)	as	a	circular
picket	fence.

These,	 in	 non-mathematical	 language,	 are	 the	 sort	 of	 difficulties	 the
early	grapplers	with	continuity	and	infinity	encountered.	In	books	written
twenty	 years	 or	 so	 ago	 it	 was	 said	 that	 “the	 positive	 theory	 of	 infinity”
created	 by	 Cantor,	 and	 the	 like	 for	 “irrational”	 numbers,	 such	 as	 the
square	 root	 of	 2,	 invented	 by	 Eudoxus,	Weierstrass,	 and	Dedekind,	 had
disposed	of	all	these	difficulties	once	and	forever.	Such	a	statement	would
not	 be	 accepted	 today	 by	 all	 schools	 of	 mathematical	 thought.	 So	 in
dwelling	upon	Zeno	we	have	in	fact	been	discussing	ourselves.	Those	who
wish	 to	 see	 any	 more	 of	 him	 may	 consult	 Plato’s	 Parmenides.	 We	 need
remark	only	that	Zeno	finally	lost	his	head	for	treason	or	something	of	the
sort,	and	pass	on	to	those	who	did	not	lose	their	heads	over	his	arguments.
Those	 who	 stayed	 behind	 with	 Zeno	 did	 comparatively	 little	 for	 the
advancement	of	mathematics,	although	their	successors	have	done	much
to	shake	its	foundations.

*		*		*

Eudoxus	 (408-355	 B.C.)	 of	 Cnidus	 inherited	 the	 mess	 which	 Zeno
bequeathed	the	world	and	not	much	more.	Like	more	than	one	man	who
has	left	his	mark	on	mathematics,	Eudoxus	suffered	from	extreme	poverty
in	his	youth.	Plato	was	in	his	prime	while	Eudoxus	lived	and	Aristotle	was
about	 thirty	 when	 Eudoxus	 died.	 Both	 Plato	 and	 Aristotle,	 the	 leading
philosophers	 of	 antiquity,	 were	much	 concerned	 over	 the	 doubts	 which
Zeno	had	injected	into	mathematical	reasoning	and	which	Eudoxus,	in	his



theory	of	proportion—“the	crown	of	Greek	mathematics”—was	to	allay	till
the	last	quarter	of	the	nineteenth	century.

As	a	young	man	Eudoxus	moved	to	Athens	 from	Tarentum,	where	he
had	 studied	 with	 Archytas	 (428-347	 B.C.),	 a	 first-rate	 mathematician,
administrator,	and	 soldier.	Arriving	 in	Athens,	Eudoxus	 soon	 fell	 in	with
Plato.	 Being	 too	 poor	 to	 live	 near	 the	 Academy,	 Eudoxus	 trudged	 back
and	forth	every	day	from	the	Piraeus	where	fish	and	olive	oil	were	cheap
and	lodging	was	to	be	had	for	a	smile	in	the	right	place.

Although	he	himself	 was	 not	 a	mathematician	 in	 the	 technical	 sense,
Plato	 has	 been	 called	 “the	maker	 of	mathematicians,”	 and	 it	 cannot	 be
denied	 that	 he	 did	 irritate	 many	 infinitely	 better	 mathematicians	 than
himself	 into	 creating	 some	 real	 mathematics.	 As	 we	 shall	 see,	 his	 total
influence	on	the	development	of	mathematics	was	probably	baneful.	But
he	did	recognize	what	Eudoxus	was	and	became	his	devoted	friend	until
he	began	to	exhibit	something	like	jealousy	toward	his	brilliant	protégé.	It
is	 said	 that	 Plato	 and	Eudoxus	made	 a	 journey	 to	 Egypt	 together.	 If	 so,
Eudoxus	 seems	 to	 have	 been	 less	 credulous	 than	 his	 predecessor
Pythagoras;	 Plato	 however	 shows	 the	 effects	 of	 having	 swallowed	 vast
quantities	of	the	number-mysticism	of	the	East.	Finding	himself	unpopular
in	Athens,	Eudoxus	 finally	 settled	and	 taught	at	Cyzicus,	where	he	 spent
his	 last	 years.	He	 studied	medicine	and	 is	 said	 to	have	been	a	practising
physician	and	legislator	on	top	of	his	mathematics.	As	if	all	this	were	not
enough	to	keep	one	man	busy	he	undertook	a	serious	study	of	astronomy,
to	which	he	made	outstanding	contributions.	 In	his	 scientific	outlook	he
was	 centuries	 ahead	 of	 his	 verbalizing,	 philosophizing	 contemporaries.
Like	Galileo	 and	Newton	he	had	 a	 contempt	 for	 speculations	 about	 the
physical	 universe	 which	 could	 not	 be	 checked	 by	 observation	 and
experience.	If	by	getting	to	the	sun,	he	said,	he	could	ascertain	its	shape,
size,	 and	nature,	he	would	gladly	 share	 the	 fate	of	Phaëthon,	but	 in	 the
meantime	he	would	not	guess.

Some	 idea	 of	 what	 Eudoxus	 did	 can	 be	 seen	 from	 a	 very	 simple
problem.	 To	 find	 the	 area	 of	 a	 rectangle	 we	multiply	 the	 length	 by	 the
breadth.	 Although	 this	 sounds	 intelligible	 it	 presents	 serious	 difficulties
unless	 both	 sides	 are	 measurable	 by	 rational	 numbers.	 Passing	 these
particular	 difficulties	 we	 see	 them	 in	 a	 more	 evident	 form	 in	 the	 next
simplest	type	of	problem,	that	of	finding	the	length	of	a	curved	line,	or	the
area	of	a	curved	surface,	or	the	volume	enclosed	by	curved	surfaces.



Any	 young	 genius	wishing	 to	 test	 his	mathematical	 powers	may	 try	 to
devise	 a	 method	 for	 doing	 these	 things.	 Provided	 he	 has	 never	 seen	 it
done	 in	 school,	 how	 would	 he	 proceed	 to	 give	 a	 rigorous	 proof	 of	 the
formula	 for	 the	 circumference	 of	 a	 circle	 of	 any	 given	 radius?	Whoever
does	 that	 entirely	 on	 his	 own	 initiative	 may	 justly	 claim	 to	 be	 a
mathematician	 of	 the	 first	 rank.	 The	 moment	 we	 pass	 from	 figures
bounded	by	straight	lines	or	flat	surfaces	we	run	slap	into	all	the	problems
of	 continuity,	 the	 riddles	 of	 the	 infinite	 and	 the	 mazes	 of	 irrational
numbers.	 Eudoxus	 devised	 the	 first	 logically	 satisfactory	 method,	 which
Euclid	reproduced	in	Book	V	of	his	Elements,	for	handling	such	problems.
In	 his	 method	 of	 exhaustion,	 applied	 to	 the	 computation	 of	 areas	 and
volumes,	 Eudoxus	 showed	 that	 we	 need	 not	 assume	 the	 “existence”	 of
“infinitely	small	quantities.”	It	is	sufficient	for	the	purposes	of	mathematics
to	 be	 able	 to	 reach	 a	 magnitude	 as	 small	 as	 we	 please	 by	 the	 continued
division	of	a	given	magnitude.

To	 finish	 with	 Eudoxus	 we	 shall	 state	 his	 epochal	 definition	 of	 equal
ratios	 which	 enabled	 mathematicians	 to	 treat	 irrational	 numbers	 as
rigorously	as	 the	rationals.	This	was,	essentially,	 the	 starting-point	of	one
modern	theory	of	irrationals.

“The	first	of	four	magnitudes	is	said	to	have	the	same	ratio	to	the	second
that	 the	 third	 has	 to	 the	 fourth	 when,	 any	 whatever	 equimultiples	 [the
same	 multiples]	 of	 the	 first	 and	 third	 being	 taken,	 and	 any	 other
equimultiples	of	 the	 second	and	 fourth,	 the	multiple	 of	 the	 first	 is	 greater
than,	 equal	 to,	 or	 less	 than	 the	multiple	 of	 the	 second,	 according	 as	 the
multiple	of	the	third	is	greater	than,	equal	to,	or	less	than	the	multiple	of
the	fourth”

Of	the	Greeks	not	yet	named	whose	work	influenced	mathematics	after
the	year	1600	only	Apollonius	need	be	mentioned	here.	Apollonius	(260?–
200?	 B.C.)	 carried	 geometry	 in	 the	 manner	 of	 Euclid—the	 way	 it	 is	 still
taught	to	hapless	beginners—far	beyond	the	state	in	which	Euclid	(330?–
275?	B.C.)	left	it.	As	a	geometer	of	this	type—a	synthetic,	“pure”	geometer—
Apollonius	is	without	a	peer	till	Steiner	in	the	nineteenth	century.

If	a	cone	standing	on	a	circular	base	and	extending	indefinitely	in	both
directions	through	its	vertex	is	cut	by	a	plane,	the	curve	in	which	the	plane
intersects	the	surface	of	the	cone	is	called	a	conic	section.	There	are	five
possible	 kinds	 of	 conic	 sections:	 the	 ellipse;	 the	hyperbola,	 consisting	of
two	 branches;	 the	 parabola,	 the	 path	 of	 a	 projectile	 in	 a	 vacuum;	 the



circle;	and	a	pair	of	 intersecting	 straight	 lines.	The	ellipse,	parabola	and
hyperbola	are	“mechanical	curves”	according	to	the	Platonic	formula;	that
is,	 these	 curves	 cannot	 be	 constructed	 by	 the	 use	 of	 straightedge	 and
compass	alone,	although	it	is	easy,	with	these	implements,	to	construct	any
desired	number	of	points	lying	on	any	one	of	these	curves.	The	geometry
of	 the	 conic	 sections,	 worked	 out	 to	 a	 high	 degree	 of	 perfection	 by
Apollonius	and	his	successors.	proved	to	be	of	the	highest	importance	in
the	 celestial	 mechanics	 of	 the	 seventeenth	 and	 succeeding	 centuries.
Indeed,	had	not	 the	Greek	geometers	 run	ahead	of	Kepler	 it	 is	unlikely
that	Newton	could	ever	have	come	upon	his	 law	of	universal	gravitation,
for	which	Kepler	had

prepared	the	way	with	his	laboriously	ingenious	calculations	on	the	orbits
of	the	planets.

*		*		*

Among	the	later	Greeks	and	the	Arabs	of	the	Middle	Ages	Archimedes
seems	to	have	inspired	the	same	awe	and	reverence	that	Gauss	did	among
his	 contemporaries	 and	 followers	 in	 the	 nineteenth	 century,	 and	 that
Newton	 did	 in	 the	 seventeenth	 and	 eighteenth.	 Archimedes	 was	 the
undisputed	 chieftain	 of	 them	 all,	 “the	 old	 man,”	 “the	 wise	 one,”	 “the
master,”	“the	great	geometer.”	To	recall	his	dates,	he	lived	in	287-212	B.C.
Thanks	to	Plutarch	more	is	known	about	his	death	than	his	life,	and	it	is
perhaps	 not	 unfair	 to	 suggest	 that	 the	 typical	 historical	 biographer



Plutarch	 evidently	 thought	 the	 King	 of	Mathematicians	 a	 less	 important
personage	historically	 than	 the	Roman	soldier	Marcellus,	 into	whose	Life
the	account	of	Archimedes	is	slipped	like	a	tissue-thin	shaving	of	ham	in	a
bull-choking	 sandwich.	 Yet	 Archimedes	 is	 today	Marcellus’	 chief	 title	 to
remembrance—and	execration.	 In	 the	death	of	Archimedes	we	 shall	 see
the	 first	 impact	 of	 a	 crassly	 practical	 civilization	 upon	 the	 greater	 thing
which	it	destroyed—Rome,	having	half-demolished	Carthage,	swollen	with
victory	and	imperially	purple	with	valor,	falling	upon	Greece	to	shatter	its
fine	fragility.

In	 body	 and	 mind	 Archimedes	 was	 an	 aristocrat.	 The	 son	 of	 the
astronomer	Pheidias,	he	was	born	at	 Syracuse,	 Sicily,	 and	 is	 said	 to	have
been	related	to	Hieron	II,	tyrant	(or	king)	of	Syracuse.	At	any	rate	he	was
on	 intimate	 terms	with	Hieron	 and	his	 son	Gelon,	 both	of	whom	had	 a
high	admiration	for	the	king	of	mathematicians.	His	essentially	aristocratic
temperament	expressed	itself	in	his	attitude	to	what	would	today	be	called
applied	science.	Although	he	was	one	of	the	greatest	mechanical	geniuses
of	all	time,	if	not	the	greatest	when	we	consider	how	little	he	had	to	go	on,
the	aristocratic	Archimedes	had	a	sincere	contempt	for	his	own	practical
inventions.	From	one	point	of	view	he	was	justified.	Books	could	be	written
on	what	Archimedes	did	for	applied	mechanics;	but	great	as	this	work	was
from	 our	 own	 mechanically	 biased	 point	 of	 view,	 it	 is	 completely
overshadowed	by	his	contributions	 to	pure	mathematics.	We	 look	 first	at
the	few	known	facts	about	him	and	the	legend	of	his	personality.

According	 to	 tradition	 Archimedes	 is	 a	 perfect	museum	 specimen	 of
the	 popular	 conception	 of	 what	 a	 great	mathematician	 should	 be.	 Like
Newton	and	Hamilton	he	left	his	meals	untouched	when	he	was	deep	in
his	mathematics.	 In	 the	matter	of	 inattention	 to	dress	he	 even	 surpasses
Newton,	for	on	making	his	famous	discovery	that	a	floating	body	loses	in
weight	an	amount	equal	to	that	of	the	liquid	displaced,	he	leaped	from	the
bath	 in	which	 he	 had	made	 the	 discovery	 by	 observing	 his	 own	 floating
body,	 and	 dashed	 through	 the	 streets	 of	 Syracuse	 stark	 naked,	 shouting
“Eureka,	eureka!”	(I	have	found	it,	I	have	found	it!)	What	he	had	found	was
the	first	 law	of	hydrostatics.	According	to	the	story	a	dishonest	goldsmith
had	adulterated	the	gold	of	a	crown	for	Hieron	with	silver	and	the	tyrant,
suspecting	fraud,	had	asked	Archimedes	to	put	his	mind	on	the	problem.
Any	high	 school	boy	knows	how	 it	 is	 solved	by	 a	 simple	experiment	 and
some	 easy	 arithmetic	 on	 specific	 gravity;	 “the	 principle	 of	 Archimedes”



and	its	numerous	practical	applications	are	meat	for	youngsters	and	naval
engineers	today,	but	the	man	who	first	saw	through	them	had	more	than
common	 insight.	 It	 is	 not	 definitely	 known	 whether	 the	 goldsmith	 was
guilty;	for	the	sake	of	the	story	it	is	usually	assumed	that	he	was.

Another	exclamation	of	Archimedes	which	has	come	down	through	the
centuries	 is	 “Give	me	 a	 place	 to	 stand	 on	 and	 I	 will	 move	 the	 earth”	 (

	 as	 he	 said	 it	 in	 Doric).	 He	 himself	 was	 strongly
moved	by	his	discovery	of	the	laws	of	levers	when	he	made	his	boast.	The
phrase	 would	make	 a	 perfect	 motto	 for	 a	 modern	 scientific	 institute;	 it
seems	strange	that	it	has	not	been	appropriated.	There	is	another	version
in	better	Greek	but	the	meaning	is	the	same.

In	 one	 of	 his	 eccentricities	 Archimedes	 resembled	 another	 great
mathematician,	Weierstrass.	According	to	a	sister	of	Weierstrass,	he	could
not	be	trusted	with	a	pencil	when	he	was	a	young	school	teacher	if	there
was	 a	 square	 foot	 of	 clear	 wallpaper	 or	 a	 clean	 cuff	 anywhere	 in	 sight.
Archimedes	beats	this	record.	A	sanded	floor	or	dusted	hard	smooth	earth
was	a	common	sort	of	“blackboard”	in	his	day.	Archimedes	made	his	own
occasions.	Sitting	before	the	fire	he	would	rake	out	the	ashes	and	draw	in
them.	After	stepping	from	the	bath	he	would	anoint	himself	with	olive	oil,
according	to	the	custom	of	 the	time,	and	then,	 instead	of	putting	on	his
clothes,	 proceed	 to	 lose	himself	 in	 the	diagrams	which	he	 traced	with	 a
fingernail	on	his	own	oily	skin.

Archimedes	was	a	lonely	sort	of	eagle.	As	a	young	man	he	had	studied
for	a	short	time	at	Alexandria,	Egypt,	where	he	made	two	life-long	friends,
Conon,	a	gifted	mathematician	for	whom	Archimedes	had	a	high	regard
both	 personal	 and	 intellectual,	 and	 Eratosthenes,	 also	 a	 good
mathematician	 but	 quite	 a	 fop.	 These	 two,	 particularly	 Conon,	 seem	 to
have	been	the	only	men	of	his	contemporaries	with	whom	Archimedes	felt
he	could	share	his	thoughts	and	be	assured	of	understanding.	Some	of	his
finest	 work	 was	 communicated	 by	 letters	 to	 Conon.	 Later,	 when	 Conon
died,	Archimedes	corresponded	with	Dositheus,	a	pupil	of	Conon.

Leaving	 aside	 his	 great	 contributions	 to	 astronomy	 and	 mechanical
invention	we	 shall	 give	 a	bare	 and	 inadequate	 summary	of	 the	principal
additions	which	Archimedes	made	to	pure	and	applied	mathematics.

He	invented	general	methods	for	finding	the	areas	of	curvilinear	plane
figures	 and	 volumes	 bounded	 by	 curved	 surfaces,	 and	 applied	 these
methods	 to	 many	 special	 instances,	 including	 the	 circle,	 sphere,	 any



segment	 of	 a	 parabola,	 the	 area	 enclosed	 between	 two	 radii	 and	 two
successive	whorls	of	a	spiral,	segments	of	spheres,	and	segments	of	surfaces
generated	 by	 the	 revolution	 of	 rectangles	 (cylinders),	 triangles	 (cones),
parabolas	 (paraboloids),	 hyperbolas	 (hyperboloids),	 and	 ellipses
(spheroids)	about	their	principal	axes.	He	gave	a	method	for	calculating	π
(the	ratio	of	the	circumference	of	a	circle	to	its	diameter),	and	fixed	π	as
lying	between	3	1/7	and	3	10/71;	he	also	gave	methods	for	approximating
to	 square	 roots	 which	 show	 that	 he	 anticipated	 the	 invention	 by	 the
Hindus	of	what	amount	to	periodic	continued	fractions.	In	arithmetic,	far
surpassing	the	incapacity	of	the	unscientific	Greek	method	of	symbolizing
numbers	to	write,	or	even	to	describe,	large	numbers,	he	invented	a	system
of	 numeration	 capable	 of	 handling	 numbers	 as	 large	 as	 desired.	 In
mechanics	he	 laid	down	some	of	 the	 fundamental	postulates,	discovered
the	 laws	 of	 levers,	 and	 applied	 his	 mechanical	 principles	 (of	 levers)	 to
calculate	the	areas	and	centers	of	gravity	of	several	flat	surfaces	and	solids
of	 various	 shapes.	 He	 created	 the	 whole	 science	 of	 hydrostatics	 and
applied	it	to	find	the	positions	of	rest	and	of	equilibrium	of	floating	bodies
of	several	kinds.

Archimedes	composed	not	one	masterpiece	but	many.	How	did	he	do	it
all?	His	severely	economical,	logical	exposition	gives	no	hint	of	the	method
by	which	he	arrived	at	his	wonderful	results.	But	in	1906,	J.	L.	Heiberg,	the
historian	and	scholar	of	Greek	mathematics,	made	the	dramatic	discovery
in	Constantinople	of	a	hitherto	“lost”	treatise	of	Archimedes	addressed	to
his	friend	Eratosthenes:	On	Mechanical	Theorems,	Method.	In	it	Archimedes
explains	how	by	weighing,	in	imagination,	a	figure	or	solid	whose	area	or
volume	was	unknown	against	a	known	one,	he	was	led	to	the	knowledge	of
the	 fact	 he	 sought;	 the	 fact	 being	 known	 it	 was	 then	 comparatively	 easy
(for	him)	 to	prove	 it	mathematically.	 In	 short	he	used	his	mechanics	 to
advance	 his	mathematics.	 This	 is	 one	 of	 his	 titles	 to	 a	modern	mind:	he
used	 anything	 and	 everything	 that	 suggested	 itself	 as	 a	 weapon	 to	 attack	 his
problems.

To	a	modern	all	 is	 fair	 in	war,	 love,	and	mathematics;	 to	many	of	 the
ancients,	mathematics	was	a	stultified	game	to	be	played	according	to	the
prim	 rules	 imposed	 by	 the	 philosophically-minded	 Plato.	 According	 to
Plato	only	a	straightedge	and	a	pair	of	compasses	were	to	be	permitted	as
the	 implements	 of	 construction	 in	 geometry.	 No	 wonder	 the	 classical
geometers	 hammered	 their	 heads	 for	 centuries	 against	 “the	 three



problems	 of	 antiquity”:	 to	 trisect	 an	 angle;	 to	 construct	 a	 cube	 having
double	the	volume	of	a	given	cube;	to	construct	a	square	equal	to	a	circle.
None	of	these	problems	is	possible	with	only	straightedge	and	compass,	although	it
is	 hard	 to	 prove	 that	 the	 third	 is	 not,	 and	 the	 impossibility	 was	 finally
proved	 only	 in	 1882.	 All	 constructions	 effected	 with	 other	 implements
were	dubbed	“mechanical”	and,	as	such,	for	some	mystical	reason	known
only	to	Plato	and	his	geometrizing	God,	were	considered	shockingly	vulgar
and	were	 rigidly	 taboo	 in	 respectable	 geometry.	Not	 till	 Descartes,	 1985
years	 after	 the	 death	 of	 Plato,	 published	 his	 analytic	 geometry,	 did
geometry	escape	from	its	Platonic	straightjacket.	Plato	of	course	had	been
dead	for	sixty	years	or	more	before	Archimedes	was	born,	so	he	cannot	be
censured	 for	 not	 appreciating	 the	 lithe	 power	 and	 freedom	 of	 the
methods	 of	 Archimedes.	 On	 the	 other	 hand,	 only	 praise	 is	 due
Archimedes	 for	 not	 appreciating	 the	 old-maidishness	 of	 Plato’s	 rigidly
corseted	conception	of	what	the	muse	of	geometry	should	be.

The	 second	 claim	of	Archimedes	 to	modernity	 is	 also	based	upon	his
methods.	 Anticipating	Newton	 and	 Leibniz	 by	more	 than	 2000	 years	 he
invented	the	integral	calculus	and	in	one	of	his	problems	anticipated	their
invention	 of	 the	 differential	 calculus.	 These	 two	 calculuses	 together
constitute	what	is	known	as	 the	calculus,	which	has	been	described	as	 the
most	powerful	instrument	ever	invented	for	the	mathematical	exploration
of	 the	 physical	 universe.	 To	 take	 a	 simple	 example,	 suppose	 we	 wish	 to
find	the	area	of	a	circle.	Among	other	ways	of	doing	this	we	may	slice	the
circle	 into	 any	 number	 of	 parallel	 strips	 of	 equal	 breadth,	 cut	 off	 the



curved	 ends	 of	 the	 strips,	 so	 that	 the	 discarded	 bits	 shall	 total	 the	 least
possible,	by	cuts	perpendicular	to	the	strips,	and	then	add	up	the	areas	of
all	 the	 resulting	 rectangles.	 This	 gives	 an	 approximation	 to	 the	 area
sought.	By	increasing	the	number	of	strips	indefinitely	and	taking	the	limit
of	the	sum,	we	get	the	area	of	the	circle.	This	(crudely	described)	process
of	 taking	 the	 limit	 of	 the	 sum	 is	 called	 integration;	 the	 method	 of
performing	 such	 summations	 is	 called	 the	 integral	 calculus.	 It	 was	 this
calculus	 which	 Archimedes	 used	 in	 finding	 the	 area	 of	 a	 segment	 of	 a
parabola	and	in	other	problems.

The	 problem	 in	 which	 he	 used	 the	 differential	 calculus	 was	 that	 of
constructing	a	tangent	at	any	given	point	of	his	spiral.	If	the	angle	which
the	tangent	makes	with	any	given	line	is	known,	the	tangent	can	easily	be
drawn,	 for	 there	 is	 a	 simple	 construction	 for	 drawing	 a	 straight	 line
through	 a	 given	 point	 parallel	 to	 a	 given	 straight	 line.	 The	 problem	 of
finding	the	angle	mentioned	(for	any	curve,	not	merely	for	the	spiral)	is,
in	 geometrical	 language,	 the	 main	 problem	 of	 the	 differential	 calculus.
Archimedes	solved	this	problem	for	his	spiral.	His	spiral	is	the	curve	traced
by	a	point	moving	with	uniform	speed	along	a	straight	line	which	revolves
with	uniform	angular	speed	about	a	fixed	point	on	the	line.	If	anyone	who
has	not	 studied	 the	calculus	 imagines	Archimedes’	problem	an	easy	one
he	may	time	himself	doing	it.

*		*		*

The	life	of	Archimedes	was	as	tranquil	as	a	mathematician’s	should	be	if
he	is	to	accomplish	all	that	is	in	him.	All	the	action	and	tragedy	of	his	life
were	crowded	 into	 its	end.	 In	212	B.C.	 the	 second	Punic	war	was	 roaring
full	 blast.	 Rome	 and	 Carthage	 were	 going	 at	 one	 another	 hammer	 and
tongs,	and	Syracuse,	the	city	of	Archimedes,	lay	temptingly	near	the	path
of	the	Roman	fleet.	Why	not	lay	siege	to	it?	They	did.

Puffed	up	with	conceit	of	himself	(“relying	on	his	own	great	fame,”	as
Plutarch	puts	it),	and	trusting	in	the	splendor	of	his	“preparedness”	rather
than	 in	 brains,	 the	 Roman	 leader,	 Marcellus,	 anticipated	 a	 speedy
conquest.	The	pride	of	his	confident	heart	was	a	primitive	piece	of	artillery
on	 a	 lofty	 harp-shaped	 platform	 supported	 by	 eight	 galleys	 lashed
together.	Beholding	all	this	fame	and	miscellaneous	shipping	descending
upon	them	the	timider	citizens	would	have	handed	Marcellus	the	keys	of



the	city.	Not	so	Hieron.	He	too	was	prepared	for	war,	and	in	a	fashion	that
the	practical	Marcellus	would	never	have	dreamed	of.

It	 seems	that	Archimedes,	despising	applied	mathematics	himself,	had
nevertheless	yielded	in	peace	time	to	the	importunities	of	Hieron,	and	had
demonstrated	 to	 the	 tyrant’s	 satisfaction	 that	 mathematics	 can,	 on
occasion,	 become	 devastatingly	 practical.	 To	 convince	 his	 friend	 that
mathematics	is	capable	of	more	than	abstract	deductions.	Archimedes	had
applied	his	laws	of	levers	and	pulleys	to	the	manipulation	of	a	fully	loaded
ship,	 which	 he	 himself	 launched	 singlehanded.	 Remembering	 this	 feat
when	 the	 war	 clouds	 began	 to	 gather	 ominously	 near,	 Hieron	 begged
Archimedes	 to	 prepare	 a	 suitable	 welcome	 for	 Marcellus.	 Once	 more
desisting	from	his	researches	to	oblige	his	friend,	Archimedes	constituted
himself	 a	 reception	 committee	 of	 one	 to	 trip	 the	 precipitate	 Romans.
When	 they	 arrived	 his	 ingenious	 deviltries	 stood	 grimly	 waiting	 to	 greet
them.

The	 harp-shaped	 turtle	 affair	 on	 the	 eight	 quinqueremes	 lasted	 no
longer	 than	 the	 fame	 of	 the	 conceited	Marcellus.	 A	 succession	 of	 stone
shots,	 each	 weighing	 over	 a	 quarter	 of	 a	 ton,	 hurled	 from	 the
supercatapults	 of	 Archimedes,	 demolished	 the	 unwieldy	 contraption.
Crane-like	 beaks	 and	 iron	 claws	 reached	 over	 the	 walls	 for	 the
approaching	ships,	seized	them,	spun	them	round,	and	sank	or	shattered
them	 against	 the	 jutting	 cliffs.	 The	 land	 forces,	 mowed	 down	 by	 the
Archimedean	 artillery,	 fared	 no	 better.	 Camouflaging	 his	 rout	 in	 the
official	bulletins	as	a	withdrawal	 to	a	previously	prepared	position	 in	 the
rear,	 Marcellus	 backed	 off	 to	 confer	 with	 his	 staff.	 Unable	 to	 rally	 his
mutinous	 troops	 for	 an	 assault	 on	 the	 terrible	 walls,	 the	 famous	Roman
leader	retired.

At	 last	evincing	some	slight	signs	of	military	common	sense,	Marcellus
issued	no	further	“backs	against	the	wall”	orders	of	the	day,	abandoned	all
thoughts	 of	 a	 frontal	 attack,	 captured	 Megara	 in	 the	 rear,	 and	 finally
sneaked	up	on	Syracuse	from	behind.	This	time	his	luck	was	with	him.	The
foolish	Syracusans	were	 in	 the	middle	of	a	bibulous	religious	celebration
in	honor	of	Artemis.	War	and	religion	have	always	made	a	bilious	sort	of
cocktail;	 the	celebrating	Syracusans	were	very	sick	 indeed.	They	woke	up
to	find	the	massacre	 in	 full	 swing.	Archimedes	participated	 in	 the	blood-
letting.



His	first	intimation	that	the	city	had	been	taken	by	theft	was	the	shadow
of	 a	 Roman	 soldier	 falling	 across	 his	 diagram	 in	 the	 dust.	 According	 to
one	 account	 the	 soldier	 had	 stepped	 on	 the	 diagram,	 angering
Archimedes	to	exclaim	sharply,	“Don’t	disturb	my	circles!”	Another	states
that	 Archimedes	 refused	 to	 obey	 the	 soldier’s	 order	 that	 he	 accompany
him	to	Marcellus	until	he	had	worked	out	his	problem.	In	any	event	 the
soldier	flew	into	a	passion,	unsheathed	his	glorious	sword,	and	dispatched
the	unarmed	veteran	geometer	of	seventy	five.	Thus	died	Archimedes.

As	Whitehead	 has	 observed,	 “No	 Roman	 lost	 his	 life	 because	 he	 was
absorbed	in	the	contemplation	of	a	mathematical	diagram.”

I.	Let	a2	=	2b2,	where,	without	 loss	of	generality,	a,	b	are	whole	numbers	without	any	common
factor	greater	than	1	(such	a	factor	could	be	cancelled	from	the	assumed	equation).	If	a	is	odd,	we
have	an	immediate	contradiction,	since	2b2	is	even;	if	a	is	even,	say	2b,	then	4c2	=	2c1,	or	2c2	=	b2,	so	b
is	even,	and	hence	a,	b	have	the	common	factor	2,	again	a	contradiction.

II.	The	inherent	viciousness	of	such	an	assumption	is	obvious.



CHAPTER	THREE

Gentleman,	Soldier,	and
Mathematician

DESCARTES

[Analytic	geometry],	far	more	than	any	of	his	metaphysical	speculations,	immortalized	the	name	of	Descartes,
and	constitutes	the	greatest	single	step	ever	made	in	the	progress	of	the	exact	sciences.—JOHN	STUART	MILL

“I	DESIRE	ONLY	TRANQUILLITY	AND	 repose.”	These	are	the	words	of	 the	man
who	was	to	deflect	mathematics	into	new	channels	and	change	the	course
of	scientific	history.	Too	often	in	his	active	life	René	Descartes	was	driven
to	find	the	tranquillity	he	sought	in	military	camps	and	to	seek	the	repose
he	 craved	 for	 meditation	 in	 solitary	 retreat	 from	 curious	 and	 exacting
friends.	Desiring	only	 tranquillity	and	repose,	he	was	born	on	March	31,
1596	at	La	Haye,	near	Tours,	France,	 into	a	Europe	given	over	to	war	 in
the	throes	of	religious	and	political	reconstruction.

His	 times	were	not	unlike	our	own.	An	old	order	was	 rapidly	passing;
the	 new	 was	 not	 yet	 established.	 The	 predatory	 barons,	 kings,	 and
princelings	 of	 the	 Middle	 Ages	 had	 bred	 a	 swarm	 of	 rulers	 with	 the
political	ethics	of	highway	robbers	and,	for	the	most	part,	the	intellects	of
stable	 boys.	What	 by	 common	 justice	 should	 have	 been	 thine	 was	mine
provided	my	arm	was	strong	enough	to	take	it	away	from	thee.	This	may	be
an	unflattering	picture	of	that	glorious	period	of	European	history	known
as	 the	 late	Renaissance,	but	 it	 accords	 fairly	well	with	our	own	changing
estimate,	 born	 of	 intimate	 experience,	 of	 what	 should	 be	 what	 in	 a
civilized	society.

On	 top	 of	 the	 wars	 for	 plunder	 in	 Descartes’	 day	 there	 was
superimposed	 a	 rich	 deposit	 of	 religious	 bigotry	 and	 intolerance	 which
incubated	 further	 wars	 and	made	 the	 dispassionate	 pursuit	 of	 science	 a
highly	 hazardous	 enterprise.	 To	 all	 this	 was	 added	 a	 comprehensive
ignorance	of	the	elementary	rules	of	common	cleanliness.	From	the	point



of	view	of	sanitation	the	rich	man’s	mansion	was	likely	to	be	as	filthy	as	the
slums	where	 the	poor	 festered	 in	dirt	 and	 ignorance,	 and	 the	 recurrent
plagues	which	aided	the	epidemic	wars	in	keeping	the	prolific	population
below	 the	 famine	 limit	paid	no	attention	 to	bank	accounts.	So	much	 for
the	good	old	days.

On	the	immaterial,	enduring	side	of	the	ledger	the	account	is	brighter.
The	age	in	which	Descartes	lived	was	indeed	one	of	the	great	intellectual
periods	in	the	spotted	history	of	civilization.	To	mention	only	a	few	of	the
outstanding	men	whose	lives	partly	overlapped	that	of	Descartes,	we	recall
that	 Fermat	 and	 Pascal	 were	 his	 contemporaries	 in	 mathematics;
Shakespeare	died	when	Descartes	was	twenty;	Descartes	outlived	Galileo	by
eight	 years,	 and	 Newton	 was	 eight	 when	 Descartes	 died;	 Descartes	 was
twelve	when	Milton	was	born,	and	Harvey,	the	discoverer	of	the	circulation
of	 the	 blood,	 outlived	 Descartes	 by	 seven	 years,	 while	 Gilbert,	 who
founded	the	science	of	electromagnetism,	died	when	Descartes	was	seven.

René	Descartes	came	from	an	old	noble	family.	Although	René’s	father
was	 not	 wealthy	 his	 circumstances	 were	 a	 little	 better	 than	 easy,	 and	his
sons	 were	 destined	 for	 the	 careers	 of	 gentlemen—noblesse	 oblige—in	 the
service	of	France.	René	was	the	third	and	last	child	of	his	father’s	first	wife,
Jeanne	 Brochard,	 who	 died	 a	 few	 days	 after	 René’s	 birth.	 The	 father
appears	to	have	been	a	man	of	rare	sense	who	did	everything	in	his	power
to	make	up	to	his	children	for	the	loss	of	their	mother.	An	excellent	nurse
took	 the	 mother’s	 place,	 and	 the	 father,	 who	 married	 again,	 kept	 a
constant,	watchful,	intelligent	eye	on	his	“young	philosopher”	who	always
wanted	to	know	the	cause	of	everything	under	the	sun	and	the	reason	for
whatever	 his	 nurse	 told	 him	 about	 heaven.	 Descartes	 was	 not	 exactly	 a
precocious	child,	but	his	frail	health	forced	him	to	expend	what	vitality	he
had	in	intellectual	curiosity.

Owing	 to	 René’s	 delicate	 health	 his	 father	 let	 lessons	 slide.	 The	 boy
however	went	ahead	on	his	own	initiative	and	his	father	wisely	let	him	do
as	 he	 liked.	 When	 Descartes	 was	 eight	 his	 father	 decided	 that	 formal
education	could	not	be	put	off	 longer.	After	much	intelligent	 inquiry	he
chose	the	Jesuit	college	at	La	Flèche	as	 the	 ideal	 school	 for	his	 son.	The
rector.	Father	Charlet,	 took	an	 instant	 liking	 to	 the	pale,	 confiding	 little
boy	and	made	a	special	study	of	his	case.	Seeing	that	he	must	build	up	the
boy’s	 body	 if	 he	 was	 to	 educate	 his	 mind,	 and	 noticing	 that	 Descartes
seemed	to	require	much	more	rest	than	normal	boys	of	his	age,	the	rector



told	him	 to	 lie	 in	 bed	 as	 late	 as	 he	pleased	 in	 the	mornings	 and	not	 to
leave	 his	 room	 till	 he	 felt	 like	 joining	 his	 companions	 in	 the	 classroom.
Thereafter,	all	through	his	life	except	for	one	unfortunate	episode	near	its
close,	 Descartes	 spent	 his	 mornings	 in	 bed	 when	 he	 wished	 to	 think.
Looking	 back	 in	middle	 age	 on	his	 schooldays	 at	 La	 Fleche,	 he	 averred
that	those	long,	quiet	mornings	of	silent	meditation	were	the	real	source
of	his	philosophy	and	mathematics.

His	work	went	well	 and	he	became	a	proficient	 classicist.	 In	 line	with
the	 educational	 tradition	 of	 the	 time	much	 attention	 was	 put	 on	 Latin,
Greek,	 and	 rhetoric.	 But	 this	 was	 only	 a	 part	 of	 what	Descartes	 got.	His
teachers	were	men	of	the	world	themselves	and	it	was	their	job	to	train	the
boys	 under	 their	 charge	 to	 be	 “gentlemen”—in	 the	 best	 sense	 of	 that
degraded	word—for	 their	 rôle	 in	 the	world.	When	he	 left	 the	 school	 in
August,	 1612,	 in	 his	 seventeenth	 year,	 Descartes	 had	 made	 a	 life-long
friend	in	Father	Charlet	and	was	almost	ready	to	hold	his	own	in	society.
Charlet	 was	 only	 one	 of	 the	many	 friends	Descartes	made	 at	 La	 Flèche;
another,	 Mersenne	 (later	 Father),	 the	 famous	 amateur	 of	 science	 and
mathematics,	had	been	his	older	 chum	and	was	 to	become	his	 scientific
agent	and	protector-in-chief	from	bores.

Descartes’	distinctive	talent	had	made	itself	evident	long	before	he	left
school.	 As	 early	 as	 the	 age	 of	 fourteen,	 lying	meditating	 in	 bed,	 he	 had
begun	 to	 suspect	 that	 the	 “humanities”	 he	 was	 mastering	 were
comparatively	barren	of	human	significance	and	certainly	not	the	sort	of
learning	to	enable	human	beings	to	control	their	environment	and	direct
their	 own	 destiny.	 The	 authoritative	 dogmas	 of	 philosophy,	 ethics,	 and
morals	 offered	 for	 his	 blind	 acceptance	 began	 to	 take	 on	 the	 aspect	 of
baseless	 superstitions.	 Persisting	 in	 his	 childhood	 habit	 of	 accepting
nothing	on	mere	authority,	Descartes	began	unostentatiously	questioning
the	 alleged	 demonstrations	 and	 the	 casuistical	 logic	 by	 which	 the	 good
Jesuits	 sought	 to	 gain	 the	 assent	 of	his	 reasoning	 faculties.	 From	 this	he
rapidly	passed	to	the	fundamental	doubt	which	was	to	inspire	his	life-work:
how	do	we	know	anything?	And	further,	perhaps	more	 importantly,	 if	we
cannot	say	definitely	that	we	know	anything,	how	are	we	ever	to	find	out
those	things	which	we	may	be	capable	of	knowing?

On	 leaving	 school	 Descartes	 thought	 longer,	 harder,	 and	 more
desperately	 than	ever.	As	a	 first	 fruit	of	his	meditations	he	apprehended
the	heretical	truth	that	logic	of	itself—the	great	method	of	the	schoolmen



of	 the	 Middle	 Ages	 which	 still	 hung	 on	 tenaciously	 in	 humanistic
education—is	 as	 barren	 as	 a	mule	 for	 any	 creative	 human	 purpose.	His
second	 conclusion	 was	 closely	 allied	 to	 his	 first:	 compared	 to	 the
demonstrations	of	mathematics—to	which	he	took	like	a	bird	to	the	air	as
soon	as	he	 found	his	wings—those	of	philosophy,	ethics,	 and	morals	are
tawdry	 shams	 and	 frauds.	 How	 then,	 he	 asked,	 shall	 we	 ever	 find	 out
anything?	By	the	scientific	method,	although	Descartes	did	not	call	it	that:
by	controlled	experiment	and	the	application	of	rigid	mathematical	reasoning
to	the	results	of	such	experiment.

It	may	be	asked	what	he	got	out	of	his	rational	skepticism.	One	fact,	and
only	one:	“I	exist.”	As	he	put	it,	“Cogito	ergo	sum”	(I	think,	therefore	I	am).

By	 the	 age	 of	 eighteen	 Descartes	 was	 thoroughly	 disgusted	 with	 the
aridity	 of	 the	 studies	 on	 which	 he	 had	 put	 so	 much	 hard	 labor.	 He
resolved	to	see	the	world	and	learn	something	of	life	as	it	is	lived	in	flesh
and	blood	and	not	in	paper	and	printers’	ink.	Thanking	God	that	he	was
well	 enough	 off	 to	 do	 as	 he	 pleased	 he	 proceeded	 to	 do	 it.	 By	 an
understandable	 overcorrection	of	 his	 physically	 inhibited	 childhood	 and
youth	he	now	fell	upon	the	pleasures	appropriate	to	normal	young	men	of
his	 age	 and	 station	 and	 despoiled	 them	 with	 both	 hands.	 With	 several
other	 young	blades	hungering	 for	 life	 in	 the	 raw	he	quit	 the	depressing
sobriety	of	the	paternal	estate	and	settled	in	Paris.	Gambling	being	one	of
the	accomplishments	of	a	gentleman	in	that	day,	Descartes	gambled	with
enthusiasm—and	 some	 success.	Whatever	 he	 undertook	 he	 did	 with	 his
whole	soul.

This	phase	did	not	last	long.	Tiring	of	his	bawdy	companions,	Descartes
gave	them	the	slip	and	took	up	his	quarters	in	plain,	comfortable	lodgings
in	what	is	now	the	suburb	of	Saint-Germain	where,	for	two	years,	he	buried
himself	 in	 incessant	 mathematical	 investigation.	 His	 gay	 deeds	 at	 last
found	 him	 out,	 however,	 and	 his	 hare-brained	 friends	 descended
whooping	upon	him.	The	studious	young	man	looked	up,	recognized	his
friends,	and	saw	that	they	were	one	and	all	intolerable	bores.	To	get	a	little
peace	Descartes	decided	to	go	to	war.

Thus	began	his	first	spell	of	soldiering.	He	went	first	to	Breda,	Holland,
to	 learn	 his	 trade	 under	 the	 brilliant	 Prince	Maurice	 of	 Orange.	 Being
disappointed	in	his	hopes	for	action	under	the	Prince’s	colors,	Descartes
turned	 a	 disgusted	 back	 on	 the	 peaceful	 life	 of	 the	 camp,	 which
threatened	to	become	as	exacting	as	the	hurly-burly	of	Paris,	and	hastened



to	Germany.	 At	 this	 point	 of	 his	 career	 he	 first	 showed	 symptoms	 of	 an
amiable	 weakness	 which	 he	 never	 outgrew.	 Like	 a	 small	 boy	 trailing	 a
circus	from	village	to	village	Descartes	seized	every	favorable	opportunity
to	 view	 a	 gaudy	 spectacle.	One	was	now	about	 to	 come	off	 at	 Frankfurt,
where	Ferdinand	II	was	to	be	crowned.	Descartes	arrived	in	time	to	take	in
the	 whole	 rococo	 show.	 Considerably	 cheered	 up	 he	 again	 sought	 his
profession	 and	 enlisted	 under	 the	 Elector	 of	 Bavaria,	 then	 waging	 war
against	Bohemia.

*		*		*

The	army	was	lying	inactive	in	its	winter	quarters	near	the	little	village
of	Neuburg	on	the	banks	of	the	Danube.	There	Descartes	found	in	plenty
what	he	had	been	seeking,	tranquillity	and	repose.	He	was	left	to	himself
and	he	found	himself.

The	 story	 of	 Descartes’	 “conversion”—if	 it	 may	 be	 called	 that—is
extremely	 curious.	 On	 St.	 Martin’s	 Eve,	 November	 10,	 1619,	 Descartes
experienced	three	vivid	dreams	which,	he	says,	changed	the	whole	current
of	his	 life.	His	biographer	 (Baillet)	 records	 the	 fact	 that	 there	had	been
considerable	drinking	in	celebration	of	the	saint’s	feast	and	suggests	that
Descartes	 had	 not	 fully	 recovered	 from	 the	 fumes	 of	 the	 wine	 when	 he
retired.	 Descartes	 himself	 attributes	 his	 dreams	 to	 quite	 another	 source
and	 states	 emphatically	 that	 he	 had	 touched	 no	 wine	 for	 three	months
before	his	elevating	experience.	There	is	no	reason	to	doubt	his	word.	The
dreams	 are	 singularly	 coherent	 and	 quite	 unlike	 those	 (according	 to
experts)	inspired	by	a	debauch,	especially	of	stomach-filling	wine.	On	the
surface	 they	 are	 easily	 explicable	 as	 the	 subconscious	 resolution	 of	 a
conflict	between	 the	dreamer’s	desire	 to	 lead	an	 intellectual	 life	 and	his
realization	 of	 the	 futility	 of	 the	 life	 he	was	 actually	 living.	No	doubt	 the
Freudians	 have	 analyzed	 these	 dreams,	 but	 it	 seems	 unlikely	 that	 any
analysis	in	the	classical	Viennese	manner	could	throw	further	light	on	the
invention	 of	 analytic	 geometry,	 in	 which	 we	 are	 chiefly	 interested	 here.
Nor	do	the	several	mystic	or	religious	interpretations	seem	likely	to	be	of
much	assistance	in	this	respect.

In	the	first	dream	Descartes	was	blown	by	evil	winds	from	the	security	of
his	church	or	college	toward	a	third	party	which	the	wind	was	powerless	to
shake	or	budge;	in	the	second	he	found	himself	observing	a	terrific	storm



with	the	unsuperstitious	eyes	of	science,	and	he	noted	that	the	storm,	once
seen	for	what	it	was,	could	do	him	no	harm;	in	the	third	he	dreamed	that
he	was	 reciting	 the	poem	of	Ausonius	which	begins,	“Quod	vitae	 secatabor
iter?”	(What	way	of	life	shall	I	follow?)

There	 was	much	more.	Out	 of	 it	 all	 Descartes	 says	 he	 was	 filled	 with
“enthusiasm”	 (probably	 intended	 in	 a	mystic	 sense)	 and	 that	 there	 had
been	revealed	to	him,	as	in	the	second	dream,	the	magic	key	which	would
unlock	the	treasure	house	of	nature	and	put	him	in	possession	of	the	true
foundation,	at	least,	of	all	the	sciences.

What	was	this	marvelous	key?	Descartes	himself	does	not	seem	to	have
told	anyone	explicitly,	but	it	is	usually	believed	to	have	been	nothing	less
than	 the	 application	 of	 algebra	 to	 geometry,	 analytic	 geometry	 in	 short
and,	 more	 generally,	 the	 exploration	 of	 natural	 phenomena	 by
mathematics,	 of	 which	 mathematical	 physics	 today	 is	 the	 most	 highly
developed	example.

November	10,	1619,	 then,	 is	 the	official	birthday	of	 analytic	geometry
and	 therefore	 also	 of	modern	mathematics.	 Eighteen	 years	 were	 to	 pass
before	 the	 method	 was	 published.	 In	 the	 meantime	 Descartes	 went	 on
with	 his	 soldiering.	On	 his	 behalf	mathematics	may	 thank	Mars	 that	 no
half-spent	shot	knocked	his	head	off	at	the	battle	of	Prague.	A	score	or	so
of	 promising	 young	mathematicians	 a	 few	 years	 short	 of	 three	 centuries
later	were	less	lucky,	owing	to	the	advance	of	that	science	which	Descartes’
dream	inspired.

*		*		*

As	never	before	the	young	soldier	of	twenty	two	now	realized	that	if	he
was	ever	to	find	truth	he	must	first	reject	absolutely	all	ideas	acquired	from
others	and	rely	upon	 the	patient	questioning	of	his	own	mortal	mind	 to
show	him	the	way.	All	the	knowledge	he	had	received	from	authority	must
be	cast	aside;	the	whole	fabric	of	his	inherited	moral	and	intellectual	ideas
must	 be	 destroyed,	 to	 be	 refashioned	more	 enduringly	 by	 the	 primitive,
earthy	 strength	 of	 human	 reason	 alone.	 To	 placate	 his	 conscience	 he
prayed	 the	Holy	Virgin	 to	help	him	 in	his	heretical	project.	Anticipating
her	 assistance	 he	 vowed	 a	 pilgrimage	 to	 the	 shrine	 of	 Notre-Dame	 de
Lorette	and	proceeded	forthwith	to	subject	the	accepted	truths	of	religion



to	a	scorching,	devastating	criticism.	However,	he	duly	discharged	his	part
of	the	contract	when	he	found	the	opportunity.

In	the	meantime	he	continued	his	soldiering,	and	in	the	spring	of	1620
enjoyed	some	very	real	fighting	at	the	battle	of	Prague.	With	the	rest	of	the
victors	 Descartes	 entered	 the	 city	 chanting	 praises	 to	 God.	 Among	 the
terrified	refugees	was	the	four-year-old	Princess	Elisabeth,I	who	was	later	to
become	Descartes’	favorite	disciple.

At	 last,	 in	 the	 spring	 of	 1621,	 Descartes	 got	 his	 bellyful	 of	 war.	With
several	 other	 gay	 gentlemen	 soldiers	 he	 had	 accompanied	 the	Austrians
into	Transylvania,	 seeking	glory	and	 finding	 it—on	the	other	 side.	But	 if
he	 was	 through	 with	 war	 for	 the	 moment	 he	 was	 not	 yet	 ripe	 for
philosophy.	The	plague	in	Paris	and	the	war	against	the	Huguenots	made
France	 even	 less	 attractive	 than	 Austria.	 Northern	 Europe	 was	 both
peaceful	 and	 clean;	Descartes	 decided	 to	 pay	 it	 a	 visit.	 Things	went	well
enough	till	Descartes	dismissed	all	but	one	of	his	bodyguard	before	taking
boat	for	east	Frisia.	Here	was	a	Heavensent	opportunity	for	the	cut-throat
crew.	They	decided	to	knock	their	prosperous	passenger	on	the	head,	loot
him,	 and	 pitch	 his	 carcase	 to	 the	 fish.	 Unfortunately	 for	 their	 plans
Descartes	 understood	 their	 language.	 Whipping	 out	 his	 sword	 he
compelled	 them	 to	 row	 him	 back	 to	 the	 shore,	 and	 once	 again	 analytic
geometry	escaped	the	accidents	of	battle,	murder,	and	sudden	death.

The	 following	 year	 passed	 quietly	 enough	 in	 visits	 to	 Holland	 and
Rennes,	where	Descartes’	father	lived.	At	the	end	of	the	year	he	returned
to	Paris,	where	his	reserved	manner	and	somewhat	mysterious	appearance
immediately	got	him	accused	of	being	a	Rosicrucian.	Ignoring	the	gossip,
Descartes	philosophized	and	played	politics	to	get	himself	a	commission	in
the	army.	He	was	not	really	disappointed	when	he	failed,	as	he	was	left	free
to	 visit	Rome	where	he	 enjoyed	 the	most	 gorgeous	 spectacle	he	had	 yet
witnessed,	 the	 ceremony	 celebrated	 every	 quarter	 of	 a	 century	 by	 the
Catholic	 Church.	 This	 Italian	 interlude	 is	 of	 importance	 in	 Descartes’
intellectual	development	for	two	reasons.	His	philosophy,	so	far	as	it	fails
to	 touch	 the	 common	 man,	 was	 permanently	 biased	 against	 that	 lowly
individual	by	 the	 fill	which	 the	bewildered	philosopher	got	of	unwashed
humanity	 gathered	 from	 all	 corners	 of	 Europe	 to	 receive	 the	 papal
benediction.	Equally	important	was	Descartes’	failure	to	meet	Galileo.	Had
the	mathematician	been	philosopher	 enough	 to	 sit	 for	 a	week	or	 two	 at
the	 feet	 of	 the	 father	 of	 modern	 science,	 his	 own	 speculations	 on	 the



physical	universe	might	have	been	less	fantastic.	All	that	Descartes	got	out
of	 his	 Italian	 journey	 was	 a	 grudging	 jealousy	 of	 his	 incomparable
contemporary.

Immediately	 after	 his	 holiday	 in	 Rome,	 Descartes	 enjoyed	 another
bloody	 spree	 of	 soldiering	 with	 the	 Duke	 of	 Savoy,	 in	 which	 he	 so
distinguished	himself	that	he	was	offered	a	lieutenant	generalship.	He	had
sense	enough	to	decline.	Returning	to	the	Paris	of	Cardinal	Richelieu	and
the	swashing	D’Artagnan—the	latter	near-fiction,	the	former	less	credible
than	a	melodrama—Descartes	 settled	down	 to	 three	years	of	meditation.
In	 spite	 of	 his	 lofty	 thoughts	 he	 was	 no	 gray-bearded	 savant	 in	 a	 dirty
smock,	but	a	dapper,	well	dressed	man	of	 the	world,	clad	 in	 fashionable
taffeta	and	sporting	a	sword	as	befitted	his	gentlemanly	rank.	To	put	the
finishing	 touch	 to	 his	 elegance	 he	 crowned	 himself	 with	 a	 sweeping,
broad-brimmed,	ostrich-plumed	hat.	Thus	equipped	he	was	ready	for	the
cut-throats	infesting	church,	state,	and	street.	Once	when	a	drunken	lout
insulted	Descartes’	 lady	 of	 the	 evening,	 the	 irate	 philosopher	went	 after
the	rash	fool	quite	in	the	stump-stirring	fashion	of	D’Artagnan,	and	having
flicked	the	sot’s	sword	out	of	his	hand,	spared	his	life,	not	because	he	was
a	rotten	swordsman,	but	because	he	was	too	filthy	to	be	butchered	before
a	beautiful	lady.

Having	mentioned	one	of	Descartes’	lady	friends	we	may	dispose	of	all
but	 two	 of	 the	 rest	 here.	 Descartes	 liked	 women	 well	 enough	 to	 have	 a
daughter	by	one.	The	child’s	early	death	affected	him	deeply.	Possibly	his
reason	for	never	marrying	may	have	been,	as	he	informed	one	expectant
lady,	that	he	preferred	truth	to	beauty;	but	it	seems	more	probable	that	he
was	too	shrewd	to	mortgage	his	 tranquillity	and	repose	to	some	fat,	rich,
Dutch	widow.	Descartes	was	only	moderately	well	off,	but	he	knew	when
he	had	enough.	For	this	he	has	been	called	cold	and	selfish.	It	seems	juster
to	 say	 that	 he	 knew	 where	 he	 was	 going	 and	 that	 he	 realized	 the
importance	of	his	goal.	Temperate	and	abstemious	in	his	habits	he	was	not
mean,	 never	 inflicting	 on	 his	 household	 the	 Spartan	 regimen	 he
occasionally	 prescribed	 for	 himself.	 His	 servants	 adored	 him,	 and	 he
interested	himself	in	their	welfare	long	after	they	had	left	his	service.	The
boy	who	was	with	him	at	his	death	was	inconsolable	for	days	at	the	loss	of
his	master.	All	this	does	not	sound	like	selfishness.

Descartes	also	has	been	accused	of	atheism.	Nothing	could	be	 farther
from	the	truth.	His	religious	beliefs	were	unaffectedly	simple	in	spite	of	his



rational	skepticism.	He	compared	his	religion,	indeed,	to	the	nurse	from
whom	he	had	received	it,	and	declared	that	he	found	it	as	comforting	to
lean	upon	one	as	on	the	other.	A	rational	mind	is	sometimes	the	queerest
mixture	of	rationality	and	irrationality	on	earth.

Another	trait	affected	all	Descartes’	actions	till	he	gradually	outgrew	it
under	 the	 rugged	discipline	of	 soldiering.	The	necessary	coddling	of	his
delicate	childhood	 infected	him	with	a	deep	 tinge	of	hypochondria,	and
for	years	he	was	chilled	by	an	oppressive	dread	of	death.	This,	no	doubt,	is
the	 origin	 of	 his	 biological	 researches.	 By	 middle	 age	 he	 could	 say
sincerely	 that	nature	 is	 the	best	physician	and	 that	 the	 secret	of	keeping
well	is	to	lose	the	fear	of	death.	He	no	longer	fretted	to	discover	means	of
prolonging	existence.

His	 three	 years	 of	 peaceful	 meditation	 in	 Paris	 were	 the	 happiest	 of
Descartes’	 life.	Galileo’s	brilliant	discoveries	with	his	 crudely	constructed
telescope	 had	 set	 half	 the	 natural	 philosophers	 of	 Europe	 to	 pottering
with	 lenses.	 Descartes	 amused	 himself	 in	 this	 way,	 but	 did	 nothing	 of
striking	novelty.	His	genius	was	essentially	mathematical	and	abstract.	One
discovery	 which	 he	 made	 at	 this	 time,	 that	 of	 the	 principle	 of	 virtual
velocities	in	mechanics,	is	still	of	scientific	importance.	This	really	was	first-
rate	work.	Finding	 that	 few	understood	or	appreciated	 it,	he	abandoned
abstract	 matters	 and	 turned	 to	 what	 he	 considered	 the	 highest	 of	 all
studies,	that	of	man.	But,	as	he	dryly	remarks,	he	soon	discovered	that	the
number	 of	 those	 who	 understand	man	 is	 negligible	 in	 comparison	 with
the	number	of	those	who	think	they	understand	geometry.

Up	 till	 now	 Descartes	 had	 published	 nothing.	 His	 rapidly	 mounting
reputation	 again	 attracted	 a	 horde	 of	 fashionable	 dilettantes,	 and	 once
more	Descartes	sought	tranquillity	and	repose	on	the	battlefield,	this	time
with	 the	King	 of	 France	 at	 the	 siege	 of	 La	Rochelle.	 There	 he	met	 that
engaging	old	 rascal	Cardinal	Richelieu,	who	was	 later	 to	do	him	a	 good
turn,	and	was	impressed,	not	by	the	Cardinal’s	wiliness,	but	by	his	holiness.
On	the	victorious	conclusion	of	 the	war	Descartes	returned	with	a	whole
skin	 to	 Paris,	 this	 time	 to	 suffer	 his	 second	 conversion	 and	 abandon
futilities	forever.

He	 was	 now	 (1628)	 thirty	 two,	 and	 only	 his	 miraculous	 luck	 had
preserved	his	body	 from	destruction	and	his	mind	from	oblivion.	A	stray
bullet	at	La	Rochelle	might	easily	have	deprived	Descartes	of	all	claim	to
remembrance,	 and	he	 realized	 at	 last	 that	 if	 he	was	 ever	 to	 arrive	 it	was



high	time	that	he	be	on	his	way.	He	was	aroused	from	his	sterile	state	of
passive	 indifference	 by	 two	 Cardinals,	 De	 Bérulle	 and	De	 Bagné,	 to	 the
first	of	whom	in	particular	the	scientific	world	owes	an	everlasting	debt	of
gratitude	for	having	induced	Descartes	to	publish.

*		*		*

The	Catholic	 clergy	 of	 the	 time	 cultivated	 and	 passionately	 loved	 the
sciences,	in	grateful	contrast	to	the	fanatical	Protestants	whose	bigotry	had
extinguished	the	sciences	in	Germany.	On	becoming	acquainted	with	De
Bérulle	 and	De	 Bagné,	Descartes	 blossomed	 out	 like	 a	 rose	 under	 their
genial	 encouragement.	 In	 particular,	 during	 soirees	 at	 De	 Bagné’s,
Descartes	spoke	freely	of	his	new	philosophy	to	a	M.	de	Chandoux	(who
was	 later	hanged	 for	 counterfeiting,	 not	 a	 result	 of	Descartes’	 lessons	 in
casuistry,	let	us	hope).	To	illustrate	the	difficulty	of	distinguishing	the	true
from	 the	 false	 Descartes	 undertook	 to	 produce	 twelve	 irrefutable
arguments	 showing	 the	 falsity	of	any	 incontestable	 truth	and,	conversely,
to	 do	 the	 like	 for	 the	 truth	 of	 any	 admitted	 falsehood.	 How	 then,	 the
bewildered	 listeners	 asked,	 shall	 mere	 human	 beings	 distinguish	 truth
from	falsehood?	Descartes	confided	that	he	had	(what	he	considered)	an
infallible	 method,	 drawn	 from	 mathematics,	 for	 making	 the	 required
distinction.	 He	 hoped	 and	 planned,	 he	 said,	 to	 show	 how	 his	 method
could	be	applied	 to	 science	and	human	welfare	 through	 the	medium	of
mechanical	invention.

De	Bérulle	was	profoundly	stirred	by	the	vision	of	all	 the	kingdoms	of
the	 earth	 with	 which	 Descartes	 had	 tempted	 him	 from	 the	 pinnacle	 of
philosophic	 speculation.	 In	no	uncertain	 terms	he	 told	Descartes	 that	 it
was	his	duty	to	God	to	share	his	discoveries	with	the	world,	and	threatened
him	with	hell-fire—or	at	least	the	loss	of	his	chance	of	heaven—if	he	did
not.	Being	a	devout	practising	Catholic	Descartes	could	not	possibly	resist
such	an	appeal.	He	decided	to	publish.	This	was	his	second	conversion,	at
the	age	of	thirty	two.	He	straightway	retired	to	Holland,	where	the	colder
climate	suited	him,	to	bring	his	decision	to	realization.

For	 the	next	 twenty	 years	 he	wandered	 about	 all	 over	Holland,	 never
settling	 for	 long	 in	 any	 one	 place,	 a	 silent	 recluse	 in	 obscure	 villages,
country	 hotels	 and	 out-of-the-way	 corners	 of	 great	 cities,	 methodically
carrying	 on	 a	 voluminous	 scientific	 and	 philosophical	 correspondence



with	 the	 leading	 intellects	 of	 Europe,	 using	 as	 intermediary	 the	 trusted
friend	of	his	school	days	at	La	Flèche,	Father	Mersenne,	who	alone	knew
the	secret	at	any	time	of	Descartes’	address.	The	parlor	of	 the	cloister	of
the	Minims,	not	far	from	Paris,	became	the	exchange	(through	Mersenne)
for	 questions,	 mathematical	 problems,	 scientific	 and	 philosophical
theories,	objections,	and	replies.

During	 his	 long	 vagabondage	 in	Holland	 Descartes	 occupied	 himself
with	a	number	of	studies	 in	addition	to	his	philosophy	and	mathematics.
Optics,	 chemistry,	 physics,	 anatomy,	 embryology,	medicine,	 astronomical
observations,	 and	 meteorology,	 including	 a	 study	 of	 the	 rainbow,	 all
claimed	 their	 share	 of	 his	 restless	 activity.	 Any	man	 today	 spreading	 his
effort	over	so	diversified	a	miscellany	would	write	himself	down	a	fiddling
dilettante.	But	 it	was	not	so	 in	Descartes’	age;	a	man	of	 talent	might	still
hope	 to	 find	 something	 of	 interest	 in	 almost	 any	 science	 that	 took	 his
fancy.	Everything	that	came	Descartes’	way	was	grist	to	his	mill.	A	brief	visit
to	England	acquainted	him	with	the	mystifying	behavior	of	 the	magnetic
needle;	 forthwith	 magnetism	 had	 to	 be	 included	 in	 his	 comprehensive
philosophy.	The	speculations	of	theology	also	called	for	his	attention.	All
through	his	theorizing	his	mind	was	shadowed	by	the	incubus	of	his	early
training.	He	would	not	have	shaken	it	off	if	he	could.

All	 of	 what	 Descartes	 had	 gathered	 and	 excogitated	 was	 to	 be
incorporated	into	an	imposing	treatise,	Le	Monde.	In	16S4,	Descartes	being
then	 thirty	 eight,	 the	 treatise	was	 undergoing	 its	 final	 revision.	 It	 was	 to
have	been	a	New	Year’s	gift	to	Father	Mersenne.	All	learned	Paris	was	agog
to	 see	 the	 masterpiece.	 Mersenne	 had	 been	 granted	 many	 previews	 of
selected	 portions	 but	 as	 yet	 he	 had	 not	 seen	 the	 completed,	 dovetailed
work.	Without	irreverence	Le	Monde	may	be	described	as	what	the	author
of	the	Book	of	Genesis	might	have	written	had	he	known	as	much	science
and	philosophy	as	Descartes	did.	Descartes	intended	his	account	of	God’s
creation	of	the	universe	to	supply	the	lack	which	some	readers	had	felt	in
the	Bible	story	of	the	six	days’	creation,	namely,	an	element	of	rationality.
From	the	distance	of	three	hundred	years	there	seems	but	little	to	choose
between	 Genesis	 and	 Descartes,	 and	 it	 is	 somewhat	 difficult	 for	 us	 to
realize	that	such	a	book	as	Le	Monde	could	ever	have	caused	a	bishop	or	a
pope	 to	 fly	 into	 a	 cold,	 murderous	 rage.	 As	 a	 matter	 of	 fact	 none	 did;
Descartes	saw	to	that.



Descartes	was	 aware	of	 the	 judgments	of	 ecclesiastical	 justice.	He	 also
knew	of	the	astronomical	researches	of	Galileo	and	of	that	fearless	man’s
championship	of	the	Copernican	system.	In	fact	he	was	impatiently	waiting
to	 see	Galileo’s	 latest	 book	 before	 putting	 the	 final	 touches	 to	 his	 own.
Instead	of	receiving	the	copy	a	 friend	had	promised	to	send	him,	he	got
the	 stunning	news	 that	Galileo,	 in	 the	 seventieth	 year	of	his	 age,	 and	 in
spite	of	the	sincere	friendship	that	the	powerful	Duke	of	Tuscany	had	for
him,	had	been	given	up	to	the	Inquisition	and	had	been	forced	(June	22,
1633)	on	his	knees	to	abjure	as	a	heresy	the	Copernican	doctrine	that	the
Earth	moves	round	the	Sun.	What	would	have	happened	to	Galileo	had	he
refused	 to	 forswear	 his	 scientific	 knowledge	 Descartes	 could	 only
conjecture,	but	the	names	of	Bruno,	Vanini,	and	Campanella	recurred	to
his	mind.

Descartes	 was	 crushed.	 In	 his	 own	 book	 he	 had	 expounded	 the
Copernican	system	as	a	matter	of	course.	On	his	own	account	he	had	been
far	more	daring	than	Copernicus	or	Galileo	had	ever	had	occasion	to	be,
because	 he	 was	 interested	 in	 the	 theology	 of	 science	 whereas	 they	 were
not.	He	had	proved	to	his	own	satisfaction	the	necessity	of	the	cosmos	as	it
exists,	and	he	thought	he	had	shown	that	if	God	had	created	any	number
of	 distinct	 universes	 they	 must	 all,	 under	 the	 action	 of	 “natural	 law,”
sooner	or	later	have	fallen	into	line	with	necessity	and	have	evolved	into	the
universe	 as	 it	 actually	 is.	Descartes,	 in	 short,	 professed	with	his	 scientific
knowledge	to	know	a	great	deal	more	about	the	nature	and	ways	of	God
than	either	the	author	of	Genesis	or	the	theologians	had	ever	dreamed	of.
If	 Galileo	 had	 been	 forced	 to	 get	 down	 on	 his	 knees	 for	 his	 mild	 and
conservative	heresy,	what	could	Descartes	expect?

To	say	that	fear	alone	stopped	Descartes	from	publishing	Le	Monde	is	to
miss	the	more	important	part	of	the	truth.	He	was	not	only	afraid—as	any
sane	man	might	well	have	been;	he	was	deeply	hurt.	He	was	as	convinced
of	the	truth	of	the	Copernican	system	as	he	was	of	his	own	existence.	But
he	was	 also	 convinced	of	 the	 infallibility	 of	 the	Pope.	Here	now	was	 the
Pope	making	a	 silly	 ass	of	himself	by	contradicting	Copernicus.	This	was
his	 first	 thought.	His	 casuistical	 schooling	 came	 to	his	 aid.	 In	 some	way,
through	the	mystical	incomprehensibilities	of	some	superhuman	synthesis,
the	Pope	and	Copernicus	would	yet	both	be	proved	right.	From	this	as	yet
unrevealed	Pisgah	height	Descartes	confidently	hoped	and	expected	some
day	 to	 look	down	 in	 philosophic	 serenity	 on	 the	 apparent	 contradiction



and	see	it	vanish	in	a	glory	of	reconciliation.	It	was	simply	impossible	for
him	to	give	up	either	the	Pope	or	Copernicus.	So	he	suppressed	his	book
and	kept	both	his	belief	in	the	infallibility	of	the	Pope	and	the	truth	of	the
Copernican	 system.	As	 a	 sop	 to	 his	 subconscious	 self-respect	 he	 decided
that	Le	Monde	 should	be	published	after	his	death.	By	 that	 time	perhaps
the	Pope	 too	would	be	dead	 and	 the	 contradiction	would	have	 resolved
itself.

Descartes’	determination	not	to	publish	extended	to	all	his	work.	But	in
1637,	when	Descartes	was	 forty	 one,	 his	 friends	 overcame	his	 reluctance
and	induced	him	to	permit	the	printing	of	his	masterpiece,	of	which	the
title	is	translated	as	A	Discourse	on	the	Method	of	rightly	conducting	the	Reason
and	 seeking	Truth	 in	 the	 Sciences.	 Further,	 the	Dioptric,	Meteors,	 and	Geometry,
essays	 in	 this	 Method.	 This	 work	 is	 known	 shortly	 as	 the	 Method.	 It	 was
published	 on	 June	 8,	 1637.	 This	 is	 the	 day,	 then,	 on	 which	 analytic
geometry	was	given	to	the	world.	Before	describing	wherein	that	geometry
is	superior	to	the	synthetic	geometry	of	the	Greeks	we	shall	finish	with	the
life	of	its	author.

After	having	given	 the	 reasons	 for	Descartes’	delay	 in	publication	 it	 is
only	fair	to	tell	now	the	other	and	brighter	side	of	the	story.

The	Church	which	Descartes	had	feared	but	which	had	never	actually
opposed	 him	 now	 came	most	 generously	 to	 his	 aid.	 Cardinal	 Richelieu
gave	 Descartes	 the	 privilege	 of	 publishing	 either	 in	 France	 or	 abroad
anything	he	cared	to	write.	(In	passing	we	may	ask,	however,	by	what	right,
divine,	 or	 other,	 did	 Cardinal	 Richelieu,	 or	 any	 other	 human	 being,
dictate	to	a	philosopher	and	man	of	science	what	he	should	or	should	not
publish?)	 But	 in	 Utrecht,	 Holland,	 the	 Protestant	 theologians	 savagely
condemned	 Descartes’	 work	 as	 atheistic	 and	 dangerous	 to	 that	 mystic
entity	known	as	“The	State.”	The	liberal	Prince	of	Orange	threw	his	great
weight	on	Descartes’	side	and	backed	him	to	the	limit.

*		*		*

Since	 the	 autumn	 of	 1641	 Descartes	 had	 been	 living	 at	 a	 quiet	 little
village	 near	 the	Hague	 in	Holland,	 where	 the	 exiled	 Princess	 Elisabeth,
now	 a	 young	 woman	 with	 a	 penchant	 for	 learning,	 rusticated	 with	 her
mother.	 The	 Princess	 does	 indeed	 seem	 to	 have	 been	 a	 prodigy	 of
learning.	After	mastering	six	languages	and	digesting	much	literature	she



had	turned	to	mathematics	and	science,	hoping	to	find	more	nourishing
fare.	One	 theory	 to	account	 for	 this	 remarkable	young	woman’s	unusual
appetite	ascribes	her	hunger	 for	knowledge	 to	a	disappointment	 in	 love.
Neither	mathematics	nor	science	satisfied	her.	Then	Descartes’	book	came
her	 way	 and	 she	 knew	 that	 she	 had	 found	 what	 she	 needed	 to	 fill	 her
aching	 void—Descartes.	 An	 interview	 was	 arranged	 with	 the	 somewhat
reluctant	philosopher.

It	 is	 very	 difficult	 to	 understand	 exactly	 what	 happened	 thereafter.
Descartes	was	a	gentleman	with	all	the	awe	and	reverence	of	a	gentleman
of	 those	 gallant,	 royalty-ridden	 times	 for	 even	 the	 least	 potent	prince	or
princess.	His	letters	are	models	of	courtly	discretion,	but	somehow	they	do
not	always	ring	quite	true.	One	spiteful	little	remark,	quoted	in	a	moment,
probably	 tells	more	of	what	he	 really	 thought	of	 the	Princess	Elisabeth’s
intellectual	capacity	than	do	all	the	reams	of	subtle	flattery	he	wrote	to	or
about	 his	 eager	 pupil	 with	 one	 eye	 on	 his	 style	 and	 the	 other	 on
publication	after	his	death.

Elisabeth	 insisted	 upon	 Descartes	 giving	 her	 lessons.	 Officially	 he
declared	 that	 “of	 all	 my	 disciples	 she	 alone	 has	 understood	 my	 works
completely.”	 There	 is	 no	 doubt	 that	 he	 was	 genuinely	 fond	 of	 her	 in	 a
fatherly,	 cat-looking-at-a-king’s-female-relative	 sort	 of	 way,	 but	 to	 believe
that	 he	meant	 what	 he	 said	 as	 a	 scientific	 statement	 of	 fact	 is	 to	 stretch
credulity	to	the	limit,	unless,	of	course,	he	meant	it	as	a	wry	comment	on
his	own	philosophy.	Elisabeth	may	have	understood	too	much,	for	it	seems
to	 be	 a	 fact	 that	 only	 a	 philosopher	 thoroughly	 understands	 his	 own
philosophy,	 although	 any	 fool	 can	 think	 he	 does.	 Anyhow,	 he	 did	 not
propose	to	her	nor,	so	far	as	is	known,	did	she	propose	to	him.

Among	other	parts	of	his	philosophy	which	he	expounded	 to	her	was
the	 method	 of	 analytic	 geometry.	 Now	 there	 is	 a	 certain	 problem	 in
elementary	geometry	which	can	be	quite	simply	solved	by	pure	geometry,
and	 which	 looks	 easy	 enough,	 but	 which	 is	 a	 perfect	 devil	 for	 analytic
geometry	 to	 handle	 in	 the	 strict	 Cartesian	 form.	 This	 is	 to	 construct	 a
circle	which	shall	touch	(be	tangent	to)	any	three	circles	given	at	random
whose	centers	do	not	all	lie	on	one	straight	line.	There	are	eight	solutions
possible.	The	problem	is	a	fine	specimen	of	the	sort	that	are	not	adapted	to
the	crude	brute	force	of	elementary	Cartesian	geometry.	Elisabeth	solved	it
by	 Descartes’	 methods.	 It	 was	 rather	 cruel	 of	 him	 to	 let	 her	 do	 it.	 His
comment	 on	 seeing	 her	 solution	 gives	 the	 whole	 show	 away	 to	 any



mathematician.	 She	was	 quite	 proud	of	 her	 exploit,	 poor	 girl.	Descartes
said	 he	 would	 not	 undertake	 to	 carry	 out	 her	 solution	 and	 actually
construct	the	required	tangent	circle	 in	a	month.	If	 this	does	not	convey
his	estimate	of	her	mathematical	aptitude	it	is	impossible	to	put	the	matter
plainer.	 It	was	an	unkind	 thing	 to	 say,	especially	as	 she	missed	 the	point
and	he	knew	that	she	would.

When	Elisabeth	left	Holland	she	corresponded	with	Descartes	to	almost
the	day	of	his	death.	His	letters	contain	much	that	is	fine	and	sincere,	but
we	could	wish	that	he	had	not	been	so	dazzled	by	the	aura	of	royalty.

In	1646	Descartes	 was	 living	 in	 happy	 seclusion	 at	 Egmond,	Holland,
meditating,	gardening	in	a	tiny	plot,	and	carrying	on	a	correspondence	of
incredible	 magnitude	 with	 the	 intellectuals	 of	 Europe.	 His	 greatest
mathematical	work	lay	behind	him,	but	he	still	continued	to	think	about
mathematics,	 always	 with	 penetration	 and	 originality.	 One	 problem	 to
which	he	gave	some	attention	was	Zeno’s	of	Achilles	and	the	tortoise.	His
solution	of	the	paradox	would	not	be	universally	accepted	today	but	it	was
ingenious	for	its	era.	He	was	now	fifty	and	world-famous,	far	more	famous
in	fact	than	he	would	ever	have	cared	to	be.	The	repose	and	tranquillity	he
had	longed	for	all	his	life	still	eluded	him.	He	continued	to	do	great	work,
but	 he	 was	 not	 to	 be	 left	 in	 peace	 to	 do	 all	 that	 was	 in	 him.	 Queen
Christine	of	Sweden	had	heard	of	him.

This	 somewhat	masculine	 young	woman	was	 then	nineteen,	 already	 a
capable	 ruler,	 reputedly	 a	 good	 classicist	 (of	 this,	 more	 later),	 a	 wiry
athlete	with	the	physical	endurance	of	Satan	himself,	a	ruthless	huntress,
an	 expert	 horsewoman	who	 thought	nothing	of	 ten	hours	 in	 the	 saddle
without	once	getting	off,	and	finally	a	tough	morsel	of	femininity	who	was
as	hardened	to	cold	as	a	Swedish	lumberjack.	With	all	this	she	combined	a
certain	 thick	 obtuseness	 toward	 the	 frailties	 of	 less	 thick-skinned	beings.
Her	 own	 meals	 were	 sparing;	 so	 were	 those	 of	 her	 courtiers.	 Like	 a
hibernating	 frog	 she	 could	 sit	 for	 hours	 in	 an	 unheated	 library	 in	 the
middle	 of	 a	 Swedish	 winter;	 her	 hangers-on	 begged	 her	 through	 their
chattering	 teeth	 to	 throw	 all	 the	 windows	 wide	 open	 and	 let	 the	merry
snow	in.	Her	cabinet,	she	noted	without	a	qualm,	always	agreed	with	her.
She	knew	everything	there	was	to	be	known;	her	ministers	and	tutors	told
her	 so.	 As	 she	 got	 along	 on	 only	 five	 hours’	 sleep	 she	 kept	 her	 toadies
hopping	through	the	hoop	nineteen	hours	a	day.	The	very	hour	this	holy
terror	 saw	 Descartes’	 philosophy	 she	 decided	 she	must	 annex	 the	 poor



sleepy	 devil	 as	 her	 private	 instructor.	 All	 her	 studies	 so	 far	 had	 left	 her
empty	and	hungering	for	more.	Like	the	erudite	Elisabeth	she	knew	that
only	copious	douches	of	philosophy	 from	the	philosopher	himself	 could
assuage	her	raging	thirst	for	knowledge	and	wisdom.

But	 for	 that	 unfortunate	 streak	 of	 snobbery	 in	 his	make-up	Descartes
might	 have	 resisted	 Queen	 Christine’s	 blandishments	 till	 he	 was	 ninety
and	sans	teeth,	sans	hair,	sans	philosophy,	sans	everything.	Descartes	held
out	till	she	sent	Admiral	Fleming	in	the	spring	of	1649	with	a	ship	to	fetch
him.	The	whole	outfit	was	generously	placed	at	the	reluctant	philosopher’s
disposal.	 Descartes	 temporized	 till	 October.	 Then,	 with	 a	 last	 regretful
look	round	his	little	garden,	he	locked	up	and	left	Egmond	forever.

His	 reception	 in	Stockholm	was	boisterous,	not	 to	 say	 royal.	Descartes
did	not	live	at	the	Palace;	that	much	was	spared	him.	Importunately	kind
friends,	 however,	 the	 Chanutes,	 shattered	 his	 last	 remaining	 hope	 of
reserving	a	little	privacy.	They	insisted	that	he	live	with	them.	Chanute	was
a	fellow	countryman,	in	fact	the	French	ambassador.	All	might	have	gone
well,	 for	 the	Chanutes	 were	 really	most	 considerate,	 had	 not	 the	 obtuse
Christine	got	it	into	her	immovable	head	that	five	o’clock	in	the	morning
was	 the	proper	hour	 for	a	busy,	hardboiled	young	woman	 like	herself	 to
study	philosophy.	Descartes	would	gladly	have	swapped	all	the	headstrong
queens	 in	Christendom	 for	 a	month’s	 dreaming	 abed	 at	 La	 Flèche	with
the	enlightened	Charlet	unobtrusively	near	to	see	that	he	did	not	get	up
too	soon.	However,	he	dutifully	crawled	out	of	bed	at	some	ungodly	hour
in	 the	dark,	 climbed	 into	 the	carriage	 sent	 to	collect	him,	and	made	his
way	across	the	bleakest,	windiest	square	in	Stockholm	to	the	palace	where
Christine	 sat	 in	 the	 icy	 library	 impatiently	 waiting	 for	 her	 lesson	 in
philosophy	to	begin	promptly	at	five	A.M.

The	 oldest	 inhabitants	 said	 Stockholm	 had	 never	 in	 their	 memory
suffered	 so	 severe	 a	 winter.	 Christine	 appears	 to	 have	 lacked	 a	 normal
human	 skin	 as	 well	 as	 nerves.	 She	 noticed	 nothing,	 but	 kept	 Descartes
unflinchingly	 to	his	 ghastly	 rendezvous.	He	 tried	 to	make	up	his	 rest	 by
lying	down	in	the	afternoons.	She	soon	broke	him	of	that.	A	Royal	Swedish
Academy	 of	 Sciences	 was	 gestating	 in	 her	 prolific	 activity;	 Descartes	 was
hauled	out	of	bed	to	deliver	her.

It	 soon	became	plain	 to	 the	courtiers	 that	Descartes	 and	 their	Queen
were	 discussing	 much	 more	 than	 philosophy	 in	 these	 interminable
conferences.	 The	 weary	 philosopher	 presently	 realized	 that	 he	 had



stepped	with	both	feet	into	a	populous	and	busy	hornets’	nest.	They	stung
him	whenever	and	wherever	they	could.	Either	the	Queen	was	too	thick	to
notice	what	was	happening	to	her	new	favorite	or	she	was	clever	enough	to
sting	her	courtiers	 through	her	philosopher.	 In	any	event,	 to	 silence	 the
malicious	 whisperings	 of	 “foreign	 influence,”	 she	 resolved	 to	 make	 a
Swede	of	Descartes.	An	estate	was	set	aside	for	him	by	royal	decree.	Every
desperate	move	he	made	to	get	out	of	the	mess	only	bogged	him	deeper.
By	the	first	of	January,	1650,	he	was	up	to	his	neck	with	only	a	miracle	of
rudeness	as	his	one	dim	hope	of	ever	freeing	himself.	But	with	his	inbred
respect	 for	 royalty	he	 could	not	 bring	himself	 to	 speak	 the	magic	words
which	 would	 send	 him	 flying	 back	 to	Holland,	 although	 he	 said	 plenty,
with	 courtly	 politeness,	 in	 a	 letter	 to	 his	 devoted	 Elisabeth.	 He	 had
chanced	 to	 interrupt	 one	 of	 the	 lessons	 in	 Greek.	 To	 his	 amazement
Descartes	learned	that	the	vaunted	classicist	Christine	was	struggling	over
grammatical	puerilities	which,	he	says,	he	had	mastered	by	himself	when
he	was	a	little	boy.	His	opinion	of	her	mentality	thereafter	appears	to	have
been	respectful	but	low.	It	was	not	raised	by	her	insistence	that	he	produce
a	 ballet	 for	 the	 delectation	 of	 her	 guests	 at	 a	 court	 function	 when	 he
resolutely	refused	to	make	a	mountebank	of	himself	by	attempting	at	his
age	to	master	the	stately	capers	of	the	Swedish	lancers.

Presently	 Chanute	 fell	 desperately	 ill	 of	 inflammation	 of	 the	 lungs.
Descartes	 nursed	 him.	 Chanute	 recovered;	Descartes	 fell	 ill	 of	 the	 same
disease.	The	Queen,	alarmed,	sent	doctors.	Descartes	ordered	them	out	of
the	 room.	 He	 grew	 steadily	 worse.	 Unable	 in	 his	 debility	 to	 distinguish
friend	from	pest	he	consented	at	last	to	being	bled	by	the	most	persistent
of	 the	 doctors,	 a	 personal	 friend,	 who	 all	 the	 time	 had	 been	 hovering
about	awaiting	his	chance.	This	almost	finished	him,	but	not	quite.

His	 good	 friends	 the	 Chanutes,	 seeing	 that	 he	 was	 a	 very	 sick	 man,
suggested	 that	 he	 might	 enjoy	 the	 last	 sacrament.	 He	 had	 expressed	 a
desire	to	see	his	spiritual	counsellor.	Commending	his	soul	to	the	mercy	of
God,	Descartes	faced	his	death	calmly,	saying	the	willing	sacrifice	of	his	life
which	he	was	making	might	possibly	atone	for	his	sins.	La	Flèche	gripped
him	to	the	last.	The	counsellor	asked	him	to	signify	whether	he	wished	the
final	 benediction.	 Descartes	 opened	 his	 eyes	 and	 closed	 them.	 He	 was
given	 the	 benediction.	 Thus	 he	 died	 on	 February	 11,	 1650,	 aged	 54,	 a
sacrifice	to	the	overweening	vanity	of	a	headstrong	girl.



Christine	 lamented.	 Seventeen	 years	 later	 when	 she	 had	 long	 since
given	up	her	crown	and	her	faith,	the	bones	of	Descartes	were	returned	to
France	 (all	 except	 those	 of	 the	 right	 hand,	 which	 were	 retained	 by	 the
French	 Treasurer-General	 as	 a	 souvenir	 for	 his	 skill	 in	 engineering	 the
transaction)	and	were	re-entombed	in	Paris	in	what	is	now	the	Pantheon.
There	was	to	have	been	a	public	oration,	but	this	was	hastily	forbidden	by
order	of	the	crown,	as	the	doctrines	of	Descartes	were	deemed	to	be	still
too	 hot	 for	 handling	 before	 the	 people.	 Commenting	 on	 the	 return	 of
Descartes’	 remains	 to	 his	 native	 France,	 Jacobi	 remarks	 that	 “It	 is	 often
more	 convenient	 to	 possess	 the	 ashes	 of	 great	men	 than	 to	 possess	 the
men	themselves	during	their	lifetime.”

Shortly	after	his	death	Descartes’	books	were	listed	in	the	Index	of	that
Church	 which,	 accepting	 Cardinal	 Richelieu’s	 enlightened	 suggestion
during	 the	 author’s	 lifetime,	 had	 permitted	 their	 publication.
“Consistency,	 thou	 art	 a	 jewel!”	 But	 the	 faithful	 were	 not	 troubled	 by
consistency,	“the	bugbear	of	little	minds”—and	the	ratbane	of	inconsistent
bigots.

*		*		*

We	 are	 not	 concerned	 here	 with	 the	 monumental	 additions	 which
Descartes	made	 to	philosophy.	Nor	 can	his	 brilliant	part	 in	 the	dawn	of
the	experimental	method	detain	us.	These	things	fall	far	outside	the	field
of	pure	mathematics	in	which,	perhaps,	his	greatest	work	lies.	It	is	given	to
but	few	men	to	renovate	a	whole	department	of	human	thought.	Descartes
was	one	of	those	few.	Not	to	obscure	the	shining	simplicity	of	his	greatest
contribution,	we	 shall	 briefly	 describe	 it	 alone	 and	 leave	 aside	 the	many
beautiful	 things	 he	 did	 in	 algebra	 and	 particularly	 in	 algebraic	 notation
and	 the	 theory	 of	 equations.	 This	 one	 thing	 is	 of	 the	 highest	 order	 of
excellence,	 marked	 by	 the	 sensuous	 simplicity	 of	 the	 half	 dozen	 or	 so
greatest	 contributions	 of	 all	 time	 to	 mathematics.	 Descartes	 remade
geometry	and	made	modern	geometry	possible.

The	basic	idea,	like	all	the	really	great	things	in	mathematics,	is	simple
to	 the	 point	 of	 obviousness.	 Lay	 down	 any	 two	 intersecting	 lines	 on	 a
plane.	Without	loss	of	generality	we	may	assume	that	the	lines	are	at	right
angles	to	one	another.	Imagine	now	a	city	laid	out	on	the	American	plan,
with	 avenues	 running	north	 and	 south,	 streets	 east	 and	west.	The	whole



plan	will	be	 laid	out	with	respect	 to	one	avenue	and	one	 street,	 called	 the
axes,	which	intersect	in	what	is	called	the	origin,	from	which	street-avenue
numbers	are	read	consecutively.	Thus	it	is	clear	without	a	diagram	where
1002	West	126	Street	is,	if	we	note	that	the	ten	avenues	summarized	in	the
number	1002	are	stepped	off	to	the	west,	that	is,	on	the	map,	to	the	left	of
the	 origin.	 This	 is	 so	 familiar	 that	 we	 visualize	 the	 position	 of	 any
particular	address	 instantly.	The	avenue-number	and	street-number,	with
the	 necessary	 supplements	 of	 smaller	 numbers	 (as	 in	 the	 “2”	 in	 “1002”
above)	 enable	us	 to	 fix	definitely	 and	uniquely	 the	position	of	 any	point
whatever	 with	 respect	 to	 the	 axes,	 by	 giving	 the	 pair	 of	 numbers	 which
measure	 its	 east	 or	 west	 and	 its	 north	 or	 south	 from	 the	 axes,	 this	 pair	 of
numbers	is	called	the	coordinates	of	the	point	(with	respect	to	the	axes).

Now	suppose	a	point	to	wander	over	the	map.	The	coordinates	(x,y)	of	all
the	 points	 on	 the	 curve	 over	 which	 it	 wanders	 will	 be	 connected	 by	 an
equation,	 (this	 must	 be	 taken	 for	 granted	 by	 the	 reader	 who	 has	 never
plotted	a	graph	to	fit	data),	which	is	called	the	equation	of	the	curve.	Suppose
now	 for	 simplicity	 that	 our	 curve	 is	 a	 circle.	We	have	 its	 equation.	What
can	be	done	with	it?	Instead	of	this	particular	equation,	we	can	write	down
the	most	general	one	of	 the	same	kind	(for	example,	here,	of	 the	 second
degree,	 with	 no	 cross-product	 term,	 and	 with	 the	 coefficients	 of	 the
highest	powers	of	the	coordinates	equal),	and	then	proceed	to	manipulate
this	 equation	 algebraically.	 Finally	 we	 put	 back	 the	 results	 of	 all	 our
algebraic	manipulations	 into	 their	equivalents	 in	 terms	of	coordinates	of
points	 on	 the	 diagram	 which,	 all	 this	 time,	 we	 have	 been	 deliberately



forgetting.	Algebra	is	easier	to	see	through	than	a	cobweb	of	lines	in	the
Greek	manner	of	elementary	geometry.	What	we	have	done	has	been	 to
use	 our	 algebra	 for	 the	 discovery	 and	 investigation	 of	 geometrical	 theorems
concerning	circles.

For	straight	lines	and	circles	this	may	not	seem	very	exciting;	we	knew
how	to	do	it	all	before	in	another,	a	Greek,	way.	Now	comes	the	real	power
of	 the	 method.	We	 start	 with	 equations	 of	 any	 desired	 or	 suggested	 degree	 of
complexity	and	interpret	their	algebraic	and	analytic	properties	geometrically.	Thus
we	have	not	only	dropped	geometry	as	our	pilot;	we	have	tied	a	sackful	of
bricks	 to	 his	 neck	 before	 pitching	 him	 overboard.	Henceforth	 algebra	 and
analysis	are	 to	be	our	pilots	 to	 the	unchartered	seas	of	“space”	and	its	“geometry.”
All	 that	 we	 have	 done	 can	 be	 extended,	 at	 one	 stride,	 to	 space	 of	 any
number	 of	 dimensions;	 for	 the	 plane	 we	 need	 two	 coordinates,	 for
ordinary	“solid”	space	 three,	 for	 the	geometry	of	mechanics	and	relativity,
four	coordinates,	and	finally,	for	“space”	as	mathematicians	like	it,	either	n
coordinates,	or	as	many	coordinates	as	there	are	of	all	 the	numbers	1,	2,
3,	 .	 .	 .,	or	as	many	as	there	are	of	all	 the	points	on	a	line.	This	 is	beating
Achilles	and	the	tortoise	in	their	own	race.

Descartes	did	not	revise	geometry;	he	created	it.
It	seems	fitting	that	an	eminent	living	mathematical	fellow-countryman

of	 Descartes	 should	 have	 the	 last	 word,	 so	 we	 shall	 quote	 Jacques
Hadamard.	He	 remarks	 first	 that	 the	mere	 invention	 of	 coordinates	was
not	Descartes’	greatest	merit,	because	that	had	already	been	done	“by	the
ancients”—a	 statement	 which	 is	 exact	 only	 if	 we	 read	 the	 unexpressed



intention	into	the	unaccomplished	deed.	Hell	is	paved	with	the	half-baked
ideas	 of	 “the	 ancients”	 which	 they	 could	 never	 quite	 cook	 through	with
their	own	steam.

“It	is	quite	another	thing	to	recognize	[as	in	the	use	of	coordinates]	a
general	method	and	to	follow	to	the	end	the	idea	which	it	represents.	It	is
exactly	this	merit,	whose	importance	every	real	mathematician	knows,	that
was	 preëminently	 Descartes’	 in	 geometry;	 it	 was	 thus	 that	 he	 was	 led	 to
what	.	.	.	is	his	truly	great	discovery	in	the	matter;	namely,	the	application
of	 the	method	of	coordinates	not	only	 to	 translate	 into	equations	curves
already	defined	geometrically,	but,	looking	at	the	question	from	an	exactly
opposite	 point	 of	 view,	 to	 the	 a	 priori	 definition	 of	 more	 and	 more
complicated	curves	and,	hence,	more	and	more	general	.	.	.	.

“Directly,	with	Descartes	himself,	 later,	 indirectly,	 in	 the	 return	which
the	 following	 century	 made	 in	 the	 opposite	 direction,	 it	 is	 the	 entire
conception	of	the	object	of	mathematical	science	that	was	revolutionized.
Descartes	 indeed	understood	thoroughly	 the	significance	of	what	he	had
done,	and	he	was	right	when	he	boasted	that	he	had	so	far	surpassed	all
geometry	before	him	as	Cicero’s	rhetoric	surpasses	the	ABC.”

I.	 Daughter	 of	 Frederick,	 Elector	 Palatine	 of	 the	 Rhine,	 and	 King	 of	 Bohemia,	 and	 a
granddaughter	of	James	I	of	England.



CHAPTER	FOUR

The	Prince	of	Amateurs

FERMAT

I	have	found	a	very	great	number	of	exceedingly	beautiful	theorems.

—P.	FERMAT

NOT	ALL	OF	OUR	DUCKS	can	be	swans;	so	after	having	exhibited	Descartes	as
one	of	the	leading	mathematicians	of	all	time,	we	shall	have	to	justify	the
assertion,	 frequently	 made	 and	 seldom	 contradicted,	 that	 the	 greatest
mathematician	 of	 the	 seventeenth	 century	 was	 Descartes’	 contemporary
Fermat	 (1601?–1665).	 This	 of	 course	 leaves	Newton	 (1642–1727)	 out	 of
consideration.	But	it	can	be	argued	that	Fermat	was	at	least	Newton’s	equal
as	a	pure	mathematician,	and	anyhow	nearly	a	third	of	Newton’s	life	fell	into
the	eighteenth	century,	whereas	the	whole	of	Fermat’s	was	lived	out	in	the
seventeenth.

Newton	 appears	 to	 have	 regarded	 his	 mathematics	 principally	 as	 an
instrument	for	scientific	exploration	and	put	his	main	effort	on	the	latter.
Fermat	 on	 the	 other	 hand	 was	 more	 strongly	 attracted	 to	 pure
mathematics	 although	 he	 also	 did	 notable	 work	 in	 the	 applications	 of
mathematics	to	science,	particularly	optics.

Mathematics	 had	 just	 entered	 its	 modern	 phase	 with	 Descartes’
publication	of	analytic	geometry	in	1637,	and	was	still	for	many	years	to	be
of	such	modest	extent	that	a	gifted	man	could	reasonably	hope	to	do	good
work	in	both	the	pure	and	applied	divisions.

As	a	pure	mathematician	Newton	reached	his	climax	in	the	invention	of
the	calculus,	an	invention	also	made	independently	by	Leibniz.	More	will
be	 said	 on	 this	 later;	 for	 the	 present	 it	 may	 be	 remarked	 that	 Fermat
conceived	 and	 applied	 the	 leading	 idea	 of	 the	 differential	 calculus
thirteen	years	before	Newton	was	born	and	seventeen	before	Leibniz	was



born,	 although	 he	 did	 not,	 like	 Leibniz,	 reduce	 his	 method	 to	 a	 set	 of
rules	of	thumb	that	even	a	dolt	can	apply	to	easy	problems.

As	 for	Descartes	 and	Fermat,	 each	of	 them,	 entirely	 independently	of
the	other,	 invented	analytic	geometry.	They	corresponded	on	the	subject
but	 this	 does	 not	 affect	 the	 preceding	 assertion.	 The	 major	 part	 of
Descartes’	 effort	 went	 to	 miscellaneous	 scientific	 investigations,	 the
elaboration	of	his	philosophy,	and	his	preposterous	“vortex	theory”	of	the
solar	system—for	 long	a	serious	rival,	even	 in	England,	 to	 the	beautifully
simple,	unmetaphysical	Newtonian	theory	of	universal	gravitation.	Fermat
seems	never	to	have	been	tempted,	as	both	Descartes	and	Pascal	were,	by
the	 insidious	 seductiveness	 of	 philosophizing	 about	 God,	 man,	 and	 the
universe	 as	 a	whole;	 so,	 after	having	disposed	of	his	 part	 in	 the	 calculus
and	analytic	geometry,	and	having	lived	a	serene	life	of	hard	work	all	the
while	to	earn	his	living,	he	still	was	free	to	devote	his	remaining	energy	to
his	 favorite	 amusement—pure	 mathematics,	 and	 to	 accomplish	 his
greatest	 work,	 the	 foundation	 of	 the	 theory	 of	 numbers,	 on	 which	 his
undisputed	and	undivided	claim	to	immortality	rests.

It	will	be	seen	presently	that	Fermat	shared	with	Pascal	the	creation	of
the	mathematical	theory	of	probability.	If	all	these	first-rank	achievements
are	 not	 enough	 to	 put	 him	 at	 the	 head	 of	 his	 contemporaries	 in	 pure
mathematics	we	may	ask	who	did	more?	Fermat	was	a	born	originator.	He
was	 also,	 in	 the	 strictest	 sense	 of	 the	 word,	 so	 far	 as	 his	 science	 and
mathematics	were	concerned,	an	amateur.	Without	doubt	he	is	one	of	the
foremost	amateurs	in	the	history	of	science,	if	not	the	very	first.

Fermat’s	 life	 was	 quiet,	 laborious,	 and	 uneventful,	 but	 he	 got	 a
tremendous	 lot	 out	 of	 it.	 The	 essential	 facts	 of	 his	 peaceful	 career	 are
quickly	told.	The	son	of	the	leather-merchant	Dominique	Fermat,	second
consul	 of	 Beaumont,	 and	 Claire	 de	 Long,	 daughter	 of	 a	 family	 of
parliamentary	 jurists,	 the	 mathematician	 Pierre	 Fermat	 was	 born	 at
Beaumont-de-Lomagne,	 France,	 in	 August,	 1601	 (the	 exact	 date	 is
unknown;	the	baptismal	day	was	August	20th).	His	earliest	education	was
received	at	home	 in	his	native	 town;	his	 later	 studies,	 in	preparation	 for
the	magistracy,	were	continued	at	Toulouse.	As	Fermat	 lived	temperately
and	 quietly	 all	 his	 life,	 avoiding	 profitless	 disputes,	 and	 as	 he	 lacked	 a
doting	 sister	 like	 Pascal’s	 Gilberte	 to	 record	 his	 boyhood	 prodigies	 for
posterity,	 singularly	 little	 appears	 to	 have	 survived	 of	 his	 career	 as	 a
student.	 That	 it	 must	 have	 been	 brilliant	 will	 be	 evident	 from	 the



achievements	 and	 accomplishments	 of	 his	 maturity;	 no	 man	 without	 a
solid	 foundation	 of	 exact	 scholarship	 could	 have	 been	 the	 classicist	 and
littérateur	 that	 Fermat	 became.	 His	 marvelous	 work	 in	 the	 theory	 of
numbers	and	in	mathematics	generally	cannot	be	traced	to	his	schooling;
for	the	fields	 in	which	he	did	his	greatest	work,	not	having	been	opened
up	 while	 he	 was	 a	 student,	 could	 scarcely	 have	 been	 suggested	 by	 his
studies.

The	only	events	worth	noting	in	his	material	career	are	his	installation
at	 Toulouse,	 at	 the	 age	 of	 thirty	 (May	 14,	 1631),	 as	 commissioner	 of
requests;	his	marriage	on	June	1st	of	the	same	year	to	Louise	de	Long,	his
mother’s	 cousin,	 who	 presented	 him	 with	 three	 sons,	 one	 of	 whom,
Clément-Samuel,	 became	 his	 father’s	 scientific	 executor,	 and	 two
daughters,	both	of	whom	took	the	veil;	his	promotion	in	1648	to	a	King’s
councillorship	 in	 the	 local	 parliament	 of	 Toulouse,	 a	 position	which	 he
filled	 with	 dignity,	 integrity,	 and	 great	 ability	 for	 seventeen	 years—his
entire	working	life	of	thirty	four	years	was	spent	in	the	exacting	service	of
the	state;	and	finally,	his	death	at	Castres	on	January	12,	1665,	in	his	sixty
fifth	year,	two	days	after	he	had	finished	conducting	a	case	in	the	town	of
his	death.	“Story?”	he	might	have	said;	“Bless	you,	sir!	I	have	none.”	And
yet	this	tranquilly	living,	honest,	even-tempered,	scrupulously	just	man	has
one	of	the	finest	stories	in	the	history	of	mathematics.

His	story	is	his	work—his	recreation,	rather—done	for	the	sheer	love	of
it,	 and	 the	 best	 of	 it	 is	 so	 simple	 (to	 state,	 but	 not	 to	 carry	 through	 or
imitate)	 that	 any	 schoolboy	 of	 normal	 intelligence	 can	 understand	 its
nature	and	appreciate	its	beauty.	The	work	of	this	prince	of	mathematical
amateurs	has	had	an	irresistible	appeal	to	amateurs	of	mathematics	in	all
civilized	 countries	 during	 the	 past	 three	 centuries.	 This,	 the	 theory	 of
numbers	as	it	is	called,	is	probably	the	one	field	of	mathematics	in	which	a
talented	 amateur	 today	may	 hope	 to	 turn	 up	 something	 of	 interest.	We
shall	glance	at	his	other	contributions	first	after	a	passing	mention	of	his
“singular	erudition”	 in	what	many	call	 the	humanities.	His	knowledge	of
the	chief	European	 languages	and	 literatures	of	Continental	Europe	was
wide	and	accurate,	and	Greek	and	Latin	philology	are	indebted	to	him	for
several	 important	 corrections.	 In	 the	 composition	 of	 Latin,	 French,	 and
Spanish	 verses,	 one	 of	 the	 gentlemanly	 accomplishments	 of	 his	 day,	 he
showed	great	skill	and	a	fine	taste.	We	shall	understand	his	even,	scholarly
life	 if	 we	 picture	 him	 as	 an	 affable	 man,	 not	 touchy	 or	 huffy	 under



criticism	 (as	Newton	 in	 his	 later	 years	 was),	 without	 pride,	 but	 having	 a
certain	 vanity	which	Descartes,	his	opposite	 in	 all	 respects,	 characterized
by	 saying,	 “Mr.	 de	 Fermat	 is	 a	 Gascon;	 I	 am	 not.	 “The	 allusion	 to	 the
Gascons	may	possibly	refer	to	an	amiable	sort	of	braggadocio	which	some
French	writers	 (for	 example	Rostand	 in	Cyrano	de	Bergerac,	 Act	 II,	 Scene
VII)	 ascribe	 to	 their	 men	 of	 Gascony.	 There	 may	 be	 some	 of	 this	 in
Fermat’s	letters,	but	it	is	always	rather	naïve	and	inoffensive,	and	nothing
to	what	he	might	have	justly	thought	of	his	work	even	if	his	head	had	been
as	big	as	a	balloon.	And	as	 for	Descartes	 it	must	be	remembered	that	he
was	 not	 exactly	 an	 impartial	 judge.	We	 shall	 note	 in	 a	moment	 how	his
own	 soldierly	obstinacy	caused	him	 to	come	off	 a	bad	 second-best	 in	his
protracted	row	with	the	“Gascon”	over	the	extremely	important	matter	of
tangents.

Considering	 the	 exacting	 nature	 of	 Fermat’s	 official	 duties	 and	 the
large	amount	of	first-rate	mathematics	he	did,	some	have	been	puzzled	as
to	 how	 he	 found	 time	 for	 it	 all.	 A	 French	 critic	 suggests	 a	 probable
solution:	 Fermat’s	 work	 as	 a	 King’s	 councillor	 was	 an	 aid	 rather	 than	 a
detriment	to	his	intellectual	activities.	Unlike	other	public	servants—in	the
army	 for	 instance—parliamentary	 councillors	 were	 expected	 to	 hold
themselves	 aloof	 from	 their	 fellow	 townsmen	 and	 to	 abstain	 from
unnecessary	social	activities	lest	they	be	corrupted	by	bribery	or	otherwise
in	the	discharge	of	their	office.	Thus	Fermat	found	plenty	of	leisure.

*		*		*

We	now	briefly	 state	Fermat’s	part	 in	 the	evolution	of	 the	calculus.	As
was	remarked	in	the	chapter	on	Archimedes,	a	geometrical	equivalent	of
the	fundamental	problem	of	the	differential	calculus	is	to	draw	the	straight
line	tangent	to	a	given,	unlooped,	continuous	arc	of	a	curve	at	any	given
point.	A	sufficiently	close	description	of	what	“continuous”	means	here	is
“smooth,	without	breaks	or	sudden	jumps”;	to	give	an	exact,	mathematical
definition	 would	 require	 pages	 of	 definitions	 and	 subtle	 distinctions
which,	it	is	safe	to	say,	would	have	puzzled	and	astonished	the	inventors	of
the	calculus,	including	Newton	and	Leibniz.	And	it	is	also	a	fair	guess	that
if	 all	 these	 subtleties	 which	 modern	 students	 demand	 had	 presented
themselves	 to	 the	 originators,	 the	 calculus	 would	 never	 have	 got	 itself
invented.



The	creators	of	the	calculus,	including	Fermat,	relied	on	geometric	and
physical	(mostly	kinematical	and	dynamical)	intuition	to	get	them	ahead:
they	 looked	 at	 what	 passed	 in	 their	 imaginations	 for	 the	 graph	 of	 a
“continuous	curve,”	pictured	the	process	of	drawing	a	straight	line	tangent
to	the	curve	at	any	point	P	on	the	curve	by	taking	another	point	Q,	also	on
the	 curve,	 drawing	 the	 straight	 line	 PQ	 joining	 P	 and	 Q,	 and	 then,	 in
imagination,	letting	the	point	Q	slip	along	the	arc	of	the	curve	from	Q	 to
P,	 till	Q	 coincided	with	P,	when	 the	 chord	PQ,	 in	 the	 limiting	 position	 just
described,	 became	 the	 tangent	 PP	 to	 the	 curve	 at	 the	 point	 P—the	 very
thing	they	were	looking	for.

The	 next	 step	 was	 to	 translate	 all	 this	 into	 algebraical	 or	 analytical
language.	Knowing	the	coordinates	x,	y	of	the	point	P	on	the	graph,	and
those,	say	x	+	a,	y	+	b,	of	Q,	before	Q	 started	to	slip	along	to	coincidence
with	P,	they	inspected	the	graph	and	saw	that	the	slope	of	the	chord	PQ	was
equal	 to	 b/a—obviously	 a	measure	 of	 the	 “steepness”	 of	 the	 chord	 with
relation	to	the	x-axis	(the	line	along	which	x-distances	are	measured);	this
“steepness”	 is	 precisely	 what	 is	meant	 by	 slope.	 From	 this	 it	 was	 evident
that	 the	 required	 slope	 of	 the	 tangent	 at	 P	 (after	 Q	 had	 slipped	 into
coincidence	 with	 P)	 would	 be	 the	 limiting	 value	 of	 b/a	 as	 both	 b	 and	 a
approached	the	value	zero	simultaneously;	for	x	+	a,	y	+	b,	the	coordinates
of	Q,	ultimately	become	x,	y,	the	coordinates	of	P.	This	limiting	value	is	the
required	slope.	Having	the	slope	and	the	point	P	they	could	now	draw	the
tangent.



This	 is	 not	 exactly	 Fermat’s	 process	 for	drawing	 tangents	 but	his	 own
process	was,	broadly,	equivalent	to	what	has	been	described.

Why	 should	 all	 this	 be	 worth	 the	 serious	 attention	 of	 any	 rational	 or
practical	man?	It	is	a	long	story,	only	a	hint	of	which	need	be	given	here;
more	will	be	said	when	we	discuss	Newton.	One	of	the	fundamental	ideas
in	dynamics	is	that	of	the	velocity	(speed)	of	a	moving	particle.	If	we	graph
the	number	 of	 units	 of	 distance	passed	 over	 by	 the	particle	 in	 a	 unit	 of
time	against	the	number	of	units	of	time,	we	get	a	line,	straight	or	curved,
which	pictures	 at	 a	glance	 the	motion	 of	 the	particle,	 and	 the	 steepness	of
this	 line	 at	 any	 given	 point	 of	 it	 will	 obviously	 give	 us	 the	 velocity	 of	 the
particle	at	the	instant	corresponding	to	the	point;	the	faster	the	particle	is
moving,	 the	 steeper	 the	 slope	 of	 the	 tangent	 line.	 This	 slope	 does	 in	 fact
measure	the	velocity	of	the	particle	at	any	point	of	its	path.	The	problem
in	motion,	when	translated	into	geometry,	is	exactly	that	of	finding	the	slope
of	the	tangent	line	at	a	given	point	of	a	curve.	There	are	similar	problems
in	 connection	with	 tangent	planes	 to	 surfaces	 (which	 also	have	 important
interpretations	 in	 mechanics	 and	 mathematical	 physics),	 and	 all	 are
attacked	 by	 the	 differential	 calculus—whose	 fundamental	 problem	 we
have	 attempted	 to	 describe	 as	 it	 presented	 itself	 to	 Fermat	 and	 his
successors.

Another	 use	 of	 this	 calculus	 can	 be	 indicated	 from	 what	 has	 already
been	said.	Suppose	some	quantity	y	is	a	“function”	of	another,	t,	written	y	=
f(t),	which	means	that	when	any	definite	number,	say	10,	is	substituted	for
t,	 so	 that	 we	 get	 f(10)—“function	 f	 of	 10”—we	 can	 calculate,	 from	 the
algebraical	expression	off,	supposed	given,	the	corresponding	value	of	y,	here	y



=f(l0).	To	be	explicit,	suppose	f(t)	is	that	particular	“function”	of	t	which	is
denoted	in	algebra	by	t2,	or	t	×	t.	Then,	when	t	=	10,	we	get	y	=	f(	10),	and
hence	here	y	=	102,	=	100,	for	this	value	of	t;	when	t	=	½,	y	=	¼,	and	so	on,
for	any	value	of	t.

All	 this	 is	 familiar	 to	 anyone	whose	 grammar-school	 education	 ended
not	more	than	thirty	or	forty	years	ago,	but	some	may	have	forgotten	what
they	 did	 in	 arithmetic	 as	 children,	 just	 as	 others	 could	 not	 decline	 the
Latin	mensa	to	save	their	souls.	But	even	the	most	forgetful	will	see	that	we
could	plot	the	graph	of	y	=	f(t)	for	any	particular	form	of	f	(whenf(t)	 is	 t2
the	graph	is	a	parabola	like	an	inverted	arch).	Imagine	the	graph	drawn.	If
it	has	on	it	maxima	(highest)	or	minima	(lowest)	points—points	higher	or
lower	 than	 those	 in	 their	 immediate	 neighborhoods—we	 observe	 that	 the
tangent	at	each	of	these	maxima	or	minima	is	parallel	to	the	¿-axis.	That	is,
the	slope	 of	 the	 tangent	 at	 such	 an	 extremum	 (maximum	or	minimum)	of
the	f(t)	we	are	plotting	is	zero.	Thus	if	we	were	seeking	the	extrema	of	a	given
function	 f(t)	 we	 should	 again	 have	 to	 solve	 our	 slope-problem	 for	 the
particular	curve	y	=	f(t)	and,	having	found	the	slope	for	the	general	point	t,
y,	equate	to	zero	the	algebraical	expression	of	this	slope	in	order	to	find
the	 values	 of	 t	 corresponding	 to	 the	 extrema.	 This	 is	 substantially	 what
Fermat	did	in	his	method	of	maxima	and	minima	invented	in	1628-29,	but
not	made	semipublic	till	ten	years	later	when	Fermat	sent	an	account	of	it
through	Mersenne	to	Descartes.

The	 scientific	 applications	 of	 this	 simple	 device—duly	 elaborated,	 of
course,	 to	 take	account	of	 far	more	complicated	problems	 than	 that	 just
described—are	numerous	and	far	reaching.	In	mechanics,	for	instance,	as
Lagrange	 discovered,	 there	 is	 a	 certain	 “function”	 of	 the	 positions



(coordinates)	and	velocities	of	the	bodies	concerned	in	a	problem	which,
when	made	an	extremum,	furnishes	us	with	the	“equations	of	motion”	of
the	 system	 considered,	 and	 these	 in	 turn	 enable	 us	 to	 determine	 the
motion—to	describe	 it	completely—at	any	given	 instant.	 In	physics	 there
are	many	 similar	 functions,	 each	of	which	 sums	up	most	of	 an	extensive
branch	 of	 mathematical	 physics	 in	 the	 simple	 requirement	 that	 the
function	in	question	must	be	an	extremum;I	Hilbert	in	1916	found	one	for
general	 relativity.	 So	 Fermat	 was	 not	 fooling	 away	 his	 time	 when	 he
amused	himself	 in	the	leisure	left	 from	a	laborious	 legal	 job	by	attacking
the	problem	of	maxima	and	minima.	He	himself	made	one	beautiful	and
astonishing	 application	 of	 his	 principles	 to	 optics.	 In	 passing	 it	 may	 be
noted	that	this	particular	discovery	has	proved	to	be	the	germ	of	the	newer
quantum	theory—in	 its	mathematical	aspect,	 that	of	 “wave	mechanics”—
elaborated	 since	 1926.	 Fermat	 discovered	 what	 is	 usually	 called	 “the
principle	of	least	time.”	It	would	be	more	accurate	to	say	“extreme”	(least
or	greatest)	instead	of	“least.”II

According	 to	 this	 principle,	 if	 a	 ray	 of	 light	 passes	 from	 a	 point	A	 to
another	point	B,	being	reflected	and	refracted	(“refracted,”	 that	 is,	bent,
as	in	passing	from	air	to	water,	or	through	a	jelly	of	variable	density)	in	any
manner	during	the	passage,	the	path	which	it	must	take	can	be	calculated
—all	its	twistings	and	turnings	due	to	refraction,	and	all	its	dodgings	back
and	 forth	 due	 to	 reflections—from	 the	 single	 requirement	 that	 the	 time
taken	 to	pass	 from	A	 to	B	 shall	be	an	extremum	(but	 see	 the	preceding
footnote).

From	this	principle	Fermat	deduced	the	familiar	laws	of	reflection	and
refraction:	 the	angle	of	 incidence	(in	reflection)	 is	equal	 to	 the	angle	of
reflection;	 the	 sine	of	 the	angle	of	 incidence	(in	 refraction)	 is	 a	 constant
number	 times	 the	 sine	 of	 the	 angle	 of	 refraction	 in	 passing	 from	 one
medium	to	another.

The	matter	of	 analytic	 geometry	has	 already	been	mentioned;	Fermat
was	the	first	to	apply	it	to	space	of	three	dimensions.	Descartes	contented
himself	with	two	dimensions.	The	extension,	familiar	to	all	students	today,
would	 not	 be	 self-evident	 to	 even	 a	 gifted	 man	 from	 Descartes’
developments.	 It	 may	 be	 said	 that	 there	 is	 usually	 greater	 difficulty	 in
finding	a	significant	extension	of	a	particular	kind	of	geometry	from	space
of	two	dimensions	to	three	than	there	is	in	passing	from	three	to	four	or
five	.	.	.	,	or	n.	Fermat	corrected	Descartes	in	an	essential	point	(that	of	the



classification	 of	 curves	 by	 their	 degrees).	 It	 seems	 but	 natural	 that	 the
somewhat	 touchy	 Descartes	 should	 have	 rowed	 with	 the	 imperturbable
“Gascon”	 Fermat.	 The	 soldier	 was	 frequently	 irritable	 and	 acid	 in	 his
controversy	 over	 Fermat’s	 method	 of	 tangents;	 the	 equable	 jurist	 was
always	unaflfectedly	courteous.	As	usually	happens	the	man	who	kept	his
temper	got	 the	better	of	 the	argument.	But	Fermat	deserved	 to	win,	not
because	he	was	a	more	skilful	debater,	but	because	he	was	right.

In	 passing,	 we	 should	 suppose	 that	 Newton	 would	 have	 heard	 of
Fermat’s	 use	 of	 the	 calculus	 and	 would	 have	 acknowledged	 the
information.	Until	1934	no	evidence	to	this	effect	had	been	published,	but
in	that	year	Professor	L.	T.	More	recorded	in	his	biography	of	Newton	a
hitherto	unnoticed	 letter	 in	which	Newton	says	explicitly	 that	he	got	 the
hint	of	 the	method	of	 the	differential	 calculus	 from	Fermat’s	method	of
drawing	tangents.

*		*		*

We	now	turn	to	Fermat’s	greatest	work,	that	which	is	intelligible	to	all,
mathematicians	 and	 amateurs	 alike.	 This	 is	 the	 so-called	 “theory	 of
numbers,”	 or	 “the	 higher	 arithmetic,”	 or	 finally,	 to	 use	 the	 unpedantic
name	which	was	good	enough	for	Gauss,	arithmetic.

The	 Greeks	 separated	 the	miscellany	 which	 we	 lump	 together	 under
the	 name	 “arithmetic”	 in	 elementary	 textbooks	 into	 two	 distinct
compartments,	 logistica,	 and	arithmetica,	 the	 first	 of	which	 concerned	 the
practical	applications	of	reckoning	to	trade	and	daily	 life	in	general,	and
the	 second,	 arithmetic	 in	 the	 sense	of	Fermat	and	Gauss,	who	 sought	 to
discover	the	properties	of	numbers	as	such.

Arithmetic	 in	 its	 ultimate	 and	 probably	 most	 difficult	 problems
investigates	the	mutual	relationships	of	those	common	whole	numbers	1,
2,	3,	4,	5,	.	.	.	which	we	utter	almost	as	soon	as	we	learn	to	talk.	In	striving
to	elucidate	 these	 relationships,	mathematicians	have	been	driven	 to	 the
invention	 of	 subtle	 and	 abstruse	 theories	 in	 algebra	 and	 analysis,	 whose
forests	of	technicalities	obscure	the	initial	problems—those	concerning	1,
2,	3,	.	.	.	but	whose	real	justification	will	be	the	solution	of	those	problems.
In	the	meantime	the	by-products	of	these	apparently	useless	investigations
amply	repay	those	who	undertake	them	by	suggesting	numerous	powerful
methods	 applicable	 to	 other	 fields	 of	mathematics	 having	direct	 contact



with	 the	 physical	 universe.	 To	 give	 but	 one	 instance,	 the	 latest	 phase	 of
algebra,	 that	 which	 is	 cultivated	 today	 by	 professional	 algebraists	 and
which	 is	 throwing	 an	 entirely	 new	 light	 on	 the	 theory	 of	 algebraic
equations,	 traces	 its	 origin	 directly	 to	 attempts	 to	 settle	 Fermat’s	 simple
Last	Theorem	(which	will	be	stated	when	the	way	has	been	prepared	for
it).

We	begin	with	a	famous	statement	Fermat	made	about	prime	numbers.
A	positive	prime	number,	or	briefly	a	prime,	is	any	number	greater	than	1
which	has	as	its	divisors	(without	remainder)	only	1	and	the	number	itself;
for	 example	 2,	 3,	 5,	 7,	 IS,	 17	 are	 primes,	 and	 so	 are	 257,	 65537.	 But
4294967297	 is	 not	 a	 prime,	 because	 it	 has	 641	 as	 a	 divisor,	 nor	 is	 the
number	18446744073709551617,	because	it	 is	exactly	divisible	by	274177;
both	 641	 and	 274177	 are	 primes.	 When	 we	 say	 in	 arithmetic	 that	 one
number	has	as	divisor	another	number,	or	is	divisible	by	another,	we	mean
exactly	divisible,	without	 remainder.	Thus	14	 is	divisible	by	7,	15	 is	not.	The
two	 large	 numbers	 were	 displayed	 above	with	malice	 aforethought	 for	 a
reason	 that	will	 be	 apparent	 in	 a	moment.	To	 recall	 another	definition,
the	nth	power	of	a	given	number,	say	N,	is	the	result	of	multiplying	together
n	N’s,	and	is	written	Nn;	thus	52	=	5	×	5	=	25;	84	=	8	×	8	×	8	×	8	=	4096.	For
uniformity	N	itself	may	be	written	as	Nl.	Again,	such	a	pagoda	as	235	means
that	we	are	first	to	calculate	35	(	=	243),	and	then	“raise”	2	to	this	power,
2243;	the	resulting	number	has	seventy	four	digits.

The	next	point	is	of	great	importance	in	the	life	of	Fermat,	also	in	the
history	of	mathematics.	Consider	the	numbers	3,	5,	17,	257,	65537.	They
all	 belong	 to	 one	 “sequence”	 of	 a	 specific	 kind,	 because	 they	 are	 all
generated	(from	1	and	2)	by	the	same	simple	process,	which	will	be	seen
from

3	=	2	+	1,	5	=	22	+	1,	17	=	24	+	1,	257	=	28	+	1,	65537	=	216	+	1;

and	 if	 we	 care	 to	 verify	 the	 calculation	 we	 easily	 see	 that	 the	 two	 large
numbers	 displayed	 above	 are	 232	 +	 1	 and	 264	 +	 1,	 also	 numbers	 of	 the
sequence.	We	thus	have	seven	numbers	belonging	to	this	sequence	and	the
first	five	of	these	numbers	are	primes,	but	the	last	two	are	not	primes.

Observing	 how	 the	 sequence	 is	 composed,	 we	 note	 the	 “exponents”
(the	upper	numbers	indicating	what	powers	of	2	are	taken),	namely	1,	2,
4,	8,	16,	32,	64,	and	we	observe	that	these	are	1	(which	can	be	written	2°,
as	in	algebra,	if	we	like,	for	uniformity),	21,	22,	23,	24,	26,	26.	Namely,	our



sequence	is	22”	4-	1,	where	n	 ranges	over	0,	1,	2,	3,	4,	5,	6.	We	need	not
stop	with	n	 =	 6;	 taking	n	 =	 7,	 8,	 9,	 .	 .	 .	 ,	 we	may	 continue	 the	 sequence
indefinitely,	getting	more	and	more	enormous	numbers.

Suppose	 we	 wish	 now	 to	 find	 out	 if	 a	 particular	 number	 of	 this
sequence	is	a	prime.	Although	there	are	many	shortcuts,	and	whole	classes
of	 trial	 divisors	 can	 be	 rejected	 by	 inspection,	 and	 although	 modern
arithmetic	 limits	 the	 kinds	 of	 trial	 divisors	 that	 need	 be	 tested,	 our
problem	is	of	the	same	order	of	laboriousness	as	would	be	the	dividing	of
the	given	number	in	succession	by	the	primes	2,	3,	5,	7,	.	.	.	which	are	less
than	the	square	root	of	the	number.	If	none	of	these	divides	the	number,
the	number	is	prime.	Needless	to	say	the	labor	involved	in	such	a	test,	even
using	the	known	shortcuts,	would	be	prohibitive	for	even	so	small	a	value
of	n	as	100.	(The	reader	may	assure	himself	of	this	by	trying	to	settle	the
case	n	=	8.)

Fermat	asserted	that	he	was	convinced	that	all	the	numbers	of	the	sequence
are	primes.	The	displayed	numbers	(corresponding	to	n	=	5,	6)	contradict
him,	 as	 we	 have	 seen.	 This	 is	 the	 point	 of	 historical	 interest	 which	 we
wished	to	make:	Fermat	guessed	wrong,	but	he	did	not	claim	to	have	proved	his
guess.	Some	years	later	he	did	make	an	obscure	statement	regarding	what
he	had	done,	from	which	some	critics	infer	that	he	had	deceived	himself.
The	importance	of	this	fact	will	appear	as	we	proceed.

As	a	psychological	 curiosity	 it	may	be	mentioned	 that	Zerah	Colburn,
the	 American	 lightning-calculating	 boy,	 when	 asked	 whether	 this	 sixth
number	of	Fermat’s	(4294967297)	was	prime	or	not,	replied	after	a	short
mental	calculation	that	it	was	not,	as	it	had	the	divisor	641.	He	was	unable
to	 explain	 the	 process	 by	 which	 he	 reached	 his	 correct	 conclusion.
Colburn	will	occur	again	(in	connection	with	Hamilton).

Before	leaving	“Fermat’s	numbers”	22n”	+	1	we	shall	glance	ahead	to	the
last	 decade	 of	 the	 eighteenth	 century	 where	 these	 mysterious	 numbers
were	partly	responsible	for	one	of	the	two	or	three	most	important	events
in	all	the	long	history	of	mathematics.	For	some	time	a	young	man	in	his
eighteenth	year	had	been	hesitating—according	to	the	tradition—whether
to	devote	his	superb	talents	to	mathematics	or	to	philology.	He	was	equally
gifted	in	both.	What	decided	him	was	a	beautiful	discovery	in	connection
with	a	simple	problem	in	elementary	geometry	familiar	to	every	schoolboy.

A	regular	polygon	of	n	sides	has	all	its	n	sides	equal	and	all	its	n	angles
equal.	 The	 ancient	 Greeks	 early	 found	 out	 how	 to	 construct	 regular



polygons	of	 3,	 4,	 5,	 6,	 8,	 10	 and	15	 sides	by	 the	use	of	 straightedge	 and
compass	 alone,	 and	 it	 is	 an	 easy	 matter,	 with	 the	 same	 implements,	 to
construct	from	a	regular	polygon	having	a	given	number	of	sides	another
regular	 polygon	 having	 twice	 that	 number	 of	 sides.	 The	 next	 step	 then
would	 be	 to	 seek	 straightedge	 and	 compass	 constructions	 for	 regular
polygons	of	7,	9,	11,	13,	.	.	.	sides.	Many	sought,	but	failed	to	find,	because
such	 constructions	 are	 impossible,	 only	 they	 did	 not	 know	 it.	 After	 an
interval	of	over	2200	years	the	young	man	hesitating	between	mathematics
and	philology	took	the	next	step—a	long	one—forward.

As	has	been	 indicated	 it	 is	 sufficient	 to	consider	only	polygons	having
an	odd	number	of	 sides.	The	 young	man	proved	 that	 a	 straightedge	and
compass	construction	of	a	regular	polygon	having	an	odd	number	of	sides
is	 possible	 when,	 and	 only	 when,	 that	 number	 is	 either	 a	 prime	 Fermat
number	(that	is	a	prime	of	the	form	22n	+	l),	or	is	made	up	by	multiplying
together	different	Fermat	primes.	Thus	the	construction	is	possible	for	3,	5,
or	15	sides	as	the	Greeks	knew,	but	not	for	7,	9,	11	or	13	sides,	and	is	also
possible	for	17	or	257	or	65537	or—for	what	the	next	prime	in	the	Fermat
sequence	3,	5,	17,	257,	65537,	.	.	.	may	be,	if	there	is	one—nobody	yet	(1936)
knows—and	the	construction	is	also	possible	for	3	×	17,	or	5	×	257	×	65537
sides,	 and	 so	 on.	 It	 was	 this	 discovery,	 announced	 on	 June	 1,	 1796,	 but
made	 on	 March	 30th,	 which	 induced	 the	 young	 man	 to	 choose
mathematics	instead	of	philology	as	his	life	work.	His	name	was	Gauss.

As	 a	 discovery	 of	 another	 kind	 which	 Fermat	 made	 concerning
numbers	 we	 state	 what	 is	 known	 as	 “Fermat’s	 Theorem”	 (not	 his	 “Last
Theorem”).	 If	 n	 is	 any	 whole	 number	 and	 p	 any	 prime,	 then	 np—n	 is
divisible	by	p.	For	example,	taking	p	=	3,	n	=	5,	we	get	53	–	5,	or	125	–	5,
which	is	120	and	is	3	×	40;	 for	n	=	2,	p	=	11,	we	get	211	–	2,	or	2048	–	2,
which	is	2046	=	11	×	186.

It	is	difficult	if	not	impossible	to	state	why	some	theorems	in	arithmetic
are	 considered	 “important”	 while	 others,	 equally	 difficult	 to	 prove,	 are
dubbed	trivial.	One	criterion,	although	not	necessarily	conclusive,	 is	 that
the	theorem	shall	be	of	use	in	other	fields	of	mathematics.	Another	is	that
it	shall	suggest	researches	in	arithmetic	or	in	mathematics	generally,	and	a
third	 that	 it	 shall	 be	 in	 some	 respect	 universal.	 Fermat’s	 theorem	 just
stated	 satisfies	 all	 of	 these	 somewhat	 arbitrary	 demands:	 it	 is	 of
indispensable	 use	 in	 many	 departments	 of	 mathematics,	 including	 the
theory	 of	 groups	 (see	 Chapter	 15),	 which	 in	 turn	 is	 at	 the	 root	 of	 the



theory	 of	 algebraic	 equations;	 it	 has	 suggested	 many	 investigations,	 of
which	 the	 entire	 subject	 of	 primitive	 roots	 may	 be	 recalled	 to
mathematical	readers	as	an	important	instance;	and	finally	it	is	universal	in
the	 sense	 that	 it	 states	 a	 property	 of	 all	 prime	 numbers—such	 general
statements	are	extremely	difficult	to	find	and	very	few	are	known.

As	 usual,	 Fermat	 stated	 his	 theorem	 about	 np—n	 without	 proof.	 The
first	proof	was	given	by	Leibniz	in	an	undated	manuscript,	but	he	appears
to	have	known	a	proof	before	1683.	The	reader	may	 like	 to	 test	his	own
powers	on	trying	to	devise	a	proof.	All	that	 is	necessary	are	the	following
facts,	which	can	be	proved	but	may	be	assumed	for	the	purpose	in	hand:	a
given	 whole	 number	 can	 be	 built	 up	 in	 one	 way	 only—apart	 from
rearrangements	 of	 factors—by	 multiplying	 together	 primes;	 if	 a	 prime
divides	 the	 product	 (result	 of	 multiplying)	 of	 two	 whole	 numbers,	 it
divides	at	least	one	of	them.	To	illustrate:	24	=	2	×	2	×	2	×	3,	and	24	cannot
be	built	up	by	multiplication	of	primes	in	any	essentially	different	way—we
consider	2	×	2	×	2	×	3,	2	×	2	×	3	×	2,	2	×	3	×	2	×	2	and	3	×	2	×	2	×	2	as	the
same;	7	divides	42,	and	42	=	2	×	21	=	3	×	14	=	6	×	7,	 in	each	of	which	7
divides	at	least	one	of	the	numbers	multiplied	together	to	give	42;	again,
98	is	divisible	by	7,	and	98	=	7	×	14,	in	which	case	7	divides	both	7	and	14,
and	 hence	 at	 least	 one	 of	 them.	 From	 these	 two	 facts	 the	 proof	 can	 be
given	in	less	than	half	a	page.	It	is	within	the	understanding	of	any	normal
fourteen-year-old,	but	it	is	safe	to	wager	that	out	of	a	million	human	beings
of	normal	 intelligence	of	any	or	all	ages,	 less	 than	 ten	of	 those	who	had
had	no	more	mathematics	than	grammar-grade	arithmetic	would	succeed
in	finding	a	proof	within	a	reasonable	time—say	a	year.

This	seems	to	be	an	appropriate	place	to	quote	some	famous	remarks	of
Gauss	concerning	the	favorite	field	of	Fermat’s	interests	and	his	own.	The
translation	 is	 that	 of	 the	 Irish	 arithmetician	H.	 J.	 S.	 Smith	 (1826-1883),
from	 Gauss’	 introduction	 to	 the	 collected	 mathematical	 papers	 of
Eisenstein	published	in	1847.

“The	 higher	 arithmetic	 presents	 us	 with	 an	 inexhaustible	 store	 of
interesting	 truths—of	 truths	 too,	 which	 are	 not	 isolated,	 but	 stand	 in	 a
close	 internal	 connection,	 and	 between	 which,	 as	 our	 knowledge
increases,	 we	 are	 continually	 discovering	 new	 and	 sometimes	 wholly
unexpected	 ties.	A	great	part	of	 its	 theories	derives	 an	additional	 charm
from	 the	 peculiarity	 that	 important	 propositions,	 with	 the	 impress	 of
simplicity	upon	 them,	are	often	easily	discoverable	by	 induction,	and	yet



are	of	so	profound	a	character	that	we	cannot	find	their	demonstration	till
after	many	vain	attempts;	and	even	then,	when	we	do	succeed,	it	 is	often
by	some	tedious	and	artificial	process,	while	the	simpler	methods	may	long
remain	concealed.”

One	 of	 these	 interesting	 truths	 which	 Gauss	 mentions	 is	 sometimes
considered	 the	most	beautiful	(but	not	 the	most	 important)	 thing	about
numbers	that	Fermat	discovered:	every	prime	number	of	the	form	4n	+	1	is
a	sum	of	two	squares,	and	is	such	a	sum	in	only	one	way.	It	is	easily	proved
that	no	number	of	the	form	4n	−1	 is	a	sum	of	 two	squares.	As	all	primes
greater	than	2	are	readily	seen	to	be	of	one	or	other	of	these	forms,	there
is	 nothing	 to	 add.	 For	 an	 example,	 37	 when	 divided	 by	 4	 yields	 the
remainder	1,	so	37	must	be	the	sum	of	two	squares	of	whole	numbers.	By
trial	(there	are	better	ways)	we	find	indeed	that	37	=	1	+	36,	=	l2	+	62,	and
that	 there	are	no	other	 squares	x2	 and	 y2	 such	 that	 37	=	x2	+jy2.	 For	 the
prime	101	we	have	l2	+	102;	for	41	we	find	42	+	52.	On	the	other	hand	19,	=
4	×	5	−1,	is	not	a	sum	of	two	squares.

As	 in	 nearly	 all	 of	 his	 arithmetical	 work,	 Fermat	 left	 no	 proof	 of	 this
theorem.	 It	 was	 first	 proved	 by	 the	 great	 Euler	 in	 1749	 after	 he	 had
struggled,	 off	 and	 on,	 for	 seven	 years	 to	 find	 a	 proof.	 But	 Fermat	 does
describe	 the	 ingenious	 method,	 which	 he	 invented,	 whereby	 he	 proved
this	 and	 some	 others	 of	 his	 wonderful	 results.	 This	 is	 called	 “infinite
descent,”	and	is	infinitely	more	difficult	to	accomplish	than	Elijah’s	ascent
to	Heaven.	His	own	account	 is	both	concise	and	clear,	 so	we	shall	give	a
free	translation	from	his	letter	of	August,	1659,	to	Carcavi.

“For	 a	 long	 time	 I	 was	 unable	 to	 apply	 my	 method	 to	 affirmative
propositions,	because	 the	 twist	and	 the	 trick	 for	getting	at	 them	is	much
more	troublesome	than	that	which	I	use	for	negative	propositions.	Thus,
when	I	had	to	prove	that	every	prime	number	which	exceeds	a	multiple	of	4	by	1
is	 composed	 of	 two	 squares,	 I	 found	myself	 in	 a	 fine	 torment.	 But	 at	 last	 a
meditation	 many	 times	 repeated	 gave	 me	 the	 light	 I	 lacked,	 and	 now
affirmative	propositions	submit	to	my	method,	with	the	aid	of	certain	new
principles	 which	 necessarily	 must	 be	 adjoined	 to	 it.	 The	 course	 of	 my
reasoning	in	affirmative	propositions	is	such:	if	an	arbitrarily	chosen	prime
of	the	form	4n	+	1	is	not	a	sum	of	two	squares,	[I	prove	that]	there	will	be
another	 of	 the	 same	 nature,	 less	 than	 the	 one	 chosen,	 and	 [therefore]
next	a	third	still	less,	and	so	on.	Making	an	infinite	descent	in	this	way	we
finally	arrive	at	the	number	5,	the	least	of	all	the	numbers	of	this	kind	[4n



+	 l].	 [By	 the	 proof	mentioned	 and	 the	 preceding	 argument	 from	 it],	 it
follows	that	5	is	not	a	sum	of	two	squares.	But	it	is.	Therefore	we	must	infer
by	a	reductio	ad	absurdum	 that	all	numbers	of	 the	 form	4n	+	1	are	sums	of
two	squares.”

All	 the	difficulty	 in	applying	descent	to	a	new	problem	lies	 in	the	first
step,	that	of	proving	that	if	the	assumed	or	conjectured	proposition	is	true
of	any	number	of	the	kind	concerned	chosen	at	random,	then	it	will	be	true
of	 a	 smaller	 number	 of	 the	 same	 kind.	 There	 is	 no	 general	 method,
applicable	 to	 all	 problems,	 for	 taking	 this	 step.	 Something	 rarer	 than
grubby	 patience	 or	 the	 greatly	 overrated	 “infinite	 capacity	 for	 taking
pains”	is	needed	to	find	a	way	through	the	wilderness.	Those	who	imagine
genius	is	nothing	more	than	the	ability	to	be	a	good	bookkeeper	may	be
recommended	to	exert	their	infinite	patience	on	Fermat’s	Last	Theorem.
Before	stating	the	theorem	we	give	one	more	example	of	the	deceptively
simple	problems	Fermat	attacked	and	solved.	This	will	introduce	the	topic
of	Diophantine	analysis,	in	which	Fermat	excelled.

Anyone	 playing	 with	 numbers	might	 well	 pause	 over	 the	 curious	 fact
that	27	=	25	+	2.	The	point	of	interest	here	is	that	both	27	and	25	are	exact
powers,	namely	27	=	33	and	25	=	52.	Thus	we	observe	that	yz	=	x2	+	2	has	a
solution	 in	whole	 numbers	 x,	 y,	 the	 solution	 is	 y	 =	 3,	 x	 =	 5.	 As	 a	 sort	 of
superintelligence	 test	 the	reader	may	now	prove	 that	y	=	3,	x	=	5	are	the
only	 whole	 numbers	 which	 satisfy	 the	 equation.	 It	 is	 not	 easy.	 In	 fact	 it
requires	 more	 innate	 intellectual	 capacity	 to	 dispose	 of	 this	 apparently
childish	thing	than	it	does	to	grasp	the	theory	of	relativity.

The	equation	y3	=	x2	+	2,	with	the	restriction	that	the	solution	y,	x	is	to	be	in
whole	numbers,	is	indeterminate	(because	there	are	more	unknowns,	namely
two,	x	and	y,	than	there	are	equations,	namely	one,	connecting	them)	and
Diophantine,	after	 the	Greek	who	was	one	of	 the	 first	 to	 insist	upon	whole
number	 solutions	 of	 equations	 or,	 less	 stringently,	 on	 rational	(fractional)
solutions.	 There	 is	 no	 difficulty	 whatever	 in	 describing	 an	 infinity	 of
solutions	without	the	restriction	to	whole	numbers:	thus	we	may	give	x	any
value	we	please	and	then	determine	y	by	adding	2	to	this	x2	and	extracting
the	cube	root	of	the	result.	But	the	Diophantine	problem	of	finding	all	the
whole	number	solutions	is	quite	another	matter.	The	solution	y	=	3,	x	=	5	is
seen	 “by	 inspection”;	 the	difficulty	of	 the	problem	 is	 to	prove	 that	 there
are	no	 other	 whole	 numbers	 y,	 x	 which	 will	 satisfy	 the	 equation.	 Fermat



proved	that	there	are	none	but,	as	usual,	suppressed	his	proof,	and	it	was
not	until	many	years	after	his	death	that	a	proof	was	found.

This	time	he	was	not	guessing;	the	problem	is	hard;	he	asserted	that	he
had	 a	 proof;	 a	 proof	 was	 later	 found.	 And	 so	 for	 all	 of	 his	 positive
assertions	with	 the	one	exception	of	 the	 seemingly	 simple	one	which	he
made	 in	 his	 Last	 Theorem	 and	 which	 mathematicians,	 struggling	 for
nearly	 300	 years,	 have	 been	 unable	 to	 prove:	 whenever	 Fermat	 asserted
that	he	had	proved	anything,	the	statement,	with	the	one	exception	noted,
has	subsequently	been	proved.	Both	his	scrupulously	honest	character	and
his	unrivalled	penetration	as	an	arithmetician	substantiate	the	claim	made
for	him	by	 some,	but	not	by	all,	 that	he	knew	what	he	was	 talking	about
when	he	asserted	that	he	possessed	a	proof	of	his	theorem.

It	 was	 Fermat’s	 custom	 in	 reading	 Bachet’s	Diophantus	 to	 record	 the
results	of	his	meditations	in	brief	marginal	notes	in	his	copy.	The	margin
was	not	suited	for	the	writing	out	of	proofs.	Thus,	in	commenting	on	the
eighth	problem	of	the	Second	Book	of	Diophantus’	Arithmetic,	which	asks
for	the	solution	in	rational	numbers	(fractions	or	whole	numbers)	of	the
equation	x2	+	y2	=	a2,	Fermat	comments	as	follows:

“On	the	contrary,	 it	 is	 impossible	 to	separate	a	cube	 into	 two	cubes,	a
fourth	power	 into	 two	 fourth	powers,	or,	generally,	any	power	above	 the
second	 into	 two	 powers	 of	 the	 same	 degree:	 I	 have	 discovered	 a	 truly
marvellous	demonstration	[of	this	general	theorem]	which	this	margin	is
too	narrow	 to	 contain”	 (Fermat,	Oeuvres,	 III,	 p.	 241).	 This	 is	 his	 famous
Last	Theorem,	which	he	discovered	about	the	year	1637.

To	 restate	 this	 in	 modern	 language:	 Diophantus’	 problem	 is	 to	 find
whole	numbers	or	fractions	x,	y,	a	such	that	x2	+	y2	=	a2;	Fermat	asserts	that
no	whole	numbers	or	fractions	exist	such	that	x3	+	y3	=	a3,	or	x4	+	y4	=	a4,
or,	generally,	such	that	xn	+	yn	=	an	if	n	is	a	whole	number	greater	than	2.

Diophantus’	problem	has	an	infinity	of	solutions;	specimens	are	x	=	S,	y
=	4,	a	=	5;	x	=	5,	y	=	12,	a	=	13.	Fermat	himself	gave	a	proof	by	his	method
of	infinite	descent	for	the	impossibility	of	x4	+	Y4	=	a4.	Since	his	day	xn	+	yn
=	 an	 has	 been	 proved	 impossible	 in	 whole	 numbers	 (or	 fractions)	 for	 a
great	many	numbers	n	(up	to	all	primes*	less	than	n	=	14000	if	none	of	the
numbers	x,	y,	a	is	divisible	by	n),	but	this	is	not	what	is	required.	A	proof
disposing	of	all	n’s	greater	than	2	is	demanded.	Fermat	said	he	possessed	a
“marvellous”	proof.



After	all	that	has	been	said,	is	it	likely	that	he	had	deceived	himself?	It
may	be	left	up	to	the	reader.	One	great	arithmetician,	Gauss,	voted	against
Fermat.	However,	 the	 fox	who	could	not	get	at	 the	grapes	declared	 they
were	sour.	Others	have	voted	for	him.	Fermat	was	a	mathematician	of	the
first	rank,	a	man	of	unimpeachable	honesty,	and	an	arithmetician	without
a	superior	in	history.III

I.	 This	 statement	 is	 sufficiently	 accurate	 for	 the	 present	 account.	 Actually,	 the	 values	 of	 the
variables	 (coordinates	 and	 velocities)	 which	 make	 the	 function	 in	 question	 stationary	 (neither
increasing	nor	decreasing,	roughly)	are	those	required.	An	extremum	is	stationary;	but	a	stationary	is
not	necessarily	an	extremum.

II.	The	reader	can	easily	see	that	it	suffices	to	dispose	of	the	case	where	n	is	an	odd	prime,	since,
in	algebra,	uab	=	(ua)b,	where	u,	a,	b	are	any	numbers.

III.	In	1908	the	late	Professor	Paul	Wolfskehl	(German)	left	100,000	marks	to	be	awarded	to	the
first	person	giving	a	 complete	 proof	of	Fermat’s	Last	Theorem.	The	 inflation	after	 the	World	War
reduced	this	prize	to	a	fraction	of	a	cent,	which	is	what	the	mercenary	will	now	get	for	a	proof.



CHAPTER	FIVE

“Greatness	and	Misery	of	Man”

PASCAL

We	see	.	.	.	that	the	theory	of	probabilities	is	at	bottom	only	common	sense	reduced	to	calculation;	it	makes	us
appreciate	with	exactitude	what	reasonable	minds	feel	by	a	sort	of	instinct,	often	without	being	able	to	account
for	it.	.	.	.	It	is	remarkable	that	[this]	science,	which	originated	in	the	consideration	of	games	of	chance,	should
have	become	the	most	important	object	of	human	knowledge.—P.	S.	LAPLACE

YOUNGER	 BY	 TWENTY	 SEVEN	 YEARS	 than	 his	 great	 contemporary	 Descartes,
Blaise	Pascal	was	born	at	Clermont,	Auvergne,	France,	on	June	19,	1623,
and	outlived	Descartes	by	twelve	years.	His	father	Êtienne	Pascal,	president
of	the	court	of	aids	at	Clermont,	was	a	man	of	culture	and	had	some	claim
to	intellectual	distinction	in	his	own	times;	his	mother,	Antoinette	Bégone,
died	when	her	son	was	four.	Pascal	had	two	beautiful	and	talented	sisters,
Gilberte,	who	became	Madame	Périer,	and	Jacqueline,	both	of	whom,	the
latter	especially,	played	important	parts	in	his	life.

Blaise	 Pascal	 is	 best	 known	 to	 the	 general	 reader	 for	 his	 two	 literary
classics,	the	Pensées	and	the	Lettres	écrites	par	Louis	de	Montalte	à	un	provincial
de	 ses	 amis	 commonly	 referred	 to	 as	 the	 “Provincial	 Letters,”	 and	 it	 is
customary	to	condense	his	mathematical	career	to	a	few	paragraphs	in	the
display	of	his	religious	prodigies.	Here	our	point	of	view	must	necessarily
be	 somewhat	 oblique,	 and	we	 shall	 consider	Pascal	 primarily	 as	 a	highly
gifted	mathematician	who	let	his	masochistic	proclivities	for	self-torturing
and	 profitless	 speculations	 on	 the	 sectarian	 controversies	 of	 his	 day
degrade	him	to	what	would	now	be	called	a	religious	neurotic.

On	 the	 mathematical	 side	 Pascal	 is	 perhaps	 the	 greatest	 might-have-
been	in	history.	He	had	the	misfortune	to	precede	Newton	by	only	a	few
years	and	to	be	a	contemporary	of	Descartes	and	Fermat,	both	more	stable
men	than	himself.	His	most	novel	work,	the	creation	of	the	mathematical
theory	of	probability,	was	shared	with	Fermat,	who	could	easily	have	done
it	alone.	 In	geometry,	 for	which	he	 is	 famous	as	a	 sort	of	 infant	prodigy,



the	 creative	 idea	 was	 supplied	 by	 a	 man—Desargues—of	 much	 lesser
celebrity.

In	his	outlook	on	experimental	 science	Pascal	had	a	 far	clearer	vision
than	Descartes—from	a	modern	point	of	 view—of	 the	 scientific	method.
But	he	lacked	Descartes’	singleness	of	aim,	and	although	he	did	some	first-
rate	work,	allowed	himself	to	be	deflected	from	what	he	might	have	done
by	his	morbid	passion	for	religious	subtleties.

It	is	useless	to	speculate	on	what	Pascal	might	have	done.	Let	his	life	tell
what	 he	 actually	 did.	 Then,	 if	 we	 choose,	 we	 can	 sum	 him	 up	 as	 a
mathematician	by	saying	that	he	did	what	was	in	him	and	that	no	man	can
do	more.	His	life	is	a	running	commentary	on	two	of	the	stories	or	similes
in	 that	New	Testament	which	was	his	 constant	 companion	and	unfailing
comfort:	 the	 parable	 of	 the	 talents,	 and	 the	 remark	 about	 new	 wine
bursting	old	bottles	(or	skins).	If	ever	a	wonderfully	gifted	man	buried	his
talent,	 Pascal	 did;	 and	 if	 ever	 a	 medieval	 mind	 was	 cracked	 and	 burst
asunder	 by	 its	 attempt	 to	 hold	 the	 new	 wine	 of	 seventeenth-century
science,	 Pascal’s	 was.	 His	 great	 gifts	 were	 bestowed	 upon	 the	 wrong
person.

At	 the	 age	 of	 seven	Pascal	moved	 from	Clermont	with	 his	 father	 and
sisters	 to	Paris.	About	 this	 time	the	father	began	teaching	his	 son.	Pascal
was	an	extremely	precocious	child.	Both	he	and	his	sisters	appear	to	have
had	more	than	their	share	of	nature’s	gifts.	But	poor	Blaise	inherited	(or
acquired)	 a	 wretched	 physique	 along	 with	 his	 brilliant	 mind,	 and
Jacqueline,	the	more	gifted	of	his	sisters,	seems	to	have	been	of	the	same
stripe	as	her	brother,	for	she	too	fell	a	victim	to	morbid	religiosity.

At	 first	 everything	 went	 well	 enough.	 Pascal	 senior,	 astonished	 at	 the
ease	with	which	his	son	absorbed	the	stock	classical	education	of	the	day,
tried	 to	 hold	 the	 boy	 down	 to	 a	 reasonable	 pace	 to	 avoid	 injuring	 his
health.	Mathematics	was	taboo,	on	the	theory	that	the	young	genius	might
overstrain	 himself	 by	 using	 his	 head.	 His	 father	 was	 an	 excellent
drillmaster	 but	 a	 poor	 psychologist.	 His	 ban	 on	 mathematics	 naturally
excited	 the	 boy’s	 curiosity.	 One	 day	 when	 he	 was	 about	 twelve	 Pascal
demanded	to	know	what	geometry	was	about.	His	father	gave	him	a	clear
description.	This	set	Pascal	off	like	a	hare	after	his	true	vocation.	Contrary
to	his	own	opinion	in	later	life	he	had	been	called	by	God,	not	to	torment
the	Jesuits,	but	to	be	a	great	mathematician.	But	his	hearing	was	defective
at	the	time	and	he	got	his	orders	confused.



What	happened	when	Pascal	began	the	study	of	geometry	has	become
one	 of	 the	 legends	 of	 mathematical	 precocity.	 In	 passing	 it	 may	 be
remarked	that	infant	prodigies	in	mathematics	do	not	invariably	blow	up
as	they	are	sometimes	said	to	do.	Precocity	in	mathematics	has	often	been
the	first	flush	of	a	glorious	maturity,	in	spite	of	the	persistent	superstition
to	 the	 contrary.	 In	 Pascal’s	 case	 early	 mathematical	 genius	 was	 not
extinguished	as	he	grew	up	but	stifled	under	other	interests.	The	ability	to
do	first-class	mathematics	persisted,	as	will	be	seen	from	the	episode	of	the
cycloid,	 late	into	his	all	too	brief	life,	and	if	anything	is	to	be	blamed	for
his	 comparatively	 early	mathematical	 demise	 it	 is	 probably	 his	 stomach.
His	 first	 spectacular	 feat	was	 to	prove,	entirely	on	his	own	 initiative,	 and
without	a	hint	 from	any	book,	 that	 the	sum	of	 the	angles	of	a	 triangle	 is
equal	 to	 two	right	angles.	This	encouraged	him	 to	go	ahead	at	a	 terrific
pace.

Realizing	 that	 he	 had	 begotten	 a	 mathematician,	 Pascal	 senior	 wept
with	 joy	 and	 gave	 his	 son	 a	 copy	 of	 Euclid’s	 Elements.	 This	 was	 quickly
devoured,	 not	 as	 a	 task,	 but	 as	 play.	 The	 boy	 gave	 up	 his	 games	 to
geometrize.	 In	 connection	 with	 Pascal’s	 rapid	 mastery	 of	 Euclid,	 sister
Gilberte	permits	herself	an	overappreciative	fib.	It	 is	true	that	Pascal	had
found	out	and	proved	several	of	Euclid’s	propositions	 for	himself	before
he	 ever	 saw	 the	 book.	 But	 what	 Gilberte	 romances	 about	 her	 brilliant
young	brother	is	less	probable	than	a	throw	of	a	billion	aces	in	succession
with	 one	 die,	 for	 the	 reason	 that	 it	 is	 infinitely	 improbable.	 Gilberte
declared	that	her	brother	had	rediscovered	for	himself	the	first	thirty	two
propositions	of	Euclid,	and	that	he	had	found	them	in	the	same	order	as	that
in	which	Euclid	 sets	 them	forth.	The	 thirty	 second	proposition	 is	 indeed
the	 famous	 one	 about	 the	 sum	 of	 the	 angles	 of	 a	 triangle	 which	 Pascal
rediscovered.	Now,	there	may	be	only	one	way	of	doing	a	thing	right,	but	it
seems	more	likely	that	there	are	an	infinity	of	ways	of	doing	it	wrong.	We
know	 today	 that	 Euclid’s	 allegedly	 rigorous	 demonstrations,	 even	 in	 the
first	 four	 of	 his	 propositions,	 are	 no	 proofs	 at	 all.	 That	 Pascal	 faithfully
duplicated	all	of	Euclid’s	oversights	on	his	own	account	is	an	easy	story	to
tell	 but	 a	 hard	 one	 to	 believe.	 However,	 we	 can	 forgive	 Gilberte	 for
bragging.	Her	brother	was	worth	it.	At	the	age	of	fourteen	he	was	admitted
to	the	weekly	scientific	discussions,	conducted	by	Mersenne,	out	of	which
the	French	Academy	of	Sciences	developed.



While	 young	Pascal	was	 fast	making	a	geometer	of	himself,	old	Pascal
was	making	a	thorough	nuisance	of	himself	with	the	authorities	on	account
of	 his	 honesty	 and	 general	 uprightness.	 In	 particular	 he	 disagreed	 with
Cardinal	Richelieu	over	a	little	matter	of	imposing	taxes.	The	Cardinal	was
incensed;	the	Pascal	family	went	into	hiding	till	the	storm	blew	over.	It	is
said	 that	 the	 beautiful	 and	 talented	 Jacqueline	 rescued	 the	 family	 and
restored	 her	 father	 to	 the	 light	 of	 the	 Cardinal’s	 countenance	 by	 her
brilliant	 acting,	 incognito,	 in	 a	 play	 presented	 for	 Richelieu’s
entertainment.	On	inquiring	the	name	of	the	charming	young	artiste	who
had	captivated	his	clerical	fancy,	and	being	told	that	she	was	the	daughter
of	his	minor	enemy,	Richelieu	very	handsomely	forgave	the	whole	family
and	planted	the	father	in	a	political	job	at	Rouen.	From	what	is	known	of
that	wily	 old	 serpent,	Cardinal	Richelieu,	 this	 pleasing	 tale	 is	 probably	 a
fish	 story.	 Anyhow,	 the	 Pascals	 once	 more	 found	 a	 job	 and	 security	 at
Rouen.	There	 young	 Pascal	met	 the	 tragic	 dramatist	 Corneille,	 who	was
duly	 impressed	 with	 the	 boy’s	 genius.	 At	 the	 time	 Pascal	 was	 all
mathematician,	 so	 probably	 Corneille	 did	 not	 suspect	 that	 his	 young
friend	was	to	become	one	of	the	great	creators	of	French	prose.

All	 this	 time	Pascal	was	 studying	 incessantly.	Before	 the	age	of	 sixteen
(about	1639)I	he	had	proved	one	of	 the	most	beautiful	 theorems	 in	 the
whole	 range	 of	 geometry.	 Fortunately	 it	 can	 be	 described	 in	 terms
comprehensible	 to	anyone.	Sylvester,	 a	mathematician	of	 the	nineteenth
century	whom	we	shall	meet	later,	called	Pascal’s	great	theorem	a	sort	of
“cat’s	cradle.”	We	state	first	a	special	form	of	the	general	theorem	that	can
be	constructed	with	the	use	of	a	ruler	only.

Label	two	intersecting	straight	lines	l	and	l’	On	l	take	any	three	distinct
points	A,	B,	C,	and	on	 l	any	three	distinct	points	A’,	B’,	C’.	 Join	up	these
points	by	straight	lines,	crisscross,	as	follows:	A	and	B’,	A’	and	B,	B	and	C’,
B’	and	C,	C	and	A’,	C’	and	A.	The	two	lines	in	each	of	these	pairs	intersect
in	a	point.	We	thus	get	three	points.	The	special	case	of	Pascal’s	theorem
which	 we	 are	 now	 describing	 states	 that	 these	 three	 points	 lie	 on	 one
straight	line.



Before	 giving	 the	 general	 form	 of	 the	 theorem	 we	 mention	 another
result	 like	 the	 preceding.	 This	 is	 due	 to	 Desargues	 (1593-1662).	 If	 the
three	 straight	 lines	 joining	 corresponding	 vertices	 of	 two	 triangles	 XYZ
and	 xyz	 meet	 in	 a	 point,	 then	 the	 three	 intersections	 of	 pairs	 of
corresponding	 sides	 lie	 on	 one	 straight	 line.	 Thus,	 if	 the	 straight	 lines
joining	X	and	x,	Y	and	y,	Z	and	z	meet	in	a	point,	then	the	intersections	of
XY	and	xy,	YZ	and	yz,	ZX	and	zx	lie	in	one	straight	line.

In	 Chapter	 2	 we	 stated	 what	 a	 conic	 section	 is.	 Imagine	 any	 conic
section,	for	definiteness	say	an	ellipse.	On	it	mark	any	six	points,	A,	B,	C,
D,	E,	F,	and	join	them	up,	in	this	order,	by	straight	lines.	We	thus	have	a
six-sided	 figure	 inscribed	 in	 the	 conic	 section,	 in	which	AB	 and	DE,	BC
and	EF,	CD	and	FA	are	pairs	of	opposite	 sides.	The	 two	 lines	 in	each	of
these	three	pairs	intersect	in	a	point;	the	three	points	of	intersection	lie	on
one	 straight	 line	 (see	 figure	 in	 Chapter	 IS,	 page	 217).	 This	 is	 Pascal’s
theorem;	 the	 figure	 which	 it	 furnishes	 is	 what	 he	 called	 the	 “mystic
hexagram.”	He	probably	first	proved	it	true	for	a	circle	and	then	passed	by



projection	 to	 any	 conic	 section.	 Only	 a	 straightedge	 and	 a	 pair	 of
compasses	 are	 required	 if	 the	 reader	wishes	 to	 see	what	 the	 figure	 looks
like	for	a	circle.

There	are	several	amazing	things	about	this	wonderful	proposition,	not
the	least	of	which	is	that	it	was	discovered	and	proved	by	a	boy	of	sixteen.
Again,	in	his	Essai	pour	 les	Coniques	(Essay	on	Conics),	written	around	his
great	 theorem	 by	 this	 extraordinarily	 gifted	 boy,	 no	 fewer	 than	 400
propositions	 on	 conic	 sections,	 including	 the	 work	 of	 Apollonius	 and
others,	were	systematically	deduced	as	corollaries,	by	letting	pairs	of	the	six
points	 move	 into	 coincidence,	 so	 that	 a	 chord	 became	 a	 tangent,	 and
other	devices.	The	 full	Essai	 itself	was	never	published	 and	 is	 apparently
lost	irretrievably,	but	Leibniz	saw	and	inspected	a	copy	of	it.	Further,	the
kind	 of	 geometry	 which	 Pascal	 is	 doing	 here	 differs	 fundamentally	 from
that	of	the	Greeks;	it	is	not	metrical,	but	descriptive,	or	projective.	Magnitudes
of	lines	or	angles	cut	no	figure	in	either	the	statement	or	the	proof	of	the
theorem.	 This	 one	 theorem	 in	 itself	 suffices	 to	 abolish	 the	 stupid
definition	 of	 mathematics,	 inherited	 from	 Aristotle	 and	 still	 sometimes
reproduced	 in	 dictionaries,	 as	 the	 science	 of	 “quantity.”	 There	 are	 no
“quantities”	in	Pascal’s	geometry.

To	see	what	the	projectivity	of	the	theorem	means,	imagine	a	(circular)
cone	of	light	issuing	from	a	point	and	pass	a	flat	sheet	of	glass	through	the
cone	in	varying	positions.	The	boundary	curve	of	the	figure	in	which	the
sheet	cuts	the	cone	is	a	conic	section.	If	Pascal’s	“mystic	hexagram”	be	drawn
on	 the	 glass	 for	 any	 given	 position,	 and	 another	 flat	 sheet	 of	 glass	 be
passed	through	the	cone	so	that	the	shadow	of	the	hexagram	falls	on	it,	the
shadow	will	be	another	“mystic	hexagram”	with	its	three	points	of	intersection
of	 opposite	 pairs	 of	 sides	 lying	 on	 one	 straight	 line,	 the	 shadow	 of	 the
“three-point-line”	 in	 the	 original	 hexagram.	 That	 is,	 Pascal’s	 theorem	 is
invariant	 (unchanged)	under	 conical	 projection.	 The	metrical	 properties	 of
figures	 studied	 in	common	elementary	geometry	are	not	 invariant	 under
projection;	 for	example,	 the	 shadow	of	a	 right	angle	 is	not	a	 right	angle
for	all	positions	of	the	second	sheet.	It	is	obvious	that	this	kind	of	projective,
or	descriptive	geometry,	is	one	of	the	geometries	naturally	adapted	to	some
of	 the	 problems	 of	 perspective.	 The	 method	 of	 projection	 was	 used	 by
Pascal	 in	 proving	 his	 theorem,	 but	 had	 been	 applied	 previously	 by
Desargues	in	deducing	the	result	stated	above	concerning	two	triangles	“in
perspective.”	Pascal	gave	Desargues	full	credit	for	his	great	invention.



*		*		*

All	this	brilliance	was	purchased	at	a	price.	From	the	age	of	seventeen
to	the	end	of	his	life	at	thirty	nine,	Pascal	passed	but	few	days	without	pain.
Acute	dyspepsia	made	his	days	a	torment	and	chronic	insomnia	his	nights
half-waking	nightmares.	Yet	he	worked	incessantly.	At	the	age	of	eighteen
he	 invented	 and	 made	 the	 first	 calculating	 machine	 in	 history—the
ancestor	 of	 all	 the	 arithmetical	 machines	 that	 have	 displaced	 armies	 of
clerks	from	their	jobs	in	our	own	generation.	We	shall	see	farther	on	what
became	of	this	 ingenious	device.	Five	years	later,	 in	1646,	Pascal	suffered
his	 first	 “conversion.”	 It	did	not	 take	deeply,	possibly	because	Pascal	was
only	 twenty	 three	 and	 still	 absorbed	 in	his	mathematics.	Up	 to	 this	 time
the	 family	had	been	decently	 enough	devout;	now	 they	all	 seem	 to	have
gone	mildly	insane.

It	 is	 difficult	 for	 a	 modern	 to	 recreate	 the	 intense	 religious	 passions
which	 inflamed	 the	 seventeenth	century,	disrupting	 families	 and	hurling
professedly	Christian	countries	and	sects	at	one	another’s	throats.	Among
the	would-be	 religious	 reformers	of	 the	 age	was	Cornelius	 Jansen	 (1585-
1638),	 a	 flamboyant	Dutchman	who	became	bishop	of	 Ypres.	A	 cardinal
point	 of	 his	 dogma	 was	 the	 necessity	 for	 “conversion”	 as	 a	 means	 to
“grace,”	 somewhat	 in	 the	 manner	 of	 certain	 flourishing	 sects	 today.
Salvation,	however,	at	least	to	an	unsympathetic	eye,	appears	to	have	been
the	 lesser	 of	 Jansen’s	 ambitions.	 God,	 he	 was	 convinced,	 had	 especially
elected	him	to	blast	 the	 Jesuits	 in	 this	 life	and	toughen	them	for	eternal
damnation	in	the	next.	This	was	his	call,	his	mission.	His	creed	was	neither
Catholicism	nor	Protestantism,	although	it	leaned	rather	toward	the	latter.
Its	moving	spirit	was,	first,	last	and	all	the	time,	a	rabid	hatred	of	those	who
disputed	 its	dogmatic	bigotries.	The	Pascal	 family	now	(1646)	ardently—
but	not	too	ardently	at	 first—embraced	this	unlovely	creed	of	Jansenism.
Thus	Pascal,	at	the	early	age	of	twenty	three,	began	to	die	off	at	the	top.	In
the	 same	 year	 his	 whole	 digestive	 tract	 went	 bad	 and	 he	 suffered	 a
temporary	paralysis.	But	he	was	not	yet	dead	intellectually.

His	 scientific	 greatness	 flared	 up	 again	 in	 1648	 in	 an	 entirely	 new
direction.	Carrying	on	the	work	of	Torricelli	(1608-1647)	on	atmospheric
pressure,	Pascal	surpassed	him	and	demonstrated	that	he	understood	the
scientific	method	which	Galileo,	the	teacher	of	Torricelli,	had	shown	the
world.	 By	 experiments	 with	 the	 barometer,	 which	 he	 suggested,	 Pascal



proved	 the	 familiar	 facts	 now	 known	 to	 every	 beginner	 in	 physics
regarding	 the	 pressure	 of	 the	 atmosphere.	 Pascal’s	 sister	 Gilberte	 had
married	 a	 Mr.	 Périer.	 At	 Pascal’s	 suggestion,	 Périer	 performed	 the
experiment	of	carrying	a	barometer	up	the	Puy	de	Dôme	in	Auvergne	and
noting	 the	 fall	 of	 the	 column	 of	 mercury	 as	 the	 atmospheric	 pressure
decreased.	Later	Pascal,	when	he	moved	to	Paris	with	his	sister	Jacqueline,
repeated	the	experiment	on	his	own	account.

Shortly	 after	 Pascal	 and	 Jacqueline	 had	 returned	 to	 Paris	 they	 were
joined	 by	 their	 father,	 now	 fully	 restored	 to	 favor	 as	 a	 state	 councillor.
Presently	 the	 family	received	a	somewhat	 formal	visit	 from	Descartes.	He
and	Pascal	 talked	over	many	 things,	 including	 the	barometer.	There	was
little	 love	 lost	 between	 the	 two.	 For	 one	 thing,	 Descartes	 had	 openly
refused	to	believe	the	famous	Essai	pour	les	coniques	had	been	written	by	a
boy	of	 sixteen.	For	another,	Descartes	 suspected	Pascal	of	having	 filched
the	idea	of	the	barometric	experiments	from	himself,	as	he	had	discussed
the	possibilities	in	letters	to	Mersenne.	Pascal,	as	has	been	mentioned,	had
been	 attending	 the	 weekly	 meetings	 at	 Father	 Mersenne’s	 since	 he	 was
fourteen.	A	third	ground	for	dislike	on	both	sides	was	furnished	by	their
religious	antipathies.	Descartes,	having	received	nothing	but	kindness	all
his	life	from	the	Jesuits,	loved	them;	Pascal,	following	the	devoted	Jansen,
hated	 a	 Jesuit	 worse	 than	 the	 devil	 is	 alleged	 to	 hate	 holy	 water.	 And
finally,	 according	 to	 the	 candid	 Jacqueline,	 both	 her	 brother	 and
Descartes	were	intensely	jealous,	each	of	the	other.	The	visit	was	rather	a
frigid	success.

The	good	Descartes	however	did	give	his	young	friend	some	excellent
advice	in	a	truly	Christian	spirit.	He	told	Pascal	to	follow	his	own	example
and	 lie	 in	 bed	 every	 day	 till	 eleven.	 For	 poor	 Pascal’s	 awful	 stomach	 he
prescribed	 a	diet	 of	nothing	but	 beef	 tea.	But	Pascal	 ignored	 the	 kindly
meant	 advice,	 possibly	 because	 it	 came	 from	 Descartes.	 Among	 other
things	which	Pascal	totally	lacked	was	a	sense	of	humor.

Jacqueline	now	began	to	drag	her	genius	of	a	brother	down—or	up;	it
all	depends	upon	the	point	of	view.	In	1648,	at	the	impressionable	age	of
twenty	 three,	 Jacqueline	declared	her	 intention	of	moving	 to	Port	Royal,
near	Paris,	the	main	hangout	of	the	Jansenists	in	France,	to	become	a	nun.
Her	 father	 sat	 down	 heavily	 on	 the	 project,	 and	 the	 devoted	 Jacqueline
concentrated	her	thwarted	efforts	on	her	erring	brother.	She	suspected	he
was	 not	 yet	 so	 thoroughly	 converted	 as	 he	 might	 have	 been,	 and



apparently	 she	 was	 right.	 The	 family	 now	 returned	 to	 Clermont	 for	 two
years.

During	 these	 two	 swift	 years	Pascal	 seems	 to	have	become	almost	half
human,	 in	 spite	 of	 sister	 Jacqueline’s	 fluttering	 admonitions	 that	 he
surrender	 himself	 utterly	 to	 the	 Lord.	 Even	 the	 recalcitrant	 stomach
submitted	to	rational	discipline	for	a	few	blessed	months.

It	 is	 said	 by	 some	 and	 hotly	 denied	 by	 others	 that	 Pascal	 during	 this
sane	interlude	and	later	for	a	few	years	discovered	the	predestined	uses	of
wine	 and	women.	He	did	not	 sing.	But	 these	 rumors	of	 a	basely	human
humanity	may,	after	all,	be	nothing	more	than	rumors.	For	after	his	death
Pascal	 quickly	 passed	 into	 the	Christian	hagiocracy,	 and	 any	 attempts	 to
get	 at	 the	 facts	 of	 his	 life	 as	 a	 human	 being	 were	 quietly	 but	 rigidly
suppressed	 by	 rival	 factions,	 one	 of	 which	 strove	 to	 prove	 that	 he	 was	 a
devout	 zealot,	 the	 other,	 a	 skeptical	 atheist,	 but	 both	 of	 which	 declared
that	Pascal	was	a	saint	not	of	this	earth.

During	these	adventurous	years	the	morbidly	holy	Jacqueline	continued
to	 work	 on	 her	 frail	 brother.	 By	 a	 beautiful	 freak	 of	 irony	 Pascal	 was
presently	to	be	converted—for	good,	this	time—and	it	was	to	be	his	lot	to
turn	the	tables	on	his	too	pious	sister	and	drive	her	into	the	nunnery	which
now,	perhaps,	seemed	less	desirable.	This,	of	course,	 is	not	the	orthodox
interpretation	 of	 what	 happened;	 but	 to	 anyone	 other	 than	 a	 blind
partisan	 of	 one	 sect	 or	 the	 other—Christian	 or	 Atheist—it	 is	 a	 more
rational	 account	 of	 the	 unhealthy	 relationship	 between	 Pascal	 and	 his
unmarried	sister	than	that	which	is	sanctioned	by	tradition.

Any	modern	reader	of	the	Pensées	must	be	struck	by	a	certain	something
or	another	which	either	completely	escaped	our	more	reticent	ancestors
or	 was	 ignored	 by	 them	 in	 their	 wiser	 charity.	 The	 letters,	 too,	 reveal	 a
great	deal	which	should	have	been	decently	buried.	Pascal’s	ravings	in	the
Pensées	about	“lust”	give	him	away	completely,	as	do	also	the	well-attested
facts	 of	 his	 unnatural	 frenzies	 at	 the	 sight	 of	 his	married	 sister	Gilberte
naturally	caressing	her	children.

Modern	psychologists,	no	less	than	the	ancients	with	ordinary	common
sense,	 have	 frequently	 remarked	 the	 high	 correlation	 between	 sexual
repression	and	morbid	religious	fervor.	Pascal	suffered	from	both,	and	his
immortal	Pensées	 is	a	brilliant	if	occasionally	incoherent	testimonial	to	his
purely	 physiological	 eccentricities.	 If	 only	 the	 man	 could	 have	 been
human	enough	 to	 let	himself	 go	when	his	whole	nature	 told	him	 to	 cut



loose,	 he	 might	 have	 lived	 out	 everything	 that	 was	 in	 him,	 instead	 of
smothering	 the	 better	 half	 of	 it	 under	 a	mass	 of	meaningless	mysticism
and	platitudinous	observations	on	the	misery	and	dignity	of	man.

Always	shifting	about	restlessly	the	family	returned	to	Paris	in	1650.	The
next	year	the	father	died.	Pascal	seized	the	occasion	to	write	Gilberte	and
her	husband	a	 lengthy	sermon	on	death	 in	general.	This	 letter	has	been
much	 admired.	We	 need	 not	 reproduce	 any	 of	 it	 here;	 the	 reader	 who
wishes	to	form	his	own	opinion	of	it	can	easily	locate	it.	Why	this	priggish
effusion	of	pietistic	and	heartless	moralizing	on	the	death	of	a	presumably
beloved	parent	should	ever	have	excited	admiration	instead	of	contempt
for	its	author	is,	like	the	love	of	God	which	the	letter	in	part	dwells	upon
ad	nauseam,	a	mystery	that	passeth	all	understanding.	However,	there	is	no
arguing	 about	 tastes,	 and	 those	 who	 like	 the	 sort	 of	 thing	 that	 Pascal’s
much-quoted	letter	is,	may	be	left	to	their	undisturbed	enjoyment	of	what
is,	 after	 all,	 one	 of	 the	 masterpieces	 of	 self-conscious	 self-revelation	 in
French	literature.

A	 more	 practical	 result	 of	 Pascal	 senior’s	 death	 was	 the	 opportunity
which	 it	 offered	 Pascal,	 as	 administrator	 of	 the	 estate,	 of	 returning	 to
normal	intercourse	with	his	fellow	men.	Encouraged	by	her	brother,	sister
Jacqueline	now	 joined	Port	Royal,	her	 father	being	no	 longer	capable	of
objecting.	Her	sweet	concern	over	her	brother’s	soul	was	now	spiced	by	a
quite	human	quarrel	over	the	division	of	the	estate.

A	 letter	of	 the	preceding	 year	 (1650)	 reveals	 another	 facet	of	Pascal’s
reverent	 character,	 or	 possibly	 his	 envy	 of	 Descartes.	 Dazzled	 by	 the
transcendent	brilliance	of	the	Swedish	Christine,	Pascal	humbly	begged	to
lay	 his	 calculating	 machine	 at	 the	 feet	 of	 “the	 greatest	 princess	 in	 the
world,”	 who,	 he	 declares	 in	 liquid	 phrases	 dripping	 strained	 honey	 and
melted	butter,	is	as	eminent	intellectually	as	she	is	socially.	What	Christine
did	with	the	machine	is	not	known.	She	did	not	invite	Pascal	to	replace	the
Descartes	whom	she	had	done	in.

At	 last,	on	November	23,	1654,	Pascal	was	really	converted.	According
to	 some	accounts	he	had	been	 living	a	 fast	 life	 for	 three	 years.	The	best
authorities	seem	to	agree	that	there	is	not	much	in	this	tradition	and	that
his	 life	 was	 not	 so	 fast	 after	 all.	 He	 had	 merely	 been	 doing	 his	 poor
suffering	 best	 to	 live	 like	 a	 normal	 human	 being	 and	 to	 get	 something
more	than	mathematics	and	piety	out	of	life.	On	the	day	of	his	conversion
he	 was	 driving	 a	 four-in-hand	 when	 the	 horses	 bolted.	 The	 leaders



plunged	over	 the	parapet	of	 the	bridge	 at	Neuilly,	 but	 the	 traces	broke,
and	Pascal	remained	on	the	road.

To	 a	man	 of	 Pascal’s	 mystical	 temperament	 this	 lucky	 escape	 from	 a
violent	death	was	a	direct	warning	from	Heaven	to	pull	himself	up	sharply
on	 the	 brink	 of	 the	 moral	 precipice	 over	 which	 he,	 the	 victim	 of	 his
morbid	 self-analysis,	 imagined	 he	 was	 about	 to	 plunge.	He	 took	 a	 small
piece	of	parchment,	 inscribed	on	 it	 some	obscure	 sentiments	of	mystical
devotion,	and	thenceforth	wore	it	next	to	his	heart	as	an	amulet	to	protect
him	from	temptation	and	remind	him	of	the	goodness	of	God	which	had
snatched	him,	a	miserable	sinner,	from	the	very	mouth	of	hell.	Only	once
thereafter	did	he	fall	 from	grace	(in	his	own	pitiable	opinion),	although
all	 the	 rest	 of	 his	 life	 he	 was	 haunted	 by	 hallucinations	 of	 a	 precipice
before	his	feet.

Jacqueline,	now	a	postulant	for	the	nunnery	at	Port	Royal,	came	to	her
brother’s	 aid.	 Partly	 on	 his	 own	 account,	 partly	 because	 of	 his	 sister’s
persuasive	pleadings,	Pascal	turned	his	back	on	the	world	and	took	up	his
residence	 at	Port	Royal,	 to	bury	his	 talent	 thenceforth	 in	 contemplation
on	“the	greatness	and	misery	of	man.”	This	was	in	1654,	when	Pascal	was
thirty	 one.	 Before	 forever	 quitting	 things	 of	 the	 flesh	 and	 the	 mind,
however,	 he	 had	 completed	 his	 most	 important	 contribution	 to
mathematics,	 the	joint	creation,	with	Fermat,	of	the	mathematical	theory
of	 probability.	 Not	 to	 interrupt	 the	 story	 of	 his	 life	 we	 shall	 defer	 an
account	of	this	for	the	moment.

His	life	at	Port	Royal	was	at	least	sanitary	if	not	exactly	as	sane	as	might
have	been	wished,	and	the	quiet,	orderly	routine	benefited	his	precarious
health	 considerably.	 It	 was	 while	 at	 Port	 Royal	 that	 he	 composed	 the
famous	Provincial	Letters,	 which	were	 inspired	by	Pascal’s	 desire	 to	 aid	 in
acquitting	Arnauld,	 the	 leading	 light	 of	 the	 institution,	 of	 the	 charge	of
heresy.	These	 famous	 letters	(there	were	eighteen,	 the	 first	of	which	was
printed	on	 January	23,	1656)	are	masterpieces	of	 controversial	 skill,	 and
are	said	to	have	dealt	the	Jesuits	a	blow	from	which	their	Society	has	never
fully	 recovered.	 However,	 as	 a	 commonplace	 of	 objective	 observation
which	anyone	with	eyes	 in	his	head	can	verify	 for	himself,	 the	Society	of
Jesus	 still	 flourishes;	 so	 it	 may	 be	 reasonably	 doubted	 whether	 the
Provincial	 Letters	 had	 in	 them	 the	 deadly	 potency	 ascribed	 to	 them	 by
sympathetic	critics.



In	 spite	 of	 his	 intense	 preoccupation	 with	 matters	 pertaining	 to	 his
salvation	and	the	misery	of	man,	Pascal	was	still	capable	of	doing	excellent
mathematics,	although	he	regarded	the	pursuit	of	all	science	as	a	vanity	to
be	eschewed	for	its	derogatory	effects	on	the	soul.	Nevertheless	he	did	fall
from	 grace	 once	 more,	 but	 only	 once.	 The	 occasion	 was	 the	 famous
episode	of	the	cycloid.

This	beautifully	proportioned	curve	(it	is	traced	out	by	the	motion	of	a
fixed	point	on	 the	circumference	of	a	wheel	rolling	along	a	 straight	 line
on	 a	 flat	 pavement)	 seems	 to	 have	 turned	 up	 first	 in	 mathematical
literature	in	1501,	when	Charles	Bouvelles	described	it	in	connection	with
the	 squaring	 of	 the	 circle.	 Galileo	 and	 his	 pupil	 Viviani	 studied	 it	 and
solved	the	problem	of	constructing	a	tangent	to	the	curve	at	any	point	(a
problem	which	Fermat	solved	at	once	when	it	was	proposed	to	him),	and
Galileo	suggested	its	use	as	an	arch	for	bridges.	Since	reinforced	concrete
has	 become	 common,	 cycloidal	 arches	 are	 frequently	 seen	 on	 highway
viaducts.	For	mechanical	reasons	(unknown	to	Galileo)	the	cycloidal	arch
is	 superior	 to	 any	 other	 in	 construction.	 Among	 the	 famous	 men	 who
investigated	 the	 cycloid	 was	 Sir	 Christopher	 Wren,	 the	 architect	 of	 St.
Paul’s	Cathedral,	who	determined	the	length	of	any	arc	of	the	curve	and
its	center	of	gravity,	while	Huygens,	for	mechanical	reasons,	introduced	it
into	the	construction	of	pendulum	clocks.	One	of	the	most	beautiful	of	all
the	discoveries	of	Huygens	(1629-1695)	was	made	in	connection	with	the
cycloid.	He	proved	that	it	is	the	tautochrone,	that	is,	the	curve	(when	turned
upside	down	like	a	bowl)	down	which	beads	placed	anywhere	on	it	will	all
slide	to	the	lowest	point	under	the	influence	of	gravity	in	the	same	time.	On
account	 of	 its	 singular	 beauty,	 elegant	 properties,	 and	 the	 endless	 rows
which	it	stirred	up	between	quarrelsome	mathematicians	challenging	one
another	to	solve	this	or	that	problem	in	connection	with	it,	the	cycloid	has



been	called	“the	Helen	of	Geometry,”	after	the	Graeco-Trojan	lady	whose
mere	face	is	said	to	have	“launched	a	thousand	ships.”

Among	 other	 miseries	 which	 afflicted	 the	 wretched	 Pascal	 were
persistent	 insomnia	 and	 bad	 teeth—in	 a	 day	when	 such	dentistry	 as	 was
practised	was	done	by	the	barber	with	a	strong	pair	of	forceps	and	brute
force.	Lying	awake	one	night	(1658)	 in	 the	 tortures	of	 toothache,	Pascal
began	 to	 think	 furiously	 about	 the	 cycloid	 to	 take	 his	 mind	 off	 the
excruciating	pain.	To	his	surprise	he	noticed	presently	that	the	pain	had
stopped.	Interpreting	this	as	a	signal	from	Heaven	that	he	was	not	sinning
in	 thinking	about	 the	 cycloid	 rather	 than	his	 soul,	Pascal	 let	himself	 go.
For	 eight	 days	 he	 gave	 himself	 up	 to	 the	 geometry	 of	 the	 cycloid	 and
succeeded	 in	 solving	many	 of	 the	main	 problems	 in	 connection	 with	 it.
Some	 of	 the	 things	 he	 discovered	 were	 issued	 under	 the	 pseudonym	 of
Amos	Dettonville	as	challenges	to	the	French	and	English	mathematicians.
In	 his	 treatment	 of	 his	 rivals	 in	 this	 matter	 Pascal	 was	 not	 always	 as
scrupulous	as	he	might	have	been.	 It	was	his	 last	 flicker	of	mathematical
activity	and	his	only	contribution	to	science	after	his	entry	to	Port	Royal.

The	same	year	(1658)	he	fell	more	seriously	ill	than	he	had	yet	been	in
all	his	tormented	life.	Racking	and	incessant	headaches	now	deprived	him
of	 all	 but	 the	most	 fragmentary	 snatches	 of	 sleep.	 He	 suffered	 for	 four
years,	living	ever	more	ascetically.	In	June,	1662,	he	gave	up	his	own	house
to	a	poor	family	suffering	from	smallpox,	as	an	act	of	self-denial,	and	went
to	live	with	his	married	sister.	On	August	19,	1662,	his	tortured	existence
came	to	an	end	in	convulsions.	He	died	at	the	age	of	thirty	nine.

The	 post	 mortem	 revealed	 what	 had	 been	 expected	 regarding	 the
stomach	and	vital	organs;	it	also	disclosed	a	serious	lesion	of	the	brain.	Yet
in	spite	of	all	this	Pascal	had	done	great	work	in	mathematics	and	science
and	had	 left	a	name	 in	 literature	 that	 is	 still	 respected	after	nearly	 three
centuries.

*		*		*

The	beautiful	things	Pascal	did	in	geometry,	with	the	possible	exception
of	the	“mystic	hexagram,”	would	all	have	been	done	by	other	men	had	he
not	 done	 them.	 This	 holds	 in	 particular	 for	 the	 investigations	 on	 the
cycloid.	 After	 the	 invention	 of	 the	 calculus	 all	 such	 things	 became
incomparably	 easier	 than	 they	had	been	before	 and	 in	 time	passed	 into



the	 textbooks	 as	 mere	 exercises	 for	 young	 students.	 But	 in	 the	 joint
creation	 with	 Fermat	 of	 the	mathematical	 theory	 of	 probabilities	 Pascal
made	a	new	world.	It	seems	quite	likely	that	Pascal	will	be	remembered	for
his	part	in	this	great	and	ever	increasingly	more	important	invention	long
after	his	fame	as	a	writer	has	been	forgotten.	The	Pensées	and	the	Provincial
Letters,	apart	from	their	literary	excellences,	appeal	principally	to	a	type	of
mind	 that	 is	 rapidly	 becoming	 extinct.	 The	 arguments	 for	 or	 against	 a
particular	 point	 strike	 a	modern	mind	 as	 either	 trivial	 or	 unconvincing,
and	the	very	questions	to	which	Pascal	addressed	himself	with	such	fervent
zeal	now	seem	strangely	ridiculous.	If	the	problems	which	he	discussed	on
the	greatness	 and	misery	 of	man	 are	 indeed	 as	profoundly	 important	 as
enthusiasts	have	claimed,	and	not	mere	pseudo-problems	mystically	stated
and	incapable	of	solution,	it	seems	unlikely	that	they	will	ever	be	solved	by
platitudinous	moralizing.	 But	 in	 his	 theory	 of	 probabilities	 Pascal	 stated
and	solved	a	genuine	problem,	that	of	bringing	the	superficial	lawlessness
of	pure	 chance	under	 the	domination	of	 law,	order,	 and	 regularity,	 and
today	 this	 subtle	 theory	 appears	 to	 be	 at	 the	 very	 roots	 of	 human
knowledge	 no	 less	 than	 at	 the	 foundation	 of	 physical	 science.	 Its
ramifications	are	everywhere,	from	the	quantum	theory	to	epistemology.

The	 true	 founders	 of	 the	 mathematical	 theory	 of	 probability	 were
Pascal	 and	 Fermat,	 who	 developed	 the	 fundamental	 principles	 of	 the
subject	 in	an	 intensely	 interesting	correspondence	during	 the	year	1654.
This	 correspondence	 is	 now	 readily	 available	 in	 the	 Oeuvres	 de	 Fermat
(edited	by	P.	Tannery	and	C.	Henry,	 vol.	2,	1904).	The	 letters	 show	 that
Pascal	and	Fermat	participated	equally	in	the	creation	of	the	theory.	Their
correct	 solutions	 of	 problems	 differ	 in	 details	 but	 not	 in	 fundamental
principles.	 Because	 of	 the	 tedious	 enumeration	 of	 possible	 cases	 in	 a
certain	problem	on	“points”	Pascal	 tried	 to	 take	a	 short	cut	and	fell	 into
error.	 Fermat	pointed	out	 the	mistake,	which	Pascal	 acknowledged.	The
first	 letter	 of	 the	 series	 has	 been	 lost	 but	 the	 occasion	 of	 the
correspondence	is	well	attested.

The	initial	problem	which	started	the	whole	vast	theory	was	proposed	to
Pascal	by	 the	Chevalier	de	Mere,	more	or	 less	of	a	professional	gambler.
The	 problem	 was	 that	 of	 “points”:	 each	 of	 two	 players	 (at	 dice,	 say)
requires	a	certain	number	of	points	to	win	the	game;	if	they	quit	the	game
before	it	is	finished,	how	should	the	stakes	be	divided	between	them?	The
score	(number	of	points)	of	each	player	 is	given	at	 the	 time	of	quitting,



and	 the	 problem	 amounts	 to	 determining	 the	 probability	 which	 each
player	has	at	a	given	stage	of	the	game	of	winning	the	game.	It	is	assumed
that	the	players	have	equal	chances	of	winning	a	single	point.	The	solution
demands	 nothing	 more	 than	 sound	 common	 sense;	 the	 mathematics	 of
probability	enters	when	we	seek	a	method	for	enumerating	possible	cases
without	 actually	 counting	 them	 off.	 For	 example,	 how	 many	 possible
different	 hands	 each	 consisting	 of	 three	 deuces	 and	 three	 other	 cards,
none	a	deuce,	are	there	in	a	common	deck	of	fifty	two?	Or,	in	how	many
ways	can	a	throw	of	three	aces,	five	twos,	and	two	sixes	occur	when	ten	dice
are	 tossed?	A	 third	 trifle	 of	 the	 same	 sort:	 how	many	 different	 bracelets
can	be	made	by	stringing	ten	pearls,	seven	rubies,	six	emeralds,	and	eight
sapphires,	if	stones	of	one	kind	are	considered	as	undistinguishable?

This	detail	of	 finding	the	number	of	ways	 in	which	a	prescribed	thing
can	be	done	or	in	which	a	completely	specified	event	can	happen,	belongs
to	 what	 is	 called	 combinatorial	 analysis.	 Its	 application	 to	 probability	 is
obvious.	 Suppose,	 for	 example,	 we	 wish	 to	 know	 the	 probability	 of
throwing	two	aces	and	one	deuce	in	a	single	throw	with	three	dice.	If	we
know	the	total	number	of	ways	(6	×	6	×	6	or	216)	in	which	the	three	dice
can	fall,	and	also	the	number	of	ways	(say	n,	which	the	reader	may	find	for
himself)	 in	 which	 two	 aces	 and	 one	 deuce	 can	 fall,	 the	 required
probability	is	n/216.	(Here	n	is	three,	so	the	probability	is	3/216.)	Antoine
Gombaud,	 Chevalier	 de	 Méré,	 who	 instigated	 all	 this,	 is	 described	 by
Pascal	 as	 a	 man	 having	 a	 very	 good	 mind	 but	 no	 mathematics,	 while
Leibniz,	who	seems	to	have	disliked	the	gay	Chevalier,	dubs	him	a	man	of
penetrating	 mind,	 a	 philosopher,	 and	 a	 gambler—quite	 an	 unusual
combination.

In	connection	with	problems	in	combinatorial	analysis	and	probability
Pascal	 made	 extensive	 use	 of	 the	 arithmetical	 triangle	 in	 which	 the
numbers	 in	 any	 row	 after	 the	 first	 two	 are	 obtained	 from	 those	 in	 the
preceding	row	by	copying	down	the	terminal	1’s	and	adding	together	the



successive	pairs	of	numbers	from	left	to	right	to	give	the	new	row;	thus	5	=
1	+	4,	10	=	4	+	6,	10	=	6	+	4,	5	=	4	+	1.	The	numbers	in	the	nth	row,	after	the
1,	 are	 the	number	of	different	 selections	of	one	 thing,	 two	 things,	 three
things,	 .	 .	 .	 that	can	be	chosen	from	n	distinct	 things.	For	example,	10	 is
the	 number	 of	 different	 pairs	 of	 things	 that	 can	 be	 selected	 from	 five
distinct	things.	The	numbers	in	the	nth	row	are	also	the	coefficients	in	the
expansion	of	(1	+	x)n	by	the	binomial	theorem,	thus	for	n	=	4,	(1	+	x)4	=	1
+	 4x	 +	 6x2	 +	 4x3	 +	 x4.	 The	 triangle	 has	 numerous	 other	 interesting
properties.	Although	 it	was	known	before	 the	 time	of	Pascal,	 it	 is	usually
named	 after	 him	 on	 account	 of	 the	 ingenious	 use	 he	 made	 of	 it	 in
probabilities.

The	theory	which	originated	in	a	gamblers’	dispute	is	now	at	the	base	of
many	 enterprises	 which	 we	 consider	 more	 important	 than	 gambling,
including	 all	 kinds	 of	 insurance,	 mathematical	 statistics	 and	 their
application	 to	 biology	 and	 educational	 measurements,	 and	 much	 of
modern	theoretical	physics.	We	no	longer	think	of	an	electron	being	“at”	a
given	place	at	a	given	instant,	but	we	do	calculate	its	probability	of	being
in	 a	 given	 region.	 A	 little	 reflection	 will	 show	 that	 even	 the	 simplest
measurements	 we	 make	 (when	 we	 attempt	 to	 measure	 anything
accurately)	are	statistical	in	character.

The	 humble	 origin	 of	 this	 extremely	 useful	 mathematical	 theory	 is
typical	of	many:	some	apparently	trivial	problem,	first	solved	perhaps	out
of	idle	curiosity,	leads	to	profound	generalizations	which,	as	in	the	case	of
the	new	statistical	theory	of	the	atom	in	the	quantum	theory,	may	cause	us
to	 revise	 our	 whole	 conception	 of	 the	 physical	 universe	 or,	 as	 has
happened	with	 the	application	of	 statistical	methods	 to	 intelligence	 tests
and	the	investigation	of	heredity,	may	induce	us	to	modify	our	traditional
beliefs	 regarding	 the	 “greatness	 and	misery	 of	man.”	Neither	 Pascal	 nor
Fermat	of	course	foresaw	what	was	to	issue	from	their	disreputable	child.
The	whole	 fabric	of	mathematics	 is	 so	closely	 interwoven	 that	we	cannot
unravel	and	eliminate	any	particular	thread	which	happens	to	offend	our
individual	taste	without	danger	of	destroying	the	whole	pattern.

Pascal	 however	 did	 make	 one	 application	 of	 probabilities	 (in	 the
Pensées)	 which	 for	 his	 time	 was	 strictly	 practical.	 This	 was	 his	 famous
“wager.”	The	“expectation”	in	a	gamble	is	the	value	of	the	prize	multiplied
by	 the	probability	of	winning	 the	prize.	According	 to	Pascal	 the	 value	of
eternal	happiness	 is	 infinite.	He	 reasoned	 that	 even	 if	 the	probability	 of



winning	eternal	happiness	by	leading	a	religious	life	is	very	small	indeed,
nevertheless,	since	the	expectation	is	infinite	(any	finite	fraction	of	infinity
is	itself	infinite)	it	will	pay	anyone	to	lead	such	a	life.	Anyhow,	he	took	his
own	medicine.	But	just	as	if	to	show	that	he	had	not	swallowed	the	bottle
too,	he	jots	down	in	another	place	in	the	Pensées	this	thoroughly	skeptical
query,	 “Is	 probability	 probable?”	 “It	 is	 annoying,”	 as	 he	 says	 in	 another
place,	“to	dwell	upon	such	trifles;	but	there	is	a	time	for	trifling.”	Pascal’s
difficulty	was	that	he	did	not	always	see	clearly	when	he	was	trifling,	as	in
his	wager	against	God,	or	when,	as	in	the	clearing	up	of	the	Chevalier	de
Méré’s	gambling	difficulties	for	him,	he	was	being	profound.

I.	Authorities	differ	on	Pascal’s	age	when	this	work	was	done,	the	estimate	varying	from	fifteen	to
seventeen.	The	1819	edition	of	Pascal’s	works	contains	a	brief	résumé	of	the	statements	of	certain
propositions	on	conics,	but	this	is	not	the	completed	essay	which	Leibniz	saw.



CHAPTER	SIX

On	the	Seashore

NEWTON

The	 method	 of	 Fluxions	 [the	 calculus]	 is	 the	 general	 key	 by	 help	 whereof	 the
modern	mathematicians	unlock	the	secrets	of	Geometry,	and	consequently	of	Nature.
—BISHOP	BERKELEY

I	do	not	frame	hypotheses.—ISAAC	NEWTON

“I	DO	NOT	KNOW	what	 I	may	appear	 to	 the	world;	but	 to	myself	 I	 seem	to
have	been	only	like	a	boy	playing	on	the	seashore,	and	diverting	myself	in
now	and	then	finding	a	smoother	pebble	or	a	prettier	shell	than	ordinary,
whilst	the	great	ocean	of	truth	lay	all	undiscovered	before	me.”

Such	was	Isaac	Newton’s	estimate	of	himself	toward	the	close	of	his	long
life.	 Yet	 his	 successors	 capable	 of	 appreciating	 his	 work	 almost	 without
exception	 have	 pointed	 to	 Newton	 as	 the	 supreme	 intellect	 that	 the
human	 race	 has	 produced—“he	 who	 in	 genius	 surpassed	 the	 human
kind.”

Isaac	Newton,	born	on	Christmas	Day	(“old	style”	of	dating),	1642,	the
year	of	Galileo’s	death,	came	of	a	family	of	small	but	independent	farmers,
living	in	the	manor	house	of	the	hamlet	of	Woolsthorpe,	about	eight	miles
south	 of	 Grantham	 in	 the	 county	 of	 Lincoln,	 England.	 His	 father,	 also
named	 Isaac,	 died	 at	 the	 age	of	 thirty	 seven	before	 the	birth	of	his	 son.
Newton	was	a	premature	child.	At	birth	he	was	so	frail	and	puny	that	two
women	 who	 had	 gone	 to	 a	 neighbor’s	 to	 get	 “a	 tonic”	 for	 the	 infant
expected	 to	 find	 him	 dead	 on	 their	 return.	 His	 mother	 said	 he	 was	 so
undersized	at	birth	that	a	quart	mug	could	easily	have	contained	all	there
was	of	him.

Not	 enough	 of	 Newton’s	 ancestry	 is	 known	 to	 interest	 students	 of
heredity.	 His	 father	 was	 described	 by	 neighbors	 as	 “a	 wild,	 extravagant,
weak	man”;	his	mother,	Hannah	Ayscough,	was	thrifty,	industrious,	and	a



capable	 manageress.	 After	 her	 husband’s	 death	 Mrs.	 Newton	 was
recommended	 as	 a	 prospective	 wife	 to	 an	 old	 bachelor	 as	 “an
extraordinary	 good	 woman.”	 The	 cautious	 bachelor,	 the	 Reverend
Barnabas	Smith,	of	the	neighboring	parish	of	North	Witham,	married	the
widow	 on	 this	 testimonial.	Mrs.	 Smith	 left	 her	 three-year-old	 son	 to	 the
care	of	his	grandmother.	By	her	second	marriage	she	had	three	children,
none	of	whom	exhibited	any	remarkable	ability.	From	the	property	of	his
mother’s	 second	 marriage	 and	 his	 father’s	 estate	 Newton	 ultimately
acquired	 an	 income	 of	 about	 £80	 a	 year,	 which	 of	 course	meant	much
more	in	the	seventeenth	century	than	it	would	now.	Newton	was	not	one
of	the	great	mathematicians	who	had	to	contend	with	poverty.

As	 a	 child	Newton	 was	 not	 robust	 and	 was	 forced	 to	 shun	 the	 rough
games	of	boys	his	own	age.	 Instead	of	amusing	himself	 in	 the	usual	way,
Newton	invented	his	own	diversions,	in	which	his	genius	first	showed	up.	It
is	sometimes	said	that	Newton	was	not	precocious.	This	may	be	true	so	far
as	 mathematics	 is	 concerned,	 but	 if	 it	 is	 so	 in	 other	 respects	 a	 new
definition	of	precocity	 is	required.	The	unsurpassed	experimental	genius
which	Newton	 was	 to	 exhibit	 as	 an	 explorer	 in	 the	mysteries	 of	 light	 is
certainly	 evident	 in	 the	 ingenuity	 of	 his	 boyish	 amusements.	 Kites	 with
lanterns	 to	 scare	 the	 credulous	 villagers	 at	 night,	 perfectly	 constructed
mechanical	 toys	which	he	made	entirely	by	himself	 and	which	worked—
waterwheels,	 a	 mill	 that	 ground	 wheat	 into	 snowy	 flour,	 with	 a	 greedy
mouse	 (who	 devoured	 most	 of	 the	 profits)	 as	 both	 miller	 and	 motive
power,	 workboxes	 and	 toys	 for	 his	 many	 little	 girl	 friends,	 drawings,
sundials,	and	a	wooden	clock	(that	went)	for	himself—such	were	some	of
the	 things	 with	 which	 this	 “un-precocious”	 boy	 sought	 to	 divert	 the
interests	of	his	playmates	into	“more	philosophical”	channels.	In	addition
to	 these	 more	 noticeable	 evidences	 of	 talent	 far	 above	 the	 ordinary,
Newton	read	extensively	and	jotted	down	all	manner	of	mysterious	recipes
and	 out-of-the-way	 observations	 in	 his	 notebook.	 To	 rate	 such	 a	 boy	 as
merely	the	normal,	wholesome	lad	he	appeared	to	his	village	friends	is	to
miss	the	obvious.

The	 earliest	 part	 of	Newton’s	 education	was	 received	 in	 the	 common
village	 schools	 of	 his	 vicinity.	 A	 maternal	 uncle,	 the	 Reverend	 William
Ayscough,	 seems	 to	 have	 been	 the	 first	 to	 recognize	 that	 Newton	 was
something	 unusual.	 A	 Cambridge	 graduate	 himself,	 Ayscough	 finally
persuaded	 Newton’s	 mother	 to	 send	 her	 son	 to	 Cambridge	 instead	 of



keeping	him	at	home,	as	she	had	planned,	to	help	her	manage	the	farm
on	her	return	to	Woolsthorpe	after	her	husband’s	death	when	Newton	was
fifteen.

Before	 this,	 however,	 Newton	 had	 crossed	 his	 Rubicon	 on	 his	 own
initiative.	 On	 his	 uncle’s	 advice	 he	 had	 been	 sent	 to	 the	 Grantham
Grammar	 School.	 While	 there,	 in	 the	 lowest	 form	 but	 one,	 he	 was
tormented	by	the	school	bully	who	one	day	kicked	Newton	in	the	stomach,
causing	him	much	physical	pain	and	mental	anguish.	Encouraged	by	one
of	the	schoolmasters,	Newton	challenged	the	bully	to	a	fair	fight,	thrashed
him,	 and,	 as	 a	 final	 mark	 of	 humiliation,	 rubbed	 his	 enemy’s	 cowardly
nose	on	the	wall	of	the	church.	Up	till	this	young	Newton	had	shown	no
great	interest	in	his	lessons.	He	now	set	out	to	prove	his	head	as	good	as
his	 fists	and	quickly	rose	 to	 the	distinction	of	 top	boy	 in	 the	school.	The
Headmaster	 and	Uncle	Ayscough	 agreed	 that	Newton	was	 good	 enough
for	Cambridge,	but	the	decisive	die	was	thrown	when	Ayscough	caught	his
nephew	 reading	 under	 a	 hedge	 when	 he	 was	 supposed	 to	 be	 helping	 a
farmhand	to	do	the	marketing.

While	 at	 the	 Grantham	 Grammar	 School,	 and	 subsequently	 while
preparing	 for	 Cambridge,	Newton	 lodged	 with	 a	Mr.	 Clarke,	 the	 village
apothecary.	In	the	apothecary’s	attic	Newton	found	a	parcel	of	old	books,
which	 he	 devoured,	 and	 in	 the	 house	 generally,	 Clarke’s	 stepdaughter,
Miss	Storey,	with	whom	he	fell	 in	 love	and	to	whom	he	became	engaged
before	 leaving	Woolsthorpe	 for	 Cambridge	 in	 June,	 1661,	 at	 the	 age	 of
nineteen.	 But	 although	Newton	 cherished	 a	 warm	 affection	 for	 his	 first
and	 only	 sweetheart	 all	 her	 life,	 absence	 and	 growing	 absorption	 in	 his
work	 thrust	 romance	 into	 the	 background,	 and	 Newton	 never	 married.
Miss	Storey	became	Mrs.	Vincent.

*		*		*

Before	going	on	to	Newton’s	student	career	at	Trinity	College	we	may
take	 a	 short	 look	 at	 the	England	of	 his	 times	 and	 some	of	 the	 scientific
knowledge	to	which	the	young	man	fell	heir.	The	bullheaded	and	bigoted
Scottish	Stuarts	had	undertaken	 to	 rule	England	according	 to	 the	divine
rights	 they	 claimed	were	 vested	 in	 them,	with	 the	not	uncommon	 result
that	 mere	 human	 beings	 resented	 the	 assumption	 of	 celestial	 authority
and	 rebelled	 against	 the	 sublime	 conceit,	 the	 stupidity,	 and	 the



incompetence	of	 their	 rulers.	Newton	grew	up	 in	an	atmosphere	of	 civil
war—political	 and	 religious—in	 which	 Puritans	 and	 Royalists	 alike
impartially	 looted	 whatever	 was	 needed	 to	 keep	 their	 ragged	 armies
fighting.	Charles	I	(born	in	1600,	be	headed	in	1649)	had	done	everything
in	his	power	to	suppress	Parliament;	but	in	spite	of	his	ruthless	extortions
and	 the	 villainously	 able	 backing	 of	 his	 own	 Star	 Chamber	 through	 its
brilliant	perversions	of	the	law	and	common	justice,	he	was	no	match	for
the	dour	Puritans	under	Oliver	Cromwell,	who	in	his	turn	was	to	back	his
butcheries	and	his	roughshod	march	over	Parliament	by	an	appeal	to	the
divine	justice	of	his	holy	cause.

All	this	brutality	and	holy	hypocrisy	had	a	most	salutary	effect	on	young
Newton’s	character:	he	grew	up	with	a	fierce	hatred	of	tyranny,	subterfuge,
and	oppression,	and	when	King	James	later	sought	to	meddle	repressively
in	University	affairs,	 the	mathematician	and	natural	philosopher	did	not
need	to	learn	that	a	resolute	show	of	backbone	and	a	united	front	on	the
part	of	those	whose	liberties	are	endangered	is	the	most	effective	defense
against	a	coalition	of	unscrupulous	politicians;	he	knew	 it	by	observation
and	by	instinct.

To	Newton	 is	attributed	 the	saying	“If	 I	have	seen	a	 little	 farther	 than
others	 it	 is	 because	 I	 have	 stood	 on	 the	 shoulders	 of	 giants.”	 He	 had.
Among	 the	 tallest	 of	 these	 giants	 were	 Descartes,	 Kepler,	 and	 Galileo.
From	 Descartes,	 Newton	 inherited	 analytic	 geometry,	 which	 he	 found
difficult	at	first;	from	Kepler,	three	fundamental	laws	of	planetary	motion,
discovered	empirically	after	twenty	two	years	of	inhuman	calculation;	while
from	Galileo	he	acquired	the	first	 two	of	 the	three	 laws	of	motion	which
were	to	be	the	cornerstone	of	his	own	dynamics.	But	bricks	do	not	make	a
building;	Newton	was	the	architect	of	dynamics	and	celestial	mechanics.

As	Kepler’s	laws	were	to	play	the	rôle	of	hero	in	Newton’s	development
of	his	law	of	universal	gravitation	they	may	be	stated	here.

I.	The	planets	move	round	the	Sun	in	ellipses;	 the	Sun	is	at	one	 focus	of	 these
ellipses.
[If	S,	S’	are	the	foci,	P	any	position	of	a	planet	in	its	orbit,	SP	+	S’P	is	always
equal	to	AA’,	the	major	axis	of	the	ellipse:	fig.,	page	94.]

II.	The	line	joining	the	Sun	and	a	planet	sweeps	out	equal	areas	in	equal	times.
III.	 The	 square	 of	 the	 time	 for	 one	 complete	 revolution	 of	 each	 planet	 is

proportional	to	the	cube	of	its	mean	[or	average]	distance	from	the	Sun.



These	 laws	 can	 be	 proved	 in	 a	 page	 or	 two	 by	means	 of	 the	 calculus
applied	to	Newton’s	law	of	universal	gravitation:

Any	two	particles	of	matter	in	the	universe	attract	one	another	with	a	force	which
is	directly	proportional	 to	 the	product	of	 their	masses	and	inversely	proportional	 to
the	square	of	the	distance	between	them.	Thus	if	m,	M	are	the	masses	of	the	two
particles	 and	d	 the	 distance	 between	 them	 (all	measured	 in	 appropriate

units),	 the	force	of	attraction	between	them	is	 	where	k	 is	 some
constant	 number	 (by	 suitably	 choosing	 the	 units	 of	mass	 and	 distance	 k

may	be	taken	equal	to	1,	so	that	the	attraction	is	simply	 ).

For	completeness	we	state	Newton’s	three	laws	of	motion.
I.	Every	 body	will	 continue	 in	 its	 state	 of	 rest	 or	 of	uniform	[unaccelerated]

motion	in	a	straight	 line	except	in	so	far	as	it	 is	compelled	to	change	that	state	by
impressed	force.

II.	Rate	 of	 change	of	momentum	 [“mass	 times	velocity,”	mass	and	velocity
being	measured	in	appropriate	units]	is	proportional	to	the	impressed	force	and
takes	place	in	the	line	in	which	the	force	acts.

III.	 Action	 and	 reaction	 [as	 in	 the	 collision	 on	 a	 frictionless	 table	 of
perfectly	 elastic	 billiard	balls]	are	 equal	 and	 opposite	 [the	momentum	one
ball	loses	is	gained	by	the	other].

The	most	 important	 thing	 for	mathematics	 in	all	of	 this	 is	 the	phrase
opening	the	statement	of	the	second	law	of	motion,	rate	of	change.	What	is
a	rate,	and	how	shall	it	be	measured?	Momentum,	as	noted,	is	“mass	times
velocity.”	 The	 masses	 which	 Newton	 discussed	 were	 assumed	 to	 remain
constant	during	 their	motion—not	 like	 the	electrons	and	other	particles



of	 current	 physics	 whose	 masses	 increase	 appreciably	 as	 their	 velocity
approaches	a	measurable	fraction	of	that	of	light.	Thus,	to	investigate	“rate
of	 change	 of	momentum,”	 it	 sufficed	Newton	 to	 clarify	 velocity,	 which	 is
rate	of	change	of	position.	His	solution	of	this	problem—giving	a	workable
mathematical	method	for	investigating	the	velocity	of	any	particle	moving
in	any	 continuous	manner,	no	matter	how	erratic—gave	him	 the	master
key	 to	 the	 whole	 mystery	 of	 rates	 and	 their	 measurement,	 namely,	 the
differential	calculus.

A	similar	problem	growing	out	of	rates	put	the	integral	calculus	into	his
hands.	 How	 shall	 the	 total	 distance	 passed	 over	 in	 a	 given	 time	 by	 a
moving	 particle	 whose	 velocity	 is	 varying	 continuously	 from	 instant	 to
instant	be	 calculated?	Answering	 this	or	 similar	problems,	 some	phrased
geometrically,	Newton	came	upon	the	integral	calculus.	Finally,	pondering
the	 two	 types	of	problem	 together,	Newton	made	a	 capital	discovery:	he
saw	 that	 the	differential	 calculus	 and	 the	 integral	 calculus	 are	 intimately
and	reciprocally	related	by	what	is	today	called	“the	fundamental	theorem
of	the	calculus”—which	will	be	described	in	the	proper	place.

*		*		*

In	addition	to	what	Newton	inherited	from	his	predecessors	in	science
and	mathematics	he	received	from	the	spirit	of	his	age	two	further	gifts,	a
passion	 for	 theology	 and	 an	 unquenchable	 thirst	 for	 the	 mysteries	 of
alchemy.	To	 censure	him	 for	devoting	his	unsurpassed	 intellect	 to	 these
things,	which	would	now	be	considered	unworthy	of	his	serious	effort,	is	to
censure	oneself.	For	in	Newton’s	day	alchemy	was	chemistry	and	it	had	not
been	shown	that	there	was	nothing	much	in	it—except	what	was	to	come
out	 of	 it,	 namely	 modern	 chemistry;	 and	 Newton,	 as	 a	 man	 of	 inborn
scientific	spirit,	undertook	to	find	out	by	experiment	exactly	what	the	claims
of	the	alchemists	amounted	to.

As	 for	 theology,	 Newton	 was	 an	 unquestioning	 believer	 in	 an	 allwise
Creator	of	 the	universe	and	 in	his	own	 inability—like	 that	of	 the	boy	on
the	 seashore—to	 fathom	 the	 entire	 ocean	 of	 truth	 in	 all	 its	 depths.	 He
therefore	believed	that	there	were	not	only	many	things	in	heaven	beyond
his	philosophy	but	plenty	on	earth	as	well,	and	he	made	it	his	business	to
understand	 for	 himself	 what	 the	majority	 of	 intelligent	men	 of	 his	 time



accepted	without	dispute	(to	them	it	was	as	natural	as	common	sense)—
the	traditional	account	of	creation.

He	 therefore	 put	 what	 he	 considered	 his	 really	 serious	 efforts	 on
attempts	 to	 prove	 that	 the	 prophecies	 of	 Daniel	 and	 the	 poetry	 of	 the
Apocalypse	make	sense,	and	on	chronological	researches	whose	object	was
to	 harmonize	 the	 dates	 of	 the	 Old	 Testament	 with	 those	 of	 history.	 In
Newton’s	day	theology	was	still	queen	of	 the	sciences	and	she	sometimes
ruled	her	obstreperous	subjects	with	a	rod	of	brass	and	a	head	of	cast	iron.
Newton	however	did	permit	his	rational	science	to	influence	his	beliefs	to
the	extent	of	making	him	what	would	now	be	called	a	Unitarian.

*		*		*

In	June,	1661	Newton	entered	Trinity	College,	Cambridge,	as	a	subsizar
—a	 student	 who	 (in	 those	 days)	 earned	 his	 expenses	 by	menial	 service.
Civil	 war,	 the	 restoration	 of	 the	 monarchy	 in	 1661,	 and	 uninspired
toadying	 to	 the	 Crown	 on	 the	 part	 of	 the	 University	 had	 all	 brought
Cambridge	to	one	of	 the	 low-water	marks	 in	 its	history	as	an	educational
institution	 when	 Newton	 took	 up	 his	 residence.	 Nevertheless	 young
Newton,	lonely	at	first,	quickly	found	himself	and	became	absorbed	in	his
work.

In	mathematics	Newton’s	 teacher	was	Dr.	 Isaac	Barrow	 (16301677),	 a
theologian	and	mathematician	of	whom	it	has	been	said	that	brilliant	and
original	as	he	undoubtedly	was	in	mathematics,	he	had	the	misfortune	to
be	 the	 morning	 star	 heralding	 Newton’s	 sun.	 Barrow	 gladly	 recognized
that	 a	 greater	 than	 himself	 had	 arrived,	 and	 when	 (1669)	 the	 strategic
moment	came	he	resigned	the	Lucasian	Professorship	of	Mathematics	(of
which	he	was	the	first	holder)	in	favor	of	his	incomparable	pupil.	Barrow’s
geometrical	 lectures	dealt	among	other	 things	with	his	own	methods	 for
finding	 areas	 and	 drawing	 tangents	 to	 curves—essentially	 the	 key
problems	 of	 the	 integral	 and	 the	 differential	 calculus	 respectively,	 and
there	 can	 be	 no	 doubt	 that	 these	 lectures	 inspired	 Newton	 to	 his	 own
attack.

The	record	of	Newton’s	undergraduate	 life	 is	disappointingly	meager.
He	 seems	 to	have	made	no	very	great	 impression	on	his	 fellow	 students,
nor	 do	 his	 brief,	 perfunctory	 letters	 home	 tell	 anything	 of	 interest.	 The
first	 two	 years	 were	 spent	mastering	 elementary	mathematics.	 If	 there	 is



any	reliable	account	of	Newton’s	sudden	maturity	as	a	discoverer,	none	of
his	modern	biographers	seems	to	have	located	it.	Beyond	the	fact	that	in
the	 three	 years	 1664-66	 (age	 twenty	 one	 to	 twenty	 three)	 he	 laid	 the
foundation	 of	 all	 his	 subsequent	 work	 in	 science	 and	mathematics,	 and
that	incessant	work	and	late	hours	brought	on	an	illness,	we	know	nothing
definite.	Newton’s	tendency	to	secretiveness	about	his	discoveries	has	also
played	its	part	in	deepening	the	mystery.

On	 the	 purely	 human	 side	 Newton	 was	 normal	 enough	 as	 an
undergraduate	to	relax	occasionally,	and	there	is	a	record	in	his	account
book	of	several	sessions	at	the	tavern	and	two	losses	at	cards.	He	took	his
B.A.	degree	in	January,	1664.

*		*		*

The	 Great	 Plague	 (bubonic	 plague)	 of	 1664-65,	 with	 its	 milder
recurrence	 the	 following	 year,	 gave	 Newton	 his	 great	 if	 forced
opportunity.	The	University	was	closed,	and	for	the	better	part	of	two	years
Newton	 retired	 to	 meditate	 at	 Woolsthorpe.	 Up	 till	 then	 he	 had	 done
nothing	remarkable—except	make	himself	ill	by	too	assiduous	observation
of	 a	 comet	 and	 lunar	 halos—or,	 if	 he	 had,	 it	 was	 a	 secret.	 In	 these	 two
years	 he	 invented	 the	method	 of	 fluxions	 (the	 calculus),	 discovered	 the
law	of	universal	gravitation,	and	proved	experimentally	that	white	light	is
composed	of	light	of	all	the	colors.	All	this	before	he	was	twenty	five.

A	 manuscript	 dated	 May	 20,	 1665,	 shows	 that	 Newton	 at	 the	 age	 of
twenty	three	had	sufficiently	developed	the	principles	of	the	calculus	to	be
able	 to	 find	 the	 tangent	 and	 curvature	 at	 any	 point	 of	 any	 continuous
curve.	 He	 called	 his	 method	 “fluxions”—from	 the	 idea	 of	 “flowing”	 or
variable	quantities	and	 their	 rates	of	 “flow”	or	 “growth.”	His	discovery	of
the	binomial	theorem,	an	essential	step	toward	a	fully	developed	calculus,
preceded	this.

The	binomial	theorem	generalizes	the	simple	results	like

(a	+	b)2	=	a2	+	2ab	+	b2,	(a	+	b)3	=	a3	+	3a2b	+	3ab2	+	b3,

and	so	on,	which	are	found	by	direct	calculation;	namely,



where	the	dots	indicate	that	the	series	is	to	be	continued	according	to	the
same	law	as	that	indicated	for	the	terms	written;	the	next	term	is

If	n	 is	 one	 of	 the	 positive	 integers	 1,	 2,	 3	 .	 .	 .	 ,	 the	 series	 automatically
terminates	after	precisely	n	+	1	terms.	This	much	is	easily	proved	(as	in	the
school	algebras)	by	mathematical	induction.

But	if	n	is	not	a	positive	integer,	the	series	does	not	terminate,	and	this
method	of	proof	 is	 inapplicable.	As	a	proof	of	 the	binomial	 theorem	for
fractional	and	negative	values	of	n	 (also	 for	more	general	values),	with	a
statement	of	the	necessary	restrictions	on	a,b,	came	only	in	the	nineteenth
century,	we	need	merely	state	here	that	in	extending	the	theorem	to	these
values	of	n	Newton	satisfied	himself	that	the	theorem	was	correct	for	such
values	of	a,b	as	he	had	occasion	to	consider	in	his	work.

If	 all	modern	 refinements	 are	 similarly	 ignored	 in	 the	manner	of	 the
seventeenth	 century	 it	 is	 easy	 to	 see	 how	 the	 calculus	 finally	 got	 itself
invented.	The	underlying	notions	are	those	of	variable,	function,	and	limit.
The	last	took	long	to	clarify.

A	 letter,	 say	 s,	 which	 can	 take	 on	 several	 different	 values	 during	 the
course	of	a	mathematical	investigation	is	called	a	variable;	for	example	s	is
a	variable	if	it	denotes	the	height	of	a	falling	body	above	the	earth.

The	 word	 function	 (or	 its	 Latin	 equivalent)	 seems	 to	 have	 been
introduced	 into	 mathematics	 by	 Leibniz	 in	 1694;	 the	 concept	 now
dominates	 much	 of	 mathematics	 and	 is	 indispensable	 in	 science.	 Since
Leibniz’	 time	 the	 concept	 has	 been	 made	 precise.	 If	 y	 and	 x	 are	 two
variables	so	related	that	whenever	a	numerical	value	is	assigned	to	x	there
is	 determined	 a	 numerical	 value	 of	 y,	 then	 y	 is	 called	 a	 (one-valued,	 or
uniform)	function	of	x,	and	this	is	symbolized	by	writings	y	=f(x).

Instead	 of	 attempting	 to	 give	 a	modern	 definition	 of	 a	 limit	 we	 shall
content	ourselves	with	one	of	the	simplest	examples	of	the	sort	which	led
the	followers	of	Newton	and	Leibniz	(the	former	especially)	to	the	use	of



limits	in	discussing	rates	of	change.	To	the	early	developers	of	the	calculus
the	notions	of	variables	and	limits	were	intuitive;	to	us	they	are	extremely
subtle	concepts	hedged	about	with	thickets	of	semimetaphysical	mysteries
concerning	the	nature	of	numbers,	both	rational	and	irrational.

Let	y	be	a	function	of	x,	say	y	=	f(x).	The	rate	of	change	of	y	with	respect
to	x,	or,	as	it	is	called,	the	derivative	of	y	with	respect	to	x,	is	defined	as	follows.
To	 x	 is	 given	 any	 increment,	 say	Δx	 (read,	 “increment	 of	 x”),	 so	 that	 x
becomes	 x	 +	Δx,	 and	 f(x),	 or	 y,	 becomes	 f(x	 +	Δx).	 The	 corresponding
increment,	Δy,	of	y	is	its	new	value	minus	its	initial	value;	namely,	Δy	=	f(x	+
Δx)	—f(x).	 As	 a	 crude	 approximation	 to	 the	 rate	 of	 change	 of	 y	 with
respect	to	x	we	may	take,	by	our	intuitive	notion	of	a	rate	as	an	“average,”
the	result	of	dividing	the	increment	of	y	by	the	increment	of	x,	that	is,	

But	 this	obviously	 is	 too	crude,	 as	both	of	x	 and	 y	 are	 varying	and	we
cannot	say	that	this	average	represents	the	rate	for	any	particular	value	of	x.
Accordingly,	we	decrease	 the	 increment	Δx	 indefinitely,	 till,	 “in	 the	 limit”
Δx	approaches	zero,	and	follow	the	“average”	 	all	through	the	process:

Δy	similarly	decreases	indefinitely	and	ultimately	approaches	zero;	but	

does	 not,	 thereby,	 present	 us	 with	 the	meaningless	 symbol	 	 but	 with	 a
definite	 limiting	 value,	 which	 is	 the	 required	 rate	 of	 change	 of	 y	 with
respect	to	x.

To	see	how	it	works	out,	let	f(x)	be	the	particular	function	x2,	so	that	y	=
x2.	Following	the	above	outline	we	get	first

Nothing	is	yet	said	about	limits.	Simplifying	the	algebra	we	find

Having	simplified	the	algebra	as	far	as	possible,	we	now	let	Δx	approach
zero	 and	 see	 that	 the	 limiting	 value	 of	 	 is	 2x.	 Quite	 generally,	 in	 the

same	way,	if	y	=	xn,	the	limiting	value	of	 	is	nxn–l,	as	may	be	proved	with
the	aid	of	the	binomial	theorem.

Such	an	argument	would	not	satisfy	a	student	today,	but	something	not
much	better	was	good	enough	for	the	inventors	of	the	calculus	and	it	will



have	to	do	for	us	here.	If	y	=	f(x),	the	limiting	value	of	 	(provided	such	a

value	exists)	is	called	the	derivative	of	y	with	respect	to	x,	and	is	denoted	by	
This	symbolism	is	due	(essentially)	to	Leibniz	and	is	the	one	in	common
use	today;	Newton	used	another	( )	which	is	less	convenient.

The	simplest	instances	of	rates	in	physics	are	velocity	and	acceleration,
two	of	the	fundamental	notions	of	dynamics.	Velocity	is	rate	of	change	of
distance	(or	“position,”	or	“space”)	with	respect	to	time;	acceleration	is	rate	of
change	of	velocity	with	respect	to	time.

If	s	denotes	the	distance	traversed	in	the	time	t	by	a	moving	particle	(it
being	assumed	that	the	distance	is	a	function	of	the	time),	the	velocity	at

the	 time	 t	 is	 	 Denoting	 this	 velocity	 by	 v,	 we	 have	 the	 corresponding

acceleration,	
This	introduces	the	idea	of	a	rate	of	a	rate,	or	of	a	second	derivative.	For	in

accelerated	motion	the	velocity	is	not	constant	but	variable,	and	hence	it
has	a	rate	of	change:	the	acceleration	is	the	rate	of	change	of	the	rate	of
change	of	distance	(both	rates	with	respect	to	time);	and	to	indicate	this

second	rate,	or	“rate	of	a	rate,”	we	write	 	for	the	acceleration.	This	itself

may	have	a	rate	of	change	with	respect	to	the	time;	this	third	rate	is	written	

	 And	 so	 on	 for	 fourth,	 fifth,	 .	 .	 .	 rates,	 namely	 for	 fourth,	 fifth,	 .	 .	 .

derivatives.	 The	 most	 important	 derivatives	 in	 the	 applications	 of	 the
calculus	to	science	are	the	first	and	second.

*		*		*

If	now	we	look	back	at	what	was	said	concerning	Newton’s	second	law	of
motion	and	compare	it	with	the	like	for	acceleration,	we	see	that	“forces”
are	proportional	to	the	accelerations	they	produce.	With	this	much	we	can
“set	up”	the	differential	equation	for	a	problem	which	is	by	no	means	trivial
—that	of	“central	forces”:	a	particle	is	attracted	toward	a	fixed	point	by	a
force	whose	direction	always	passes	through	the	fixed	point.	Given	that	the
force	varies	as	 some	 function	of	 the	distance	 s,	 say	as	F(s),	where	s	 is	 the
distance	of	the	particle	at	the	time	t	from	the	fixed	point	O,



it	is	required	to	describe	the	motion	of	the	particle.	A	little	consideration
will	show	that

the	minus	sign	being	taken	because	the	attraction	diminishes	the	velocity.
This	is	the	differential	equation	of	the	problem,	so	called	because	it	involves
a	 rate	 (the	 acceleration),	 and	 rates	 (or	 derivatives)	 are	 the	 object	 of
investigation	in	the	differential	calculus.

Having	translated	the	problem	into	a	differential	equation	we	are	now
required	to	solve	this	equation,	that	is,	to	find	the	relation	between	s	and	t,
or,	 in	 mathematical	 language,	 to	 solve	 the	 differential	 equation	 by
expressing	s	as	a	function	of	t.	This	is	where	the	difficulties	begin.	It	may
be	quite	easy	to	translate	a	given	physical	situation	into	a	set	of	differential
equations	which	no	mathematician	can	solve.	In	general	every	essentially
new	 problem	 in	 physics	 leads	 to	 types	 of	 differential	 equations	 which
demand	 the	creation	of	new	branches	of	mathematics	 for	 their	 solution.
The	 particular	 equation	 above	 can	 however	 be	 solved	 quite	 simply	 in

terms	of	elementary	functions	if	 	as	in	Newton’s	law	of	gravitational
attraction.	 Instead	 of	 bothering	 with	 this	 particular	 equation,	 we	 shall
consider	a	much	simpler	one	which	will	suffice	to	bring	out	the	point	of
importance:

We	are	given	that	y	is	a	function	of	x	whose	derivative	is	equal	to	x\	it	is
required	 to	express	 y	 as	 a	 function	of	x.	More	generally,	 consider	 in	 the
same	way

This	asks,	what	 is	 the	 function	y	(of	x)	whose	derivative	 (rate	of	 change)
with	 respect	 to	 x	 is	 equal	 to	 f(x)?	 Provided	 we	 can	 find	 the	 function
required	(or	provided	such	a	function	exists),	we	call	it	the	anti-derivative	of
f(x)	and	denote	it	by	∫	f(x)dx—for	a	reason	that	will	appear	presently.	For



the	moment	we	 need	note	 only	 that	∫f(x)dx	 symbolizes	 a	 function	 (if	 it
exists)	whose	derivative	is	equal	to	f(x).

By	 inspection	 we	 see	 that	 the	 first	 of	 the	 above	 equations	 has	 the
solution	½x2	 +	 c,	 where	 c	 is	 a	 constant	 (number	 not	 depending	 on	 the
variable	x);	thus	∫x	dx	=	½x2	+	c.

Even	this	simple	example	may	indicate	that	the	problem	of	evaluating
∫f(x)dx	 for	 comparatively	 innocent-looking	 functions	 f(x)	may	 be	 beyond
our	powers.	It	does	not	follow	that	an	“answer”	exists	at	all	in	terms	of	known
functions	 when	 an	 f(x)	 is	 chosen	 at	 random—the	 odds	 against	 such	 a
chance	 are	 an	 infinity	 of	 the	 worst	 sort	 (“non-denumerable”)	 to	 one.
When	a	physical	problem	 leads	 to	one	of	 these	nightmares	 approximate
methods	are	applied	which	give	the	result	within	the	desired	accuracy.

With	the	two	basic	notions,	 	and	∫f(x)dx,	of	the	calculus	we	can	now
describe	 the	 fundamental	 theorem	 of	 the	 calculus	 connecting	 them.	 For
simplicity	 we	 shall	 use	 a	 diagram,	 although	 this	 is	 not	 necessary	 and	 is
undesirable	in	an	exact	account.

Consider	 a	 continuous,	 unlooped	 curve	whose	 equation	 is	 y	 =	 f(x)	 in
Cartesian	coordinates.	It	is	required	to	find	the	area	included	between	the
curve,	 the	x-axis	 and	 the	 two	perpendiculars	AA′	BB′	drawn	 to	 the	x-axis
from	 any	 two	 points	A,	 B	 on	 the	 curve.	 The	 distances	OA′	 OB′	 are	 a,	 b
respectively—namely,	 the	 coordinates	 of	 A′,	 B′	 are	 (a,	 0),	 (b,	 0).	 We



proceed	as	Archimedes	did,	cutting	 the	required	area	 into	parallel	 strips
of	equal	breadth,	treating	these	strips	as	rectangles	by	disregarding	the	top
triangular	bits	(one	of	which	is	shaded	in	the	figure),	adding	the	areas	of
all	 these	 rectangles,	 and	 finally	 evaluating	 the	 limit	 of	 this	 sum	 as	 the
number	of	rectangles	is	increased	indefinitely.	This	is	all	very	well,	but	how
are	 we	 to	 calculate	 the	 limit?	 The	 answer	 is	 surely	 one	 of	 the	 most
astonishing	things	a	mathematician	ever	discovered.

First,	 find	 ∫f(x)dx.	 Say	 the	 result	 is	 F(x).	 In	 this	 substitute	 a	 and	 6,
getting	F(a)	and	F(b).	Then	subtract	the	first	from	the	second,	F(b)—F(a).
This	is	the	required	area.

Notice	the	connection	between	y	=	f(x),	the	equation	of	the	given	curve;

	which	(as	seen	in	the	chapter	on	Fermat)	gives	the	slope	of	the	tangent
line	 to	 the	 curve	 at	 the	 point	 (x,	 y);	 and	 ∫f(x)dx,	 or	 F(x),	 which	 is	 the
function	whose	rate	of	change	with	respect	to	x	is	equal	to	f(x).	We	have	just
stated	that	the	area	required,	which	is	a	limiting	sum	of	the	kind	described
in	 connection	 with	 Archimedes,	 is	 given	 by	 F(b)—F(a).	 Thus	 we	 have
connected	 slopes,	 or	 derivatives,	 with	 limiting	 sums,	 or,	 as	 they	 are	 called,
definite	 integrals.	The	symbol	 J	 is	an	old-fashioned	S,	 the	 first	 letter	of	 the
word	Summa.

Summing	 all	 this	 up	 in	 symbols,	 we	 write	 for	 the	 area	 in	 question	
	a	 is	the	 lower	limit	of	the	sum,	b	 the	upper	 limit;	and	in	which

F(b),	 F(a)	 are	 calculated	 by	 evaluating	 the	 “indefinite	 integral”	 f∫(x)dx,
namely,	by	finding	that	function	F(x)	such	that	 its	derivative	with	respect

to	 x,	 	 is	 equal	 to	 f(x).	 This	 is	 the	 fundamental	 theorem	 of	 the
calculus	 as	 it	 presented	 itself	 (in	 its	 geometrical	 form)	 to	 Newton	 and
independently	 also	 to	 Leibniz.	 As	 a	 caution	 we	 repeat	 that	 numerous
refinements	demanded	in	a	modern	statement	have	been	ignored.

*		*		*

Two	 simple	 but	 important	 matters	 may	 conclude	 this	 sketch	 of	 the
leading	notions	 of	 the	 calculus	 as	 they	 appeared	 to	 the	pioneers.	 So	 far
only	 functions	 of	 a	 single	 variable	 have	 been	 considered.	 But	 nature
presents	 us	with	 functions	 of	 several	 variables	 and	 even	of	 an	 infinity	 of
variables.



To	take	a	very	simple	example,	the	volume,	V,	of	a	gas	is	a	function	of
its	temperature,	T,	and	the	pressure,	P,	on	it;	say	V	=	F(T,	P)—the	actual
form	of	the	function	F	need	not	be	specified	here.	As	T,	P	vary,	V	varies.
But	suppose	only	one	of	T,	P	varies	while	the	other	is	held	constant.	We	are
then	back	essentially	with	a	function	of	one	variable,	and	the	derivative	of
F(T,	P)	can	be	calculated	with	respect	to	this	variable.	If	T	varies	while	P	is
held	constant,	the	derivative	of	F(T,	P)	with	respect	to	T	is	called	the	partial
derivative	(with	respect	to	T),	and	to	show	that	the	variable	P	is	being	held
constant,	 a	 different	 symbol,	d,	 is	 used	 for	 this	 partial	 derivative,	

Similarly,	if	P	varies	while	T	is	held	constant,	we	get	 	Precisely	as	in
the	 case	 of	 ordinary	 second,	 third,	 .	 .	 .	 derivatives,	 we	 have	 the	 like	 for

partial	derivatives;	thus	 	signifies	the	partial	derivative	of	

with	respect	to	T.
The	great	majority	of	the	important	equations	of	mathematical	physics

are	partial	differential	equations.	A	famous	example	is	Laplace’s	equation,	or
the	 “equation	 of	 continuity,”	 which	 appears	 in	 the	 theory	 of	Newtonian
gravitation,	electricity	and	magnetism,	fluid	motion,	and	elsewhere:

In	 fluid	 motion	 this	 is	 the	 mathematical	 expression	 of	 the	 fact	 that	 a
“perfect”	 fluid,	 in	 which	 there	 are	 no	 vortices,	 is	 indestructible.	 A
derivation	of	this	equation	would	be	out	of	place	here,	but	a	statement	of
what	it	signifies	may	make	it	seem	less	mysterious.	If	there	are	no	vortices
in	the	fluid,	the	three	component	velocities	parallel	to	the	axes	of	x,y,z	of
any	particle	in	the	fluid	are	calculable	as	the	partial	derivatives

of	the	same	function	u—which	will	be	determined	by	the	particular	type	of
motion.	Combining	 this	 fact	with	 the	 obvious	 remark	 that	 if	 the	 fluid	 is
incompressible	 and	 indestructible,	 as	 much	 fluid	 must	 flow	 out	 of	 any
small	volume	in	one	second	as	flows	into	it;	and	noting	that	the	amount	of
flow	 in	 one	 second	 across	 any	 small	 area	 is	 equal	 to	 the	 rate	 of	 flow



multiplied	 by	 the	 area;	 we	 see	 (on	 combining	 these	 remarks	 and
calculating	 the	 total	 inflow	 and	 total	 outflow)	 that	 Laplace’s	 equation	 is
more	or	less	of	a	platitude.

The	 really	 astonishing	 thing	 about	 this	 and	 some	 other	 equations	 of
mathematical	 physics	 is	 that	 a	 physical	 platitude,	 when	 subjected	 to
mathematical	reasoning,	should	furnish	unforeseen	information	which	is
anything	 but	 platitudinous.	 The	 “anticipations”	 of	 physical	 phenomena
mentioned	 in	 later	 chapters	 arose	 from	 such	 commonplaces	 treated
mathematically.

Two	 very	 real	 difficulties,	 however,	 arise	 in	 this	 type	 of	 problem.	The
first	 concerns	 the	 physicist,	 who	 must	 have	 a	 feeling	 for	 what
complications	can	be	lopped	off	his	problem,	without	mutilating	it	beyond
all	 recognition,	 so	 that	he	 can	 state	 it	mathematically	 at	 all.	The	 second
concerns	 the	 mathematician,	 and	 this	 brings	 us	 to	 a	 matter	 of	 great
importance—the	last	we	shall	mention	in	this	sketch	of	the	calculus—that
of	what	are	called	boundary-value	problems.

Science	does	not	fling	an	equation	like	Laplace’s	at	a	mathematician’s
head	and	ask	him	to	find	the	general	solution.	What	it	wants	is	something
(usually)	much	more	difficult	to	obtain,	a	particular	solution	which	will	not
only	 satisfy	 the	 equation	 but	 which	 in	 addition	 will	 satisfy	 certain	 auxiliary
conditions	depending	on	the	particular	problem	to	be	solved.

The	point	may	be	simply	illustrated	by	a	problem	in	the	conduction	of
heat.	There	is	a.	general	equation	(Fourier’s)	for	the	“motion”	of	heat	in	a
conductor	similar	to	Laplace’s	for	fluid	motion.	Suppose	it	is	required	to
find	the	final	distribution	of	temperature	in	a	cylindrical	rod	whose	ends
are	kept	at	one	constant	temperature	and	whose	curved	surface	is	kept	at
another;	 “final”	 here	 means	 that	 there	 is	 a	 “steady	 state”—no	 further
change	 in	 temperature—at	 all	 points	 of	 the	 rod.	 The	 solution	must	 not
only	satisfy	 the	general	equation,	 it	must	also	fit	 the	surface-temperatures,	or
the	initial	boundary	conditions.

The	 second	 is	 the	 harder	 part.	 For	 a	 cylindrical	 rod	 the	 problem	 is
quite	different	 from	the	corresponding	problem	for	a	bar	of	rectangular
cross	section.	The	theory	of	boundary-value	problems	deals	with	the	fitting	of
solutions	 of	 differential	 equations	 to	 prescribed	 initial	 conditions.	 It	 is
largely	a	creation	of	the	past	eighty	years.	In	a	sense	mathematical	physics
is	co-extensive	with	the	theory	of	boundary-value	problems.



*		*		*

The	 second	 of	 Newton’s	 great	 inspirations	 which	 came	 to	 him	 as	 a
youth	 of	 twenty	 two	 or	 three	 in	 1666	 at	 Woolsthorpe	 was	 his	 law	 of
universal	 gravitation	 (already	 stated).	 In	 this	 connection	 we	 shall	 not
repeat	the	story	of	the	falling	apple.	To	vary	the	monotony	of	the	classical
account	we	shall	give	Gauss’	version	of	the	legend	when	we	come	to	him.

Most	authorities	agree	that	Newton	did	make	some	rough	calculations
in	 1666	 (he	 was	 then	 twenty	 three)	 to	 see	 whether	 his	 law	 of	 universal
gravitation	 would	 account	 for	 Kepler’s	 laws.	 Many	 years	 later	 (in	 1684)
when	 Halley	 asked	 him	 what	 law	 of	 attraction	 would	 account	 for	 the
elliptical	orbits	of	the	planets	Newton	replied	at	once	the	inverse	square.

“How	 do	 you	 know?”	 Halley	 asked—he	 had	 been	 prompted	 by	 Sir
Christopher	Wren	 and	 others	 to	 put	 the	 question,	 as	 a	 great	 argument
over	the	problem	had	been	going	on	for	some	time	in	London.

“Why,	 I	have	calculated	 it,”	Newton	replied.	On	attempting	 to	 restore
his	calculation	(which	he	had	mislaid)	Newton	made	a	slip,	and	believed
he	 was	 in	 error.	 But	 presently	 he	 found	 his	 mistake	 and	 verified	 his
original	conclusion.

Much	has	been	made	of	Newton’s	twenty	years’	delay	in	the	publication
of	 the	 law	 of	 universal	 gravitation	 as	 an	 undeserved	 setback	 due	 to
inaccurate	 data.	 Of	 three	 explanations	 a	 less	 romantic	 but	 more
mathematical	one	than	either	of	the	others	is	to	be	preferred	here.

Newton’s	delay	was	rooted	in	his	inability	to	solve	a	certain	problem	in
the	 integral	 calculus	which	was	 crucial	 for	 the	whole	 theory	of	 universal
gravitation	 as	 expressed	 in	 the	Newtonian	 law.	Before	he	 could	 account
for	 the	motion	of	both	the	apple	and	the	Moon	Newton	had	to	 find	the
total	 attraction	 of	 a	 solid	 homogeneous	 sphere	 on	 any	 mass	 particle
outside	 the	 sphere.	 For	 every	 particle	 of	 the	 sphere	 attracts	 the	 mass
particle	outside	the	sphere	with	a	force	varying	directly	as	the	product	of
the	masses	of	the	two	particles	and	inversely	as	the	square	of	the	distance
between	them:	how	are	all	 these	separate	attractions,	 infinite	 in	number,
to	be	compounded	or	added	into	one	resultant	attraction?

This	evidently	is	a	problem	in	the	integral	calculus.	Today	it	is	given	in
the	 textbooks	 as	 an	 example	 which	 young	 students	 dispose	 of	 in	 twenty
minutes	or	less.	Yet	it	held	Newton	up	for	twenty	years.	He	finally	solved	it,
of	 course:	 the	 attraction	 is	 the	 same	 as	 if	 the	 entire	mass	 of	 the	 sphere



were	 concentrated	 in	 a	 single	 point	 at	 its	 centre.	 The	 problem	 is	 thus
reduced	 to	 finding	 the	 attraction	 between	 two	mass	 particles	 at	 a	 given
distance	apart,	and	the	immediate	solution	of	this	is	as	stated	in	Newton’s
law.	If	this	is	the	correct	explanation	for	the	twenty	years’	delay,	it	may	give
us	 some	 idea	 of	 the	 enormous	 amount	 of	 labor	 which	 generations	 of
mathematicians	 since	 Newton’s	 day	 have	 expended	 on	 developing	 and
simplifying	 the	calculus	 to	 the	point	where	 very	ordinary	boys	of	 sixteen
can	use	it	effectively.

*		*		*

Although	our	principal	 interest	 in	Newton	centers	about	his	greatness
as	a	mathematician	we	cannot	leave	him	with	his	undeveloped	masterpiece
of	1666.	To	do	so	would	be	to	give	no	idea	of	his	magnitude,	so	we	shall	go
on	to	a	brief	outline	of	his	other	activities	without	entering	into	detail	(for
lack	of	space)	on	any	of	them.

On	his	return	to	Cambridge	Newton	was	elected	a	Fellow	of	Trinity	in
1667	and	in	1669,	at	the	age	of	twenty	six,	succeeded	Barrow	as	Lucasian
Professor	 of	 Mathematics.	 His	 first	 lectures	 were	 on	 optics.	 In	 these	 he
expounded	 his	 own	 discoveries	 and	 sketched	 his	 corpuscular	 theory	 of
light,	according	to	which	light	consists	in	an	emission	of	corpuscles	and	is
not	 a	wave	phenomenon	 as	Huygens	 and	Hooke	 asserted.	Although	 the
two	 theories	 appear	 to	 be	 contradictory	 both	 are	 useful	 today	 in
correlating	 the	 phenomena	 of	 light	 and	 are,	 in	 a	 purely	 mathematical
sense,	 reconciled	 in	 the	 modern	 quantum	 theory.	 Thus	 it	 is	 not	 now
correct	 to	 say,	 as	 it	 may	 have	 been	 a	 few	 years	 ago,	 that	 Newton	 was
entirely	wrong	in	his	corpuscular	theory.

The	 following	 year,	 1668,	 Newton	 constructed	 a	 reflecting	 telescope
with	 his	 own	 hands	 and	 used	 it	 to	 observe	 the	 satellites	 of	 Jupiter.	 His
object	 doubtless	 was	 to	 see	 whether	 universal	 gravitation	 really	 was
universal	 by	 observations	 on	 Jupiter’s	 satellites.	 This	 year	 is	 also
memorable	in	the	history	of	the	calculus.	Mercator’s	calculation	by	means
of	 infinite	 series	 of	 an	 area	 connected	 with	 a	 hyperbola	 was	 brought	 to
Newton’s	 attention.	 The	method	 was	 practically	 identical	 with	 Newton’s
own,	which	he	had	not	published,	but	which	he	now	wrote	out,	gave	to	Dr.
Barrow,	 and	 permitted	 to	 circulate	 among	 a	 few	 of	 the	 better
mathematicians.



On	his	election	to	the	Royal	Society	in	1672	Newton	communicated	his
work	on	 telescopes	and	his	corpuscular	 theory	of	 light.	A	commission	of
three,	including	the	cantankerous	Hooke,	was	appointed	to	report	on	the
work	 on	 optics.	 Exceeding	 his	 authority	 as	 a	 referee	 Hooke	 seized	 the
opportunity	 to	 propagandize	 for	 the	 undulatory	 theory	 and	 himself	 at
Newton’s	expense.	At	first	Newton	was	cool	and	scientific	under	criticism,
but	when	the	mathematician	Lucas	and	the	physician	Linus,	both	of	Liège,
joined	Hooke	in	adding	suggestions	and	objections	which	quickly	changed
from	 the	 legitimate	 to	 the	 carping	 and	 the	 merely	 stupid,	 Newton
gradually	began	to	lose	patience.

A	 reading	 of	 his	 correspondence	 in	 this	 first	 of	 his	 irritating
controversies	 should	 convince	 anyone	 that	 Newton	 was	 not	 by	 nature
secretive	 and	 jealous	 of	 his	 discoveries.	 The	 tone	 of	 his	 letters	 gradually
changes	 from	one	 of	 eager	 willingness	 to	 clear	 up	 the	 difficulties	 which
others	 found,	 to	 one	 of	 bewilderment	 that	 scientific	men	 should	 regard
science	 as	 a	 battleground	 for	 personal	 quarrels.	 From	 bewilderment	 he
quickly	passes	 to	cold	anger	and	a	hurt,	 somewhat	childish	resolution	 to
play	by	himself	in	future.	He	simply	could	not	suffer	malicious	fools	gladly.

At	 last,	 in	 a	 letter	 of	November	 18,	 1676,	 he	 says,	 “I	 see	 I	 have	made
myself	a	slave	to	philosophy,	but	if	I	get	free	of	Mr.	Lucas’s	business,	I	will
resolutely	 bid	 adieu	 to	 it	 eternally,	 excepting	 what	 I	 do	 for	 my	 private
satisfaction,	 or	 leave	 to	 come	 out	 after	me;	 for	 I	 see	 a	man	must	 either
resolve	 to	put	out	nothing	new,	or	become	a	 slave	 to	defend	 it.”	Almost
identical	 sentiments	 were	 expressed	 by	 Gauss	 in	 connection	 with	 non-
Euclidean	geometry.

Newton’s	 petulance	 under	 criticism	 and	 his	 exasperation	 at	 futile
controversies	 broke	 out	 again	 after	 the	 publication	 of	 the	 Principia.
Writing	to	Halley	on	June	20,	1688,	he	says,	“Philosophy	[science]	is	such
an	 impertinently	 litigious	 Lady,	 that	 a	man	 had	 as	 good	 be	 engaged	 to
lawsuits,	as	to	have	to	do	with	her.	I	found	it	so	formerly,	and	now	I	am	no
sooner	 come	 near	 her	 again,	 but	 she	 gives	 me	 warning.”	 Mathematics,
dynamics,	and	celestial	mechanics	were	in	fact—we	may	as	well	admit	it—
secondary	 interests	 with	 Newton.	 His	 heart	 was	 in	 his	 alchemy,	 his
researches	in	chronology,	and	his	theological	studies.

It	was	only	because	an	inner	compulsion	drove	him	that	he	turned	as	a
recreation	to	mathematics.	As	early	as	1679,	when	he	was	thirty	seven	(but
when	also	he	had	his	major	discoveries	and	inventions	securely	locked	up



in	his	head	or	in	his	desk),	he	writes	to	the	pestiferous	Hooke:	“I	had	for
some	years	last	been	endeavoring	to	bend	myself	from	philosophy	to	other
studies	in	so	much	that	I	have	long	grutched	the	time	spent	in	that	study
unless	 it	 be	 perhaps	 at	 idle	 hours	 sometimes	 for	 diversion.”	 These
“diversions”	 occasionally	 cost	 him	 more	 incessant	 thought	 than	 his
professed	labors,	as	when	he	made	himself	seriously	ill	by	thinking	day	and
night	about	the	motion	of	the	Moon,	the	only	problem,	he	says,	that	ever
made	his	head	ache.

Another	side	of	Newton’s	 touchiness	 showed	up	 in	 the	spring	of	1673
when	 he	 wrote	 to	 Oldenburg	 resigning	 his	 membership	 in	 the	 Royal
Society.	This	petulant	action	has	been	variously	interpreted.	Newton	gave
financial	 difficulties	 and	 his	 distance	 from	 London	 as	 his	 reasons.
Oldenburg	 took	 the	huffy	mathematician	 at	 his	 word	 and	 told	him	 that
under	 the	 rules	 he	 could	 retain	 his	 membership	 without	 paying.	 This
brought	 Newton	 to	 his	 senses	 and	 he	 withdrew	 his	 resignation,	 having
recovered	his	 temper	 in	 the	meantime.	Nevertheless	Newton	 thought	he
was	about	to	be	hard	pressed.	However,	his	finances	presently	straightened
out	and	he	 felt	better.	 It	may	be	noted	here	 that	Newton	was	no	absent-
minded	dreamer	when	it	came	to	a	question	of	money.	He	was	extremely
shrewd	and	he	died	a	rich	man	for	his	times.	But	if	shrewd	and	thrifty	he
was	also	very	liberal	with	his	money	and	was	always	ready	to	help	a	friend
in	 need	 as	 unobtrusively	 as	 possible.	 To	 young	men	 he	 was	 particularly
generous.

*		*		*

The	 years	 1684-86	mark	 one	 of	 the	 great	 epochs	 in	 the	 history	 of	 all
human	 thought.	 Skilfully	 coaxed	 by	Halley,	Newton	 at	 last	 consented	 to
write	 up	 his	 astronomical	 and	 dynamical	 discoveries	 for	 publication.
Probably	 no	 mortal	 has	 ever	 thought	 as	 hard	 and	 as	 continuously	 as
Newton	 did	 in	 composing	 his	Philosophiae	 Naturalis	 Principia	Mathematica
(Mathematical	 Principles	 of	 Natural	 Philosophy).	 Never	 careful	 of	 his
bodily	health,	Newton	seems	to	have	forgotten	that	he	had	a	body	which
required	 food	and	sleep	when	he	gave	himself	up	 to	 the	composition	of
his	masterpiece.	Meals	were	 ignored	or	 forgotten,	and	on	arising	 from	a
snatch	of	sleep	he	would	sit	on	the	edge	of	the	bed	half-clothed	for	hours,
threading	 the	 mazes	 of	 his	 mathematics.	 In	 1686	 the	 Principia	 was



presented	 to	 the	 Royal	 Society,	 and	 in	 1687	 was	 printed	 at	 Halley’s
expense.

A	description	of	the	contents	of	the	Principia	is	out	of	the	question	here,
but	 a	 small	 handful	 of	 the	 inexhaustible	 treasures	 it	 contains	 may	 be
briefly	 exhibited.	 The	 spirit	 animating	 the	 whole	 work	 is	 Newton’s
dynamics,	his	 law	of	universal	gravitation,	and	 the	application	of	both	 to
the	 solar	 system—“the	 system	 of	 the	 world.”	 Although	 the	 calculus	 has
vanished	 from	 the	 synthetic	 geometrical	 demonstrations,	 Newton	 states
(in	 a	 letter)	 that	 he	 used	 it	 to	 discover	 his	 results	 and,	 having	 done	 so,
proceeded	to	rework	the	proofs	furnished	by	the	calculus	into	geometrical
shape	so	 that	his	contemporaries	might	 the	more	readily	grasp	the	main
theme—the	dynamical	harmony	of	the	heavens.

First,	 Newton	 deduced	 Kepler’s	 empirical	 laws	 from	 his	 own	 law	 of
gravitation,	and	he	showed	how	the	mass	of	the	Sun	can	be	calculated,	also
how	the	mass	of	any	planet	having	a	satellite	can	be	determined.	Second,
he	initiated	the	extremely	important	theory	of	perturbations:	the	Moon,	for
example,	is	attracted	not	only	by	the	Earth	but	by	the	Sun	also;	hence	the
orbit	of	the	Moon	will	be	perturbed	by	the	pull	of	the	Sun.	In	this	manner
Newton	 accounted	 for	 two	 ancient	 observations	 due	 to	Hipparchus	 and
Ptolemy.	Our	own	generation	has	seen	the	now	highly	developed	theory	of
perturbations	 applied	 to	 electronic	 orbits,	 particularly	 for	 the	 helium
atom.	In	addition	to	these	ancient	observations,	seven	other	irregularities
of	 the	Moon’s	motion	 observed	 by	Tycho	Brahe	 (1546-1601),	 Flamsteed
(1646-1719),	and	others,	were	deduced	from	the	law	of	gravitation.

So	much	 for	 lunar	perturbations.	The	 like	applies	also	 to	 the	planets.
Newton	 began	 the	 theory	 of	 planetary	 perturbations,	 which	 in	 the
nineteenth	century	was	to	lead	to	the	discovery	of	the	planet	Neptune	and,
in	the	twentieth,	to	that	of	Pluto.

The	 “lawless”	 comets—still	 warnings	 from	 an	 angered	 heaven	 to
superstitious	 eyes—were	 brought	 under	 the	 universal	 law	 as	 harmless
members	 of	 the	 Sun’s	 family,	 with	 such	 precision	 that	 we	 now	 calculate
and	 welcome	 their	 showy	 return	 (unless	 Jupiter	 or	 some	 other	 outsider
perturbs	 them	unduly),	as	we	did	 in	1910	when	Halley’s	beautiful	comet
returned	promptly	on	schedule	after	an	absence	of	seventy	four	years.

He	began	the	vast	and	still	 incomplete	study	of	planetary	evolution	by
calculating	(from	his	dynamics	and	the	universal	law)	the	flattening	of	the
earth	at	its	poles	due	to	diurnal	rotation,	and	he	proved	that	the	shape	of



a	planet	determines	the	length	of	its	day,	so	that	if	we	knew	accurately	how
flat	 Venus	 is	 at	 the	 poles,	 we	 could	 say	 how	 long	 it	 takes	 her	 to	 turn
completely	 once	 round	 the	 axis	 joining	 her	 poles.	 He	 calculated	 the
variation	of	weight	with	latitude.	He	proved	that	a	hollow	shell,	bounded
by	concentric	spherical	surfaces,	and	homogeneous,	exerts	no	force	on	a
small	 body	 anywhere	 inside	 it.	 The	 last	 has	 important	 consequences	 in
electrostatics—also	 in	the	realm	of	 fiction,	where	 it	has	been	used	as	 the
motif	for	amusing	fantasies.

The	precession	of	 the	equinoxes	was	beautifully	 accounted	 for	by	 the
pull	of	the	Moon	and	the	Sun	on	the	equatorial	bulge	of	the	Earth	causing
our	 planet	 to	 wobble	 like	 a	 top.	 The	mysterious	 tides	 also	 fell	 naturally
into	 the	 grand	 scheme—both	 the	 lunar	 and	 the	 solar	 tides	 were
calculated,	and	from	the	observed	heights	of	the	spring	and	neap	tides	the
mass	of	the	Moon	was	deduced.	The	First	Book	laid	down	the	principles	of
dynamics;	the	Second,	the	motion	of	bodies	in	resisting	media,	and	fluid
motion;	the	Third	was	the	famous	“System	of	the	World.”

Probably	no	other	law	of	nature	has	so	simply	unified	any	such	mass	of
natural	 phenomena	 as	 has	 Newton’s	 law	 of	 universal	 gravitation	 in	 his
Principia.	 It	 is	 to	 the	 credit	 of	 Newton’s	 contemporaries	 that	 they
recognized	at	least	dimly	the	magnitude	of	what	had	been	done,	although
but	 few	 of	 them	 could	 follow	 the	 reasoning	 by	 which	 the	 stupendous
miracle	of	unification	had	been	achieved,	and	made	of	the	author	of	the
Principia	a	demigod.	Before	many	years	had	passed	the	Newtonian	system
was	 being	 taught	 at	 Cambridge	 (1699)	 and	 Oxford	 (1704).	 France
slumbered	 on	 for	 half	 a	 century,	 still	 dizzy	 from	 the	 whirl	 of	 Descartes’
angelic	 vortices.	But	presently	mysticism	gave	way	 to	 reason	and	Newton
found	his	greatest	successor	not	in	England	but	in	France,	where	Laplace
set	himself	the	task	of	continuing	and	rounding	out	the	Principia.

*		*		*

After	 the	 Principia	 the	 rest	 is	 anticlimax.	 Although	 the	 lunar	 theory
continued	 to	 plague	 and	 “divert”	 him,	 Newton	 was	 temporarily	 sick	 of
“philosophy”	and	welcomed	the	opportunity	to	turn	to	less	celestial	affairs.
James	II,	obstinate	Scot	and	bigoted	Catholic	that	he	was,	had	determined
to	force	the	University	to	grant	a	master’s	degree	to	a	Benedictine	over	the
protests	of	the	academic	authorities.	Newton	was	one	of	the	delegates	who



in	1687	went	to	London	to	present	the	University’s	case	before	the	Court
of	High	Commission	presided	over	by	that	great	and	blackguardly	lawyer
the	 Lord	High	 Chancellor	 George	 Jeffreys—“infamous	 Jeffreys”	 as	 he	 is
known	in	history.	Having	insulted	the	leader	of	the	delegates	 in	masterly
fashion,	 Jeffreys	 dismissed	 the	 rest	 with	 the	 injunction	 to	 go	 and	 sin	 no
more.	 Newton	 apparently	 held	 his	 peace.	 Nothing	 was	 to	 be	 gained	 by
answering	 a	 man	 like	 Jeffreys	 in	 his	 own	 kennel.	 But	 when	 the	 others
would	 have	 signed	 a	 disgraceful	 compromise	 it	 was	 Newton	 who	 put
backbone	 into	 them	 and	 kept	 them	 from	 signing.	 He	 won	 the	 day;
nothing	 of	 any	 value	 was	 lost—not	 even	 honor.	 “An	 honest	 courage	 in
these	matters,”	he	wrote	later,	“will	secure	all,	having	law	on	our	sides.”

Cambridge	 evidently	 appreciated	 Newton’s	 courage,	 for	 in	 January,
1689,	 he	 was	 elected	 to	 represent	 the	 University	 at	 the	 Convention
Parliament	after	James	II	had	fled	the	country	to	make	room	for	William
of	 Orange	 and	 his	 Mary,	 and	 the	 faithful	 Jeffreys	 was	 burrowing	 into
dunghills	to	escape	the	ready	justice	of	the	mob.	Newton	sat	in	Parliament
till	its	dissolution	in	February,	1690.	To	his	credit	he	never	made	a	speech
in	the	place.	But	he	was	faithful	to	his	office	and	not	averse	to	politics;	his
diplomacy	had	much	to	do	with	keeping	the	turbulent	University	loyal	to
the	decent	King	and	Queen.

Newton’s	 taste	 of	 “real	 life”	 in	London	proved	his	 scientific	 undoing.
Influential	 and	 officious	 friends,	 including	 the	 philosopher	 John	 Locke
(1632-1704)	of	Human	Understanding	fame,	convinced	Newton	that	he	was
not	getting	his	share	of	the	honors.	The	crowning	imbecility	of	the	Anglo-
Saxon	 breed	 is	 its	 dumb	 belief	 in	 public	 office	 or	 an	 administrative
position	as	the	supreme	honor	for	a	man	of	intellect.	The	English	finally
(1699)	 made	 Newton	 Master	 of	 the	 Mint	 to	 reform	 and	 supervise	 the
coinage	of	the	Realm.	For	utter	bathos	this	“elevation”	of	the	author	of	the
Principia	is	surpassed	only	by	the	jubilation	of	Sir	David	Brewster	in	his	life
of	 Newton	 (i860)	 over	 the	 “well-merited	 recognition”	 thus	 accorded
Newton’s	genius	by	the	English	people.	Of	course	if	Newton	really	wanted
anything	of	 the	sort	 there	 is	nothing	to	be	said;	he	had	earned	the	right
millions	of	times	over	to	do	anything	he	desired.	But	his	busybody	friends
need	not	have	egged	him	on.

It	did	not	happen	all	 at	once.	Charles	Montagu,	 later	Earl	of	Halifax,
Fellow	of	Trinity	College	and	a	close	friend	of	Newton,	aided	and	abetted
by	 the	 everlastingly	 busy	 and	 gossipy	 Samuel	 Pepys	 (1633-1703)	 of	 diary



notoriety,	stirred	up	by	Locke	and	by	Newton	himself,	began	pulling	wires
to	get	Newton	some	recognition	“worthy”	of	him.

The	negotiations	evidently	did	not	always	 run	 smoothly	and	Newton’s
somewhat	suspicious	temperament	caused	him	to	believe	that	some	of	his
friends	were	playing	fast	and	loose	with	him—as	they	probably	were.	The
loss	 of	 sleep	 and	 the	 indifference	 to	 food	 which	 had	 enabled	 him	 to
compose	 the	 Principia	 in	 eighteen	 months	 took	 their	 revenge.	 In	 the
autumn	 of	 1692	 (when	 he	 was	 nearly	 fifty	 and	 should	 have	 been	 at	 his
best)	 Newton	 fell	 seriously	 ill.	 Aversion	 to	 all	 food	 and	 an	 almost	 total
inability	 to	 sleep,	aggravated	by	a	 temporary	persecution	mania,	brought
on	 something	 dangerously	 close	 to	 a	 total	 mental	 collapse.	 A	 pathetic
letter	 of	 September	 16,	 1693	 to	 Locke,	 written	 after	 his	 recovery,	 shows
how	ill	he	had	been.

*		*		*

SIR,
Being	of	opinion	that	you	endeavored	to	embroil	me	with	women	and	by	other	means,I	I

was	 so	 much	 affected	 with	 it	 that	 when	 one	 told	 me	 you	 were	 sickly	 and	 would	 not	 live,	 I
answered,	’twere	better	if	you	were	dead.	I	desire	you	to	forgive	me	for	this	uncharitableness.	For
I	 am	 now	 satisfied	 that	 what	 you	 have	 done	 is	 just,	 and	 I	 beg	 your	 pardon	 for	 having	 hard
thoughts	of	you	for	it,	and	for	representing	that	you	struck	at	the	root	of	morality,	in	a	principle
you	laid	down	in	your	book	of	ideas,	and	designed	to	pursue	in	another	book,	and	that	I	took
you	for	a	Hobbist.	I	beg	your	pardon	also	for	saying	or	thinking	that	there	was	a	design	to	sell	me
an	office,	or	to	embroil	me.

I	am	your	most	humble
And	unfortunate	servant,

IS.	NEWTON

*		*		*

The	news	of	Newton’s	illness	spread	to	the	Continent	where,	naturally,
it	was	greatly	exaggerated.	His	friends,	including	one	who	was	to	become
his	 bitterest	 enemy,	 rejoiced	 at	 his	 recovery.	 Leibniz	 wrote	 to	 an
acquaintance	 expressing	 his	 satisfaction	 that	 Newton	 was	 himself	 again.
But	in	the	very	year	of	his	recovery	(1693)	Newton	heard	for	the	first	time
that	 the	calculus	was	becoming	well	known	on	the	Continent	and	that	 it
was	commonly	attributed	to	Leibniz.

The	 decade	 after	 the	 publication	 of	 the	 Principia	 was	 about	 equally
divided	 between	 alchemy,	 theology,	 and	 worry,	 with	 more	 or	 less



involuntary	 and	headachy	 excursions	 into	 the	 lunar	 theory.	Newton	 and
Leibniz	were	still	on	cordial	terms.	Their	respective	“friends,”	ignorant	as
Kaffirs	 of	 all	mathematics	 and	 of	 the	 calculus	 in	 particular,	 had	 not	 yet
decided	 to	 pit	 one	 against	 the	 other	 with	 charges	 of	 plagiarism	 in	 the
invention	 of	 the	 calculus,	 and	 even	 grosser	 dishonesty,	 in	 the	 most
shameful	 squabble	 over	 priority	 in	 the	 history	 of	 mathematics.	 Newton
recognized	 Leibniz’	 merits,	 Leibniz	 recognized	 Newton’s,	 and	 at	 this
peaceful	stage	of	their	acquaintance	neither	for	a	moment	suspected	that
the	 other	 had	 stolen	 so	much	 as	 a	 single	 idea	 of	 the	 calculus	 from	 the
other.

Later,	 in	 1712,	 when	 even	 the	man	 in	 the	 street—the	 zealous	 patriot
who	 knew	nothing	 of	 the	 facts—realized	 vaguely	 that	Newton	had	 done
something	 tremendous	 in	mathematics	 (more,	probably,	 as	Leibniz	 said,
than	had	been	done	in	all	history	before	him),	the	question	as	to	who	had
invented	the	calculus	became	a	matter	of	acute	national	 jealousy,	and	all
educated	 England	 rallied	 behind	 its	 somewhat	 bewildered	 champion,
howling	that	his	rival	was	a	thief	and	a	liar.

Newton	 at	 first	 was	 not	 to	 blame.	Nor	was	 Leibniz.	 But	 as	 the	British
sporting	instinct	presently	began	to	assert	itself,	Newton	acquiesced	in	the
disgraceful	attack	and	himself	suggested	or	consented	to	shady	schemes	of
downright	dishonesty	designed	to	win	 the	 international	championship	at
any	 cost—even	 that	 of	 national	 honor.	 Leibniz	 and	 his	 backers	 did
likewise.	 The	 upshot	 of	 it	 all	 was	 that	 the	 obstinate	 British	 practically
rotted	mathematically	for	all	of	a	century	after	Newton’s	death,	while	the
more	 progressive	 Swiss	 and	 French,	 following	 the	 lead	 of	 Leibniz,	 and
developing	 his	 incomparably	 better	 way	 of	 merely	 writing	 the	 calculus,
perfected	the	subject	and	made	it	the	simple,	easily	applied	implement	of
research	that	Newton’s	 immediate	successors	should	have	had	the	honor
of	making	it.

*		*		*

In	1696,	at	 the	age	of	 fifty	 four,	Newton	became	Warden	of	 the	Mint.
His	 job	was	 to	reform	the	coinage.	Having	done	so,	he	was	promoted	 in
1699	 to	 the	 dignity	 of	Master.	 The	 only	 satisfaction	mathematicians	 can
take	in	this	degradation	of	the	supreme	intellect	of	ages	is	the	refutation
which	 it	 afforded	 of	 the	 silly	 superstition	 that	 mathematicians	 have	 no



practical	sense.	Newton	was	one	of	the	best	Masters	the	Mint	ever	had.	He
took	his	job	seriously.

In	 1701-2	 Newton	 again	 represented	 Cambridge	 University	 in
Parliament,	 and	 in	 1703	 was	 elected	 President	 of	 the	 Royal	 Society,	 an
honorable	office	to	which	he	was	reëlected	time	after	time	till	his	death	in
1727.	In	1705	he	was	knighted	by	good	Queen	Anne.	Probably	this	honor
was	 in	 recognition	 of	 his	 services	 as	 a	 money-changer	 rather	 than	 in
acknowledgment	of	his	preëminence	in	the	temple	of	wisdom.	This	is	all
as	it	should	be:	if	“a	riband	to	stick	in	his	coat”	is	the	reward	of	a	turncoat
politician,	why	should	a	man	of	intellect	and	integrity	feel	flattered	if	his
name	appears	in	the	birthday	list	of	honors	awarded	by	the	King?	Caesar
may	be	rendered	the	things	that	are	his,	ungrudgingly;	but	when	a	man	of
science,	as	 a	man	 of	 science,	 snaps	 up	 the	 droppings	 from	 the	 table	 of
royalty	 he	 joins	 the	 mangy	 and	 starved	 dogs	 licking	 the	 sores	 of	 the
beggars	at	the	feast	of	Dives.	It	 is	to	be	hoped	that	Newton	was	knighted
for	his	services	to	the	money-changers	and	not	for	his	science.

Was	Newton’s	mathematical	genius	dead?	Most	emphatically	no.	He	was
still	the	equal	of	Archimedes.	But	the	wiser	old	Greek,	born	aristocrat	that
he	was—fortunately,	cared	nothing	for	the	honors	of	a	position	which	had
always	been	his;	to	the	very	last	minute	of	his	long	life	he	mathematicized
as	powerfully	as	he	had	in	his	youth.	But	for	the	accidents	of	preventable
disease	 and	 poverty,	 mathematicians	 are	 a	 long-lived	 race	 intellectually;
their	 creativeness	 outlives	 that	 of	 poets,	 artists,	 and	 even	of	 scientists,	 by
decades.	Newton	was	still	as	virile	of	intellect	as	he	had	ever	been.	Had	his
officious	 friends	but	 let	him	alone	Newton	might	easily	have	created	 the
calculus	 of	 variations,	 an	 instrument	 of	 physical	 and	 mathematical
discovery	 second	 only	 to	 the	 calculus,	 instead	 of	 leaving	 it	 for	 the
Bernoullis,	Euler,	and	Lagrange	to	initiate.	He	had	already	given	a	hint	of
it	 in	 the	 Principia	 when	 he	 determined	 the	 shape	 of	 the	 surface	 of
revolution	which	would	cleave	through	a	fluid	with	the	least	resistance.	He
had	it	in	him	to	lay	down	the	broad	lines	of	the	whole	method.	Like	Pascal
when	he	 forsook	 this	world	 for	 the	mistier	 if	more	satisfying	kingdom	of
heaven,	Newton	was	still	a	mathematician	when	he	turned	his	back	on	his
Cambridge	study	and	walked	into	a	more	impressive	sanctum	at	the	Mint.

In	 1696	 Johann	 Bernoulli	 and	 Leibniz	 between	 them	 concocted	 two
devilish	 challenges	 to	 the	mathematicians	 of	 Europe.	 The	 first	 is	 still	 of
importance;	the	second	is	not	in	the	same	class.	Suppose	two	points	to	be



fixed	at	random	in	a	vertical	plane.	What	is	the	shape	of	the	curve	down
which	 a	 particle	 must	 slide	 (without	 friction)	 under	 the	 influence	 of
gravity	 so	 as	 to	pass	 from	 the	upper	point	 to	 the	 lower	 in	 the	 least	 time?
This	 is	 the	 problem	 of	 the	 brachistochrone	 (	 =	 “shortest	 time”).	 After	 the
problem	had	baffled	the	mathematicians	of	Europe	for	six	months,	it	was
proposed	again,	and	Newton	heard	of	 it	 for	the	first	time	on	January	29,
1696,	 when	 a	 friend	 communicated	 it	 to	 him.	He	 had	 just	 come	 home,
tired	out,	from	a	long	day	at	the	Mint.	After	dinner	he	solved	the	problem
(and	 the	 second	 as	 well),	 and	 the	 following	 day	 communicated	 his
solutions	 to	 the	 Royal	 Society	 anonymously.	 But	 for	 all	 his	 caution	 he
could	 not	 conceal	 his	 identity—while	 at	 the	 Mint	 Newton	 resented	 the
efforts	of	mathematicians	and	 scientists	 to	entice	him	 into	discussions	of
scientific	 interest.	 On	 seeing	 the	 solution	 Bernoulli	 at	 once	 exclaimed,
“Ah!	I	recognize	the	lion	by	his	paw.”	(This	is	not	an	exact	translation	of
B’s	Latin.)	They	all	knew	Newton	when	they	saw	him,	even	if	he	did	have	a
moneybag	over	his	head	and	did	not	announce	his	name.

A	second	proof	of	Newton’s	vitality	was	 to	come	 in	1716	when	he	was
seventy	four.	Leibniz	had	rashly	proposed	what	appeared	to	him	a	difficult
problem	 as	 a	 challenge	 to	 the	mathematicians	 of	 Europe	 and	 aimed	 at
Newton	in	particular.II	Newton	received	this	at	five	o’clock	one	afternoon
on	returning	exhausted	from	the	blessed	Mint.	He	solved	it	that	evening.
This	 time	 Leibniz	 somewhat	 optimistically	 thought	 he	 had	 trapped	 the
Lion.	In	all	the	history	of	mathematics	Newton	has	had	no	superior	(and
perhaps	 no	 equal)	 in	 the	 ability	 to	 concentrate	 all	 the	 forces	 of	 his
intellect	on	a	difficulty	at	an	instant’s	notice.

The	story	of	the	honors	that	fall	to	a	man’s	lot	in	his	lifetime	makes	but
trivial	reading	to	his	successors.	Newton	got	all	that	were	worth	having	to	a
living	man.	On	the	whole	Newton	had	as	fortunate	a	life	as	any	great	man
has	ever	had.	His	bodily	health	was	excellent	up	to	his	last	years;	he	never
wore	glasses	and	he	lost	only	one	tooth	in	all	his	life.	His	hair	whitened	at
thirty	but	remained	thick	and	soft	till	his	death.

The	 record	 of	 his	 last	 days	 is	more	human	 and	more	 touching.	 Even
Newton	 could	 not	 escape	 suffering.	 His	 courage	 and	 endurance	 under
almost	constant	pain	during	the	last	two	or	three	years	of	his	life	add	but
another	laurel	to	his	crown	as	a	human	being.	He	bore	the	tortures	of	“the
stone”	 without	 flinching,	 though	 the	 sweat	 rolled	 from	 him,	 and	 always



with	 a	 word	 of	 sympathy	 for	 those	 who	 waited	 on	 him.	 At	 last,	 and
mercifully,	he	was	seriously	weakened	by	“a	persistent	cough,”	and	finally,
after	having	been	eased	of	pain	for	some	days,	died	peacefully	in	his	sleep
between	one	and	 two	o’clock	on	 the	morning	of	March	20,	 1727,	 in	his
eighty	fifth	year.	He	is	buried	in	Westminster	Abbey.

I.	There	had	been	gossip	that	Newton’s	favorite	niece	had	used	her	charms	to	further	Newton’s
advancement.

II.	The	problem	was	to	find	the	orthogonal	trajectories	of	any	one-parameter	family	of	curves	(in
modern	language).



CHAPTER	SEVEN

Master	of	All	Trades

LEIBNIZ

I	have	so	many	ideas	that	may	perhaps	be	of	some	use	in	time	if	others	more	penetrating	than	I	go	deeply	into
them	some	day	and	join	the	beauty	of	their	minds	to	the	labor	of	mine.—G.	W.	LEIBNIZ

“JACK	OF	ALL	TRADES,	master	of	none”	has	its	spectacular	exceptions	like	any
other	 folk	 proverb,	 and	 Gottfried	 Wilhelm	 Leibniz	 (16461716)	 is	 one	 of
them.

Mathematics	was	but	one	of	 the	many	 fields	 in	which	Leibniz	 showed
conspicuous	 genius:	 law,	 religion,	 statecraft,	 history,	 literature,	 logic,
metaphysics,	and	speculative	philosophy	all	owe	to	him	contributions,	any
one	 of	 which	 would	 have	 secured	 his	 fame	 and	 have	 preserved	 his
memory.	“Universal	genius”	can	be	applied	to	Leibniz	without	hyperbole,
as	it	cannot	to	Newton,	his	rival	in	mathematics	and	his	infinite	superior	in
natural	philosophy.

Even	 in	 mathematics	 Leibniz’	 universality	 contrasts	 with	 Newton’s
undeviating	 direction	 to	 a	 unique	 end,	 that	 of	 applying	 mathematical
reasoning	 to	 the	phenomena	of	 the	physical	universe:	Newton	 imagined
one	thing	of	absolutely	the	first	magnitude	in	mathematics;	Leibniz,	 two.
The	first	of	these	was	the	calculus,	the	second,	combinatorial	analysis.	The
calculus	 is	 the	natural	 language	of	 the	 continuous;	 combinatorial	 analysis
does	 for	 the	 discrete	 (see	 Chapter	 1)	 what	 the	 calculus	 does	 for	 the
continuous.	 In	 combinatorial	 analysis	 we	 are	 confronted	 with	 an
assemblage	of	distinct	things,	each	with	an	individuality	of	its	own,	and	we
are	 asked,	 in	 the	 most	 general	 situation,	 to	 state	 what	 relations,	 if	 any,
subsist	 between	 these	 completely	 heterogeneous	 individuals.	 Here	 we
look,	 not	 at	 the	 smoothed-out	 resemblances	 of	 our	 mathematical
population,	but	at	whatever	 it	may	be	 that	 the	 individuals,	as	 individuals,
have	in	common—obviously	not	much.	In	fact	it	seems	as	if,	in	the	end,	all
that	we	can	say	combinatorially,	comes	down	to	a	matter	of	counting	off	the



individuals	 in	 different	 ways,	 and	 comparing	 the	 results.	 That	 this
apparently	 abstract	 and	 seemingly	 barren	 procedure	 should	 lead	 to
anything	 of	 importance	 is	 in	 the	 nature	 of	 a	 miracle,	 but	 it	 is	 a	 fact.
Leibniz	was	a	pioneer	in	this	field,	and	he	was	one	of	the	first	to	perceive
that	 the	 anatomy	 of	 logic—“the	 laws	 of	 thought”—is	 a	 matter	 of
combinatorial	 analysis.	 In	 our	 own	 day	 the	 entire	 subject	 is	 being
arithmetized.

In	Newton	 the	mathematical	 spirit	 of	 his	 age	 took	 definite	 form	 and
substance.	It	was	inevitable	after	the	work	of	Cavalieri	(15981647),	Fermat
(1601-1665),	Wallis	(1616-1703),	Barrow	(16301677),	and	others	 that	 the
calculus	should	presently	get	itself	organized	as	an	autonomous	discipline.
Like	 a	 crystal	 being	 dropped	 into	 a	 saturated	 solution	 at	 the	 critical
instant,	 Newton	 solidified	 the	 suspended	 ideas	 of	 his	 time,	 and	 the
calculus	took	definite	shape.	Any	mind	of	the	first	rank	might	equally	well
have	served	as	the	crystal.	Leibniz	was	the	other	first-rate	mind	of	the	age,
and	he	too	crystallized	the	calculus.	But	he	was	more	than	an	agent	for	the
expression	of	 the	 spirit	of	his	 times,	which	Newton,	 in	mathematics,	was
not.	In	his	dream	of	a	“universal	characteristic”	Leibniz	was	well	over	two
centuries	ahead	of	his	age,	again	only	as	concerns	mathematics	and	logic.
So	far	as	historical	research	has	yet	shown,	Leibniz	was	alone	in	his	second
great	mathematical	dream.

The	 union	 in	 one	 mind	 of	 the	 highest	 ability	 in	 the	 two	 broad,
antithetical	 domains	 of	 mathematical	 thought,	 the	 analytical	 and	 the
combinatorial,	or	the	continuous	and	the	discrete,	was	without	precedent
before	Leibniz	and	without	sequent	after	him.	He	 is	 the	one	man	in	 the
history	 of	 mathematics	 who	 has	 had	 both	 qualities	 of	 thought	 in	 a
superlative	degree.	His	combinatorial	side	was	reflected	in	the	work	of	his
German	successors,	 largely	 in	 trivialities,	and	 it	was	only	 in	 the	 twentieth
century,	when	the	work	of	Whitehead	and	Russell,	following	that	of	Boole
in	 the	 nineteenth,	 partly	 realized	 the	 Leibnizian	 dream	 of	 a	 universal
symbolic	 reasoning,	 that	 the	 supreme	 importance	 for	 all	 mathematical
and	scientific	thought	of	the	combinatorial	side	of	mathematics	became	as
significant	 as	 Leibniz	 had	 predicted	 that	 it	 must.	 Today	 Leibniz’
combinatorial	method,	as	developed	in	symbolic	logic	and	its	extensions,
is	 as	 important	 for	 the	 analysis	 that	 he	 and	 Newton	 started	 toward	 its
present	complexity	as	analysis	itself	is;	for	the	symbolic	method	offers	the



only	prospect	 in	sight	of	clearing	mathematical	analysis	of	 the	paradoxes
and	antinomies	that	have	infested	its	foundations	since	Zeno.

Combinatorial	analysis	has	already	been	mentioned	in	connection	with
the	work	of	Fermat	and	Pascal	in	the	mathematical	theory	of	probability.
This,	 however,	 is	 only	 a	 detail	 in	 the	 “universal	 characteristic”	 which
Leibniz	 had	 in	 mind	 and	 toward	 which	 (as	 will	 appear)	 he	 took	 a
considerable	 first	 step.	 But	 the	 development	 and	 applications	 of	 the
calculus	 offered	 an	 irresistible	 attraction	 to	 the	 mathematicians	 of	 the
eighteenth	century,	and	Leibniz’	program	was	not	 taken	up	 seriously	 till
the	1840’s.	Thereafter	it	was	again	ignored	except	by	a	few	nonconformists
to	 mathematical	 fashion	 until	 1910,	 when	 the	 modern	 movement	 in
symbolic	reasoning	originated	in	another	Principia,	that	of	Whitehead	and
Russell,	Principia	Mathematica.

Since	 1910	 the	 program	 has	 become	 one	 of	 the	 major	 interests	 of
modern	mathematics.	By	a	curious	sort	of	“eternal	recurrence”	the	theory
of	 probability,	 where	 combinatorial	 analysis	 in	 the	 narrow	 sense	 (as
applied	 by	 Pascal,	 Fermat,	 and	 their	 successors)	 first	 appeared,	 has
recently	come	under	Leibniz’	program	in	the	fundamental	revision	of	the
basic	concepts	of	probability	which	experience,	partly	in	the	new	quantum
mechanics,	has	shown	to	be	desirable;	and	today	the	theory	of	probability
is	 on	 its	 way	 to	 becoming	 a	 province	 in	 the	 empire	 of	 symbolic	 logic
—“combinatoric”	in	the	broad	sense	of	Leibniz.

The	part	Leibniz	played	in	the	creation	of	the	calculus	was	noted	in	the
preceding	chapter,	also	the	disastrous	controversy	to	which	that	part	gave
rise.	 For	 long	 after	 both	 Newton	 and	 Leibniz	 were	 dead	 and	 buried
(Newton	 in	 Westminster	 Abbey,	 a	 relic	 to	 be	 reverenced	 by	 the	 whole
English-speaking	race;	Leibniz,	indifferently	cast	off	by	his	own	people,	in
an	obscure	grave	where	only	 the	men	with	shovels	and	his	own	secretary
heard	 the	dirt	 thudding	down	on	 the	coffin),	Newton	carried	off	 all	 the
honors—or	dishonors,	at	least	wherever	English	is	spoken.

Leibniz	did	not	himself	elaborate	his	great	project	of	reducing	all	exact
reasoning	to	a	symbolical	technique.	Nor,	for	that	matter,	has	it	been	done
yet.	But	he	did	imagine	it	all,	and	he	did	make	a	significant	start.	Servitude
to	 the	 princelings	 of	 his	 day	 to	 earn	worthless	 honors	 and	more	money
than	he	needed,	the	universality	of	his	mind,	and	exhausting	controversies
during	 his	 last	 years,	 all	 militated	 against	 the	 whole	 creation	 of	 a
masterpiece	such	as	Newton	achieved	in	his	Principia.	In	the	bare	summary



of	 what	 Leibniz	 accomplished,	 his	multifarious	 activities	 and	 his	 restless
curiosity,	 we	 shall	 see	 the	 familiar	 tragedy	 of	 frustration	 which	 has
prematurely	withered	more	 than	one	mathematical	 talent	of	 the	highest
order—Newton,	 pursuing	 a	 popular	 esteem	 not	 worthy	 his	 spitting	 on,
and	 Gauss	 seduced	 from	 his	 greater	 work	 by	 his	 necessity	 to	 gain	 the
attention	of	men	who	were	his	 intellectual	 inferiors.	Only	Archimedes	of
all	the	greatest	mathematicians	never	wavered.	He	alone	was	born	into	the
social	 class	 to	 which	 the	 others	 strove	 to	 elevate	 themselves;	 Newton
crudely	 and	 directly;	 Gauss	 indirectly	 and	 no	 doubt	 subconsciously,	 by
seeking	the	approbation	of	men	of	established	reputation	and	recognized
social	 standing,	 although	 he	 himself	 was	 the	 simplest	 of	 the	 simple.	 So
there	may	after	all	be	something	to	be	said	for	aristocracy:	its	possession	by
birthright	or	other	social	discrimination	is	the	one	thing	that	will	teach	its
fortunate	possessor	its	worthlessness.

In	 the	case	of	Leibniz	 the	greed	 for	money	which	he	caught	 from	his
aristocratic	 employers	 contributed	 to	 his	 intellectual	 dalliance:	 he	 was
forever	 disentangling	 the	 genealogies	 of	 the	 semi-royal	 bastards	 whose
descendants	 paid	 his	 generous	 wages,	 and	 proving	 with	 his	 unexcelled
knowledge	of	 the	 law	 their	 legitimate	 claims	 to	duchies	 into	which	 their
careless	ancestors	had	neglected	to	fornicate	them.	But	more	disastrously
than	 his	 itch	 for	money	 his	 universal	 intellect,	 capable	 of	 anything	 and
everything	 had	 he	 lived	 a	 thousand	 years	 instead	 of	 a	 meager	 seventy,
undid	 him.	 As	 Gauss	 blamed	 him	 for	 doing,	 Leibniz	 squandered	 his
splendid	talent	for	mathematics	on	a	diversity	of	subjects	in	all	of	which	no
human	being	could	hope	to	be	supreme,	whereas—according	to	Gauss—
he	had	in	him	supremacy	in	mathematics.	But	why	censure	him?	He	was
what	he	was,	and	willy-nilly	he	had	to	“dree	his	weird.”	The	very	diffusion
of	his	genius	made	him	capable	of	the	dream	which	Archimedes,	Newton,
and	Gauss	missed—the	 “universal	 characteristic.”	Others	may	bring	 it	 to
realization;	Leibniz	did	his	part	in	dreaming	it	to	be	possible.

Leibniz	may	be	said	to	have	lived	not	one	life	but	several.	As	a	diplomat,
historian,	philosopher,	and	mathematician	he	did	enough	in	each	field	to
fill	one	ordinary	working	 life.	Younger	 than	Newton	by	about	 four	years,
he	was	born	at	Leipzig	on	July	1,	1646,	and	living	only	seventy	years	against
Newton’s	eighty	 five,	died	 in	Hanover	on	November	14,	1716.	His	 father
was	a	professor	of	moral	philosophy	and	came	of	a	good	family	which	had
served	 the	 government	 of	 Saxony	 for	 three	 generations.	 Thus	 young



Leibniz’	earliest	years	were	passed	in	an	atmosphere	of	scholarship	heavily
charged	with	politics.

At	the	age	of	six	he	lost	his	father,	but	not	before	he	had	acquired	from
him	 a	 passion	 for	 history.	 Although	 he	 attended	 a	 school	 in	 Leipzig,
Leibniz	was	 largely	self-taught	by	 incessant	reading	in	his	 father’s	 library.
At	 eight	 he	 began	 the	 study	 of	 Latin	 and	 by	 twelve	 had	 mastered	 it
sufficiently	to	compose	creditable	Latin	verse.	From	Latin	he	passed	on	to
Greek	which	he	also	learned	largely	by	his	own	efforts.

At	 this	 stage	 his	 mental	 development	 parallels	 that	 of	 Descartes:
classical	studies	no	longer	satisfied	him	and	he	turned	to	logic.	From	his
attempts	as	a	boy	of	 less	 than	fifteen	to	reform	logic	as	presented	by	 the
classicists,	 the	 scholastics,	 and	 the	 Christian	 fathers,	 developed	 the	 first
germs	of	his	Characteristica	Universalis	or	Universal	Mathematics,	which,	as
has	 been	 shown	 by	 Couturat,	 Russell,	 and	 others,	 is	 the	 clue	 to	 his
metaphysics.	 The	 symbolic	 logic	 invented	 by	 Boole	 in	 1847-54	 (to	 be
discussed	 in	 a	 later	 chapter)	 is	only	 that	part	of	 the	Characteristica	which
Leibniz	 called	 calculus	 raticinator.	 His	 own	 description	 of	 the	 universal
characteristic	will	be	quoted	presently.

At	 the	 age	 of	 fifteen	 Leibniz	 entered	 the	 University	 of	 Leipzig	 as	 a
student	 in	 law.	The	law,	however,	did	not	occupy	all	his	 time.	In	his	 first
two	years	he	read	widely	in	philosophy	and	for	the	first	time	became	aware
of	 the	 new	 world	 which	 the	modern,	 or	 “natural”	 philosophers,	 Kepler,
Galileo,	and	Descartes	had	discovered.	Seeing	that	this	newer	philosophy
could	 be	 understood	 only	 by	 one	 acquainted	 with	mathematics,	 Leibniz
passed	 the	 summer	of	1663	at	 the	University	of	 Jena,	where	he	attended
the	mathematical	 lectures	of	Erhard	Weigel,	a	man	of	considerable	 local
reputation	but	scarcely	a	mathematician.

On	returning	to	Leipzig	he	concentrated	on	law.	By	1666,	at	the	age	of
twenty,	he	was	thoroughly	prepared	for	his	doctor’s	degree	in	law.	This	is
the	year,	we	recall,	in	which	Newton	began	the	rustication	at	Woolsthorpe
that	gave	him	the	calculus	and	his	law	of	universal	gravitation.	The	Leipzig
faculty,	 bilious	 with	 jealousy,	 refused	 Leibniz	 his	 degree,	 officially	 on
account	of	his	 youth,	actually	because	he	knew	more	about	 law	 than	 the
whole	dull	lot	of	them.

Before	 this	 he	 had	 taken	his	 bachelor’s	 degree	 in	 1663	 at	 the	 age	 of
seventeen	 with	 a	 brilliant	 essay	 foreshadowing	 one	 of	 the	 cardinal
doctrines	of	his	mature	philosophy.	We	shall	not	take	space	to	go	into	this,



but	it	may	be	mentioned	that	one	possible	interpretation	of	Leibniz’	essay
is	the	doctrine	of	“the	organism	as	a	whole,”	which	one	progressive	school
of	biologists	and	another	of	psychologists	has	found	attractive	in	our	own
time.

Disgusted	at	 the	pettiness	of	 the	Leipzig	 faculty	Leibniz	 left	his	native
town	for	good	and	proceeded	to	Nuremberg	where,	on	November	5,	1666,
at	the	affiliated	University	of	Altdorf,	he	was	not	only	granted	his	doctor’s
degree	at	once	for	his	essay	on	a	new	method	(the	historical)	of	teaching
law,	but	was	begged	to	accept	the	University	professorship	of	law.	But,	like
Descartes	 refusing	 the	offer	of	a	 lieutenant-generalship	because	he	knew
what	he	wanted	out	of	life,	Leibniz	declined,	saying	he	had	very	different
ambitions.	What	these	may	have	been	he	did	not	divulge.	It	seems	unlikely
that	 they	 could	 have	 been	 the	 higher	 pettifogging	 for	 princelets	 into
which	 fate	 presently	 kicked	 him.	 Leibniz’	 tragedy	 was	 that	 he	 met	 the
lawyers	before	the	scientists.

His	essay	on	the	teaching	of	the	law	and	its	proposed	recodification	was
composed	 on	 the	 journey	 from	Leipzig	 to	Nuremberg.	This	 illustrates	 a
lifelong	characteristic	of	Leibniz,	his	ability	to	work	anywhere,	at	any	time,
under	any	conditions.	He	 read,	wrote,	 and	 thought	 incessantly.	Much	of
his	mathematics,	to	say	nothing	of	his	other	wonderings	on	everything	this
side	 of	 eternity	 and	 beyond,	 was	 written	 out	 in	 the	 jolting,	 draughty
rattletraps	 that	 bumped	 him	 over	 the	 cow	 trails	 of	 seventeenth	 century
Europe	 as	 he	 sped	 hither	 and	 thither	 at	 his	 employers’	 erratic	 bidding.
The	harvest	 of	 all	 this	 ceaseless	 activity	was	 a	mass	 of	papers,	 of	 all	 sizes
and	 all	 qualities,	 as	 big	 as	 a	 young	 haystack,	 that	 has	 never	 been
thoroughly	sorted,	much	less	published.	Today	most	of	it	lies	baled	in	the
royal	Hanover	library	waiting	the	patient	labors	of	an	army	of	scholars	to
winnow	the	wheat	from	the	straw.

It	 seems	 incredible	 that	one	head	could	have	been	responsible	 for	all
the	 thoughts,	 published	 and	 unpublished,	 that	 Leibniz	 committed	 to
paper.	As	an	item	of	interest	to	phrenologists	and	anatomists	 it	has	been
stated	(whether	reliably	or	not	I	don’t	know)	that	Leibniz’	 skull	was	dug
up,	 measured,	 and	 found	 to	 be	 markedly	 under	 the	 normal	 adult	 size.
There	may	 be	 something	 in	 this,	 as	many	 of	 us	 have	 seen	perfect	 idiots
with	noble	brows	bulging	from	heads	as	big	as	broth	pots.

Newton’s	miraculous	 year	1666	was	also	 the	great	 year	 for	Leibniz.	 In
what	he	called	a	“schoolboy’s	essay,”	De	arte	combinatoria,	the	young	man	of



twenty	aimed	to	create	“a	general	method	in	which	all	truths	of	the	reason	would
be	 reduced	 to	 a	 kind	 of	 calculation.	 At	 the	 same	 time	 this	 would	 be	 a	 sort	 of
universal	language	or	script,	but	infinitely	different	from	all	those	projected	hitherto;
for	the	symbols	and	even	the	words	in	it	would	direct	the	reason;	and	errors,	except
those	 of	 fact,	 would	 be	mere	mistakes	 in	 calculation.	 It	 would	 be	 very	 difficult	 to
form	 or	 invent	 this	 language	 or	 characteristic,	 but	 very	 easy	 to	 understand	 it
without	 any	 dictionaries.”	 In	 a	 later	 description	 he	 confidently	 (and
optimistically)	estimates	how	long	it	would	take	to	carry	out	his	project:	“I
think	a	few	chosen	men	could	turn	the	trick	within	five	years.”	Toward	the
end	of	his	life	Leibniz	regretted	that	he	had	been	too	distracted	by	other
things	 ever	 to	 work	 out	 his	 idea.	 If	 he	 were	 younger	 himself	 or	 had
competent	young	assistants,	he	says,	he	could	still	do	it—a	common	alibi
for	a	talent	squandered	on	snobbery,	greed,	and	intrigue.

To	 anticipate	 slightly,	 it	 may	 be	 said	 that	 Leibniz’	 dream	 struck	 his
mathematical	and	scientific	contemporaries	as	a	dream	and	nothing	more,
to	 be	 politely	 ignored	 as	 the	 fixed	 idea	 of	 an	 otherwise	 sane	 and
universally	 gifted	 genius.	 In	 a	 letter	 of	 September	 8,	 1679,	 Leibniz
(speaking	of	geometry	 in	particular	but	of	all	 reasoning	 in	general)	 tells
Huygens	 of	 a	 “new	 characteristic,	 entirely	 different	 from	Algebra,	 which
will	 have	 great	 advantages	 for	 representing	 exactly	 and	 naturally	 to	 the
mind,	and	without	figures,	everything	that	depends	on	the	imagination.”

Such	a	direct,	 symbolic	way	of	handling	geometry	was	 invented	 in	 the
nineteenth	 century	 by	 Hermann	 Grassmann	 (whose	 work	 in	 algebra
generalized	 that	of	Hamilton).	Leibniz	goes	on	 to	discuss	 the	difficulties
inherent	 in	 the	 project,	 and	 presently	 emphasizes	 what	 he	 considers	 its
superiority	over	the	Cartesian	analytic	geometry.

“But	 its	 principal	 utility	 consists	 in	 the	 consequences	 and	 reasonings
which	can	be	performed	by	the	operations	of	characters	[symbols],	which
could	not	be	expressed	by	diagrams	(or	even	by	models)	without	too	great
elaboration,	or	without	confusing	them	by	an	excessive	number	of	points
and	lines,	so	that	one	would	be	obliged	to	make	an	infinity	of	useless	trials:
in	contrast	this	method	would	lead	surely	and	simply	[to	the	desired	end].
I	 believe	 mechanics	 could	 be	 handled	 by	 this	 method	 almost	 like
geometry.”

Of	 the	 definite	 things	 that	 Leibniz	 did	 in	 that	 part	 of	 his	 universal
characteristic	 which	 is	 now	 called	 symbolic	 logic,	 we	 may	 cite	 his
formulation	 of	 the	 principal	 properties	 of	 logical	 addition	 and	 logical



multiplication,	negation,	identity,	the	null	class,	and	class	inclusion.	For	an
explanation	of	what	some	of	 these	 terms	mean	and	the	postulates	of	 the
algebra	of	logic	we	must	refer	ahead	to	the	chapter	on	Boole.	All	this	fell
by	the	wayside.	Had	it	been	picked	up	by	able	men	when	Leibniz	scattered
it	 broadcast,	 instead	 of	 in	 the	 1840’s,	 the	 history	 of	mathematics	might
now	be	quite	a	different	story	from	what	it	is.	Almost	as	well	never	as	too
soon.

Having	 dreamed	 his	 universal	 dream	 at	 the	 age	 of	 twenty,	 Leibniz
presently	 turned	 to	 something	more	 practical,	 and	 he	 became	 a	 sort	 of
corporation	 lawyer	 and	 glorified	 commercial	 traveller	 for	 the	 Elector	 of
Mainz.	Taking	one	last	spree	in	the	world	of	dreams	before	plunging	up	to
his	chin	into	more	or	less	filthy	politics,	Leibniz	devoted	some	months	to
alchemy	in	the	company	of	the	Rosicrucians	infesting	Nuremberg.

It	was	his	essay	on	a	new	method	of	teaching	law	that	undid	him.	The
essay	 came	 to	 the	 attention	 of	 the	 Elector’s	 right-hand	 statesman,	 who
urged	Leibniz	 to	have	 it	printed	 so	 that	a	copy	might	be	 laid	before	 the
august	Elector.	This	was	done,	and	Leibniz,	after	a	personal	interview,	was
appointed	 to	 revise	 the	 code.	 Before	 long	 he	 was	 being	 entrusted	 with
important	 commissions	 of	 all	 degrees	 of	 delicacy	 and	 shadiness.	 He
became	 a	 diplomat	 of	 the	 first	 rank,	 always	 pleasant,	 always	 open	 and
aboveboard,	but	never	scrupulous,	even	when	asleep.	To	his	genius	is	due,
at	least	partly,	that	unstable	formula	known	as	the	“balance	of	power.”	And
for	 sheer	 cynical	 brilliance,	 it	 would	 be	 hard	 to	 surpass,	 even	 today,
Leibniz’	 great	 dream	 of	 a	 holy	 war	 for	 the	 conquest	 and	 civilization	 of
Egypt.	Napoleon	was	quite	chagrined	when	he	discovered	that	Leibniz	had
anticipated	him	in	this	sublime	vision.

*		*		*

Up	 till	 1672	 Leibniz	 knew	 but	 little	 of	 what	 in	 his	 time	 was	 modern
mathematics.	 He	 was	 then	 twenty	 six	 when	 his	 real	 mathematical
education	began	at	 the	hands	of	Huygens,	whom	he	met	 in	Paris	 in	 the
intervals	 between	 one	 diplomatic	 plot	 and	 another.	 Christian	 Huygens
(1629-1695),	 while	 primarily	 a	 physicist,	 some	 of	 whose	 best	 work	 went
into	 horology	 and	 the	 undulatory	 theory	 of	 light,	 was	 an	 accomplished
mathematician.	 Huygens	 presented	 Leibniz	 with	 a	 copy	 of	 his
mathematical	 work	 on	 the	 pendulum.	 Fascinated	 by	 the	 power	 of	 the



mathematical	 method	 in	 competent	 hands,	 Leibniz	 begged	 Huygens	 to
give	 him	 lessons,	 which	 Huygens,	 seeing	 that	 Leibniz	 had	 a	 first-class
mind,	 gladly	 did.	 Leibniz	 had	 already	 drawn	 up	 an	 impressive	 list	 of
discoveries	 he	 had	 made	 by	 means	 of	 his	 own	methods—phases	 of	 the
universal	 characteristic.	 Among	 these	 was	 a	 calculating	 machine	 far
superior	 to	 Pascal’s,	 which	 handled	 only	 addition	 and	 subtraction;
Leibniz’	machine	did	 also	multiplication,	 division,	 and	 the	 extraction	of
roots.	Under	Huygens’	expert	guidance	Leibniz	quickly	found	himself.	He
was	a	born	mathematician.

The	 lessons	 were	 interrupted	 from	 January	 to	 March,	 1673,	 during
Leibniz’	 absence	 in	 London	 as	 an	 attaché	 for	 the	 Elector.	 While	 in
London,	Leibniz	met	the	English	mathematicians	and	showed	them	some
of	his	work,	 only	 to	 learn	 that	 it	was	 already	 known.	His	English	 friends
told	 him	 of	 Mercator’s	 quadrature	 of	 the	 hyperbola—one	 of	 the	 clues
which	 Newton	 had	 followed	 to	 his	 invention	 of	 the	 calculus.	 This
introduced	Leibniz	to	the	method	of	infinite	series,	which	he	carried	on.
One	of	his	discoveries	 (sometimes	ascribed	 to	 the	Scotch	mathematician
James	 Gregory,	 1638-1675)	 may	 be	 noted:	 if	 π	 is	 the	 ratio	 of	 the
circumference	of	a	circle	to	its	diameter,

the	series	continuing	 in	 the	same	way	 indefinitely.	This	 is	not	a	practical
way	of	calculating	the	numerical	value	of	π	(3.1415926	.	.	.),	but	the	simple
connection	between	π	and	all	the	odd	numbers	is	striking.

During	 his	 stay	 in	 London	 Leibniz	 attended	 meetings	 of	 the	 Royal
Society,	where	he	exhibited	his	calculating	machine.	For	this	and	his	other
work	he	was	elected	a	foreign	member	of	the	Society	before	his	return	to
Paris	 in	March,	 1673.	 He	 and	 Newton	 subsequently	 (1700)	 became	 the
first	foreign	members	of	the	French	Academy	of	Sciences.

Greatly	pleased	with	what	Leibniz	had	done	while	away,	Huygens	urged
him	to	continue.	Leibniz	devoted	every	spare	moment	to	his	mathematics,
and	before	 leaving	Paris	 for	Hanover	 in	1676	 to	enter	 the	 service	of	 the
Duke	 of	 Brunswick-Lüneburg,	 had	 worked	 out	 some	 of	 the	 elementary
formulas	of	the	calculus	and	had	discovered	“the	fundamental	theorem	of
the	calculus”	(see	preceding	chapter)—that	is,	 if	we	accept	his	own	date,
1675.	This	was	not	published	till	July	11,	1677,	eleven	years	after	Newton’s



unpublished	 discovery,	 which	 was	 not	 made	 public	 by	 Newton	 till	 after
Leibniz’	 work	 had	 appeared.	 The	 controversy	 started	 in	 earnest,	 when
Leibniz,	 diplomatically	 shrouding	 himself	 in	 editorial	 omniscience	 and
anonymity,	 wrote	 a	 severely	 critical	 review	 of	Newton’s	 work	 in	 the	Acta
Eruditorum,	which	Leibniz	himself	had	 founded	 in	1682	and	of	which	he
was	editor	in	chief.	In	the	interval	between	1677	and	1704	the	Leibnizian
calculus	had	been	developed	 into	 an	 instrument	 of	 real	 power	 and	 easy
applicability	 on	 the	 Continent,	 largely	 through	 the	 efforts	 of	 the	 Swiss
Bernoullis,	 Jacob	 and	 his	 brother	 Johann,	 while	 in	 England,	 owing	 to
Newton’s	 reluctance	 to	 share	 his	 mathematical	 discoveries	 freely,	 the
calculus	was	still	a	relatively	untried	curiosity.

One	specimen	of	things	that	are	now	easy	for	beginners	in	the	calculus,
but	 which	 cost	 Leibniz	 (and	 possibly	 also	 Newton)	 much	 thought	 and
many	 trials	 before	 the	 right	 way	 was	 found,	 may	 indicate	 how	 far
mathematics	 has	 travelled	 since	 1675.	 Instead	 of	 the	 infinitesimals	 of
Leibniz	we	 shall	use	 the	rates	discussed	 in	 the	preceding	chapter.	 If	u,	v
are	functions	of	x,	how	shall	the	rate	of	change	of	uv	with	respect	to	x	be
expressed	in	terms	of	the	respective	rates	of	change	of	u	and	v	with	respect

to	x?	In	symbols,	what	is	 	in	terms	of	 	and	 	Leibniz	once	thought

it	should	be	 	which	is	nothing	like	the	correct

The	Elector	died	in	1673	and	Leibniz	was	more	or	less	free	during	the
last	of	his	stay	in	Paris.	On	leaving	Paris	in	1676	to	enter	the	service	of	the
Duke	 John	 Frederick	 of	 Brunswick-Lüneburg,	 Leibniz	 proceeded	 to
Hanover	by	way	of	London	and	Amsterdam.	It	was	while	in	the	latter	city
that	he	engineered	one	of	the	shadiest	transactions	in	all	his	long	career	as
a	philosophic	diplomat.	The	history	of	Leibniz’	commerce	with	“the	God-
intoxicated	Jew”	Benedict	de	Spinoza	(1632-1677)	may	be	incomplete,	but
as	 the	 account	 now	 stands	 it	 seems	 that	 for	 once	 Leibniz	 was	 grossly
unethical	 over	 a	matter—of	 all	 things—of	 ethics.	 Leibniz	 seems	 to	 have
believed	 in	 applying	 his	 ethics	 to	 practical	 ends.	He	 carried	 off	 copious
extracts	from	Spinoza’s	unpublished	masterpiece	Ethica	(Ordina	Geometrica
Demonstrata)—a	 treatise	 on	 ethics	 developed	 in	 the	 manner	 of	 Euclid’s
geometry.	When	Spinoza	died	the	following	year	Leibniz	appears	to	have



found	 it	 convenient	 to	 mislay	 his	 souvenirs	 of	 the	 Amsterdam	 visit.
Scholars	in	this	field	seem	to	agree	that	Leibniz’	own	philosophy	wherever
it	touches	ethics	was	appropriated	without	acknowledgment	from	Spinoza.

It	 would	 be	 rash	 for	 anyone	 not	 an	 expert	 in	 ethics	 to	 doubt	 that
Leibniz	 was	 guilty,	 or	 to	 suggest	 that	 his	 own	 thoughts	 on	 ethics	 were
independent	 of	 Spinoza’s.	 Nevertheless	 there	 are	 at	 least	 two	 similar
instances	 in	 mathematics	 (elliptic	 functions,	 non-Euclidean	 geometry)
where	all	the	evidence	at	one	time	was	sufficient	to	convict	several	men	of
dishonesty	 grosser	 than	 that	 attributed	 to	 Leibniz.	 When	 unsuspected
diaries	and	correspondence	were	brought	to	light	years	after	the	death	of
all	 the	 accused	 it	 was	 seen	 that	 all	 were	 entirely	 innocent.	 It	 may	 pay
occasionally	to	believe	the	best	of	human	beings	instead	of	the	worst	until
all	the	evidence	is	 in—which	it	can	never	be	for	a	man	who	is	tried	after
his	death.

*		*		*

The	 remaining	 forty	 years	 of	 Leibniz’	 life	 were	 spent	 in	 the	 trivial
service	of	the	Brunswick	family.	In	all	he	served	three	masters	as	librarian,
historian,	 and	 general	 brains	 of	 the	 family.	 It	 was	 a	 matter	 of	 great
importance	to	such	a	family	to	have	an	exact	history	of	all	its	connections
with	 other	 families	 as	 highly	 favored	 by	 heaven	 as	 itself.	 Leibniz	 was	 no
mere	cataloguer	of	books	in	his	function	as	family	librarian,	but	an	expert
genealogist	 and	 searcher	of	mildewed	archives	 as	well,	whose	 function	 it
was	to	confirm	the	claims	of	his	employers	to	half	the	thrones	of	Europe
or,	 failing	 confirmation,	 to	 manufacture	 evidence	 by	 judicious
suppression.	His	historical	researches	took	him	all	through	Germany	and
thence	to	Austria	and	Italy	in	1687-90.

During	his	stay	in	Italy	Leibniz	visited	Rome	and	was	urged	by	the	Pope
to	accept	the	position	of	librarian	at	the	Vatican.	But	as	a	prerequisite	to
the	 job	 was	 that	 Leibniz	 become	 a	 Catholic	 he	 declined—for	 once
scrupulous.	 Or	 was	 he?	 His	 reluctance	 to	 throw	 up	 one	 good	 post	 for
another	may	have	started	him	off	on	the	next	application	of	his	“universal
characteristic,”	the	most	fantastically	ambitious	of	all	his	universal	dreams.
Had	 he	 pulled	 this	 off	 he	 could	 have	 moved	 into	 the	 Vatican	 without
leaving	his	face	outside.



His	grand	project	was	no	less	than	that	of	reuniting	the	Protestant	and
Catholic	churches.	It	was	then	not	so	long	since	the	first	had	split	off	from
the	second,	so	the	project	was	not	so	insane	as	it	now	sounds.	In	his	wild
optimism	 Leibniz	 overlooked	 a	 law	 which	 is	 as	 fundamental	 for	 human
nature	as	the	second	law	of	thermodynamics	is	for	the	physical	universe—
indeed	 it	 is	 of	 the	 same	 kind:	 all	 creeds	 tend	 to	 split	 into	 two,	 each	 of
which	 in	 turn	splits	 into	 two	more,	and	so	on,	until	after	a	certain	 finite
number	 of	 generations	 (which	 can	 be	 easily	 calculated	 by	 logarithms)
there	are	 fewer	human	beings	 in	any	given	region,	no	matter	how	 large,
than	 there	 are	 creeds,	 and	 further	 attenuations	 of	 the	 original	 dogma
embodied	 in	 the	 first	 creed	 dilute	 it	 to	 a	 transparent	 gas	 too	 subtle	 to
sustain	faith	in	any	human	being,	no	matter	how	small.

A	 quite	 promising	 conference	 at	 Hanover	 in	 1683	 failed	 to	 effect	 a
reconciliation	as	neither	party	could	decide	which	was	to	be	swallowed	by
the	other,	and	both	welcomed	the	bloody	row	of	1688	in	England	between
Catholics	 and	 Protestants	 as	 a	 legitimate	 ground	 for	 adjourning	 the
conference	sine	die.

Having	learned	nothing	from	this	farce	Leibniz	immediately	organized
another.	His	 attempt	 to	 unite	merely	 the	 two	Protestant	 sects	 of	 his	 day
succeeded	 only	 in	 making	 a	 large	 number	 of	 excellent	 men	 more
obstinate	and	sorer	at	one	another	than	they	were	before.	The	Protestant
Conference	dissolved	in	mutual	recriminations	and	curses.

It	 was	 about	 this	 time	 that	Leibniz	 turned	 to	 philosophy	 as	 his	major
consolation.	In	an	endeavor	to	assist	Pascal’s	old	Jansenist	friend	Arnauld,
Leibniz	composed	a	semi-casuistical	treatise	on	metaphysics	destined	to	be
of	use	to	Jansenists	and	others	in	need	of	something	more	subtle	than	the
too	subtle	 logic	of	the	Jesuits.	His	philosophy	occupied	the	remainder	of
Leibniz’	 life	 (when	 he	 was	 not	 engaged	 on	 the	 unending	 history	 of	 the
Brunswick	 family	 for	his	 employers),	 in	 all	 about	 a	quarter	of	 a	 century.
That	a	mind	like	Leibniz’	evolved	a	vast	cloud	of	philosophy	in	twenty	five
years	need	hardly	be	stated.	Doubtless	every	reader	has	heard	something
of	the	ingenious	theory	of	monads—miniature	replicas	of	the	universe	out
of	which	everything	in	the	universe	is	composed,	as	a	sort	of	one	in	all,	all	in
one—by	which	Leibniz	explained	everything	(except	the	monads)	in	this
world	and	the	next.

The	power	of	Leibniz’	method	when	applied	to	philosophy	cannot	be
denied.	As	a	specimen	of	the	theorems	proved	by	Leibniz	in	his	philosophy,



that	concerning	the	existence	of	God	may	be	mentioned.	In	his	attempt	to
prove	the	fundamental	 theorem	of	optimism—“everything	 is	 for	 the	best
in	this	best	of	all	possible	worlds”—Leibniz	was	less	successful,	and	it	was
only	 in	 1759,	 forty	 three	 years	 after	 Leibniz	 had	 died	 neglected	 and
forgotten,	that	a	conclusive	demonstration	was	published	by	Voltaire	in	his
epoch-making	 treatise	 Candide.	 One	 further	 isolated	 result	 may	 be
mentioned.	 Those	 familiar	 with	 general	 relativity	 will	 recall	 that	 “empty
space”—space	totally	devoid	of	matter—is	no	longer	respectable.	Leibniz
rejected	it	as	nonsensical.

The	 list	 of	 Leibniz’	 interests	 is	 still	 far	 from	 complete.	 Economics,
philology,	 international	 law	 (in	 which	 he	 was	 a	 pioneer),	 the
establishment	of	mining	as	a	paying	industry	in	certain	parts	of	Germany,
theology,	 the	 founding	 of	 academies,	 and	 the	 education	 of	 the	 young
Electress	 Sophie	 of	 Brandenburg	 (a	 relative	 of	 Descartes’	 Elisabeth),	 all
shared	 his	 attention,	 and	 in	 each	 of	 them	 he	 did	 something	 notable.
Possibly	 his	 least	 successful	 ventures	 were	 in	 mechanics	 and	 physical
science,	where	his	occasional	blunders	show	up	glaringly	against	the	calm,
steady	light	of	men	like	Galileo,	Newton,	and	Huygens,	or	even	Descartes.

Only	 one	 item	 in	 this	 list	 demands	 further	 attention	 here.	On	 being
called	to	Berlin	in	1700	as	tutor	to	the	young	Electress,	Leibniz	found	time
to	organize	the	Berlin	Academy	of	Sciences.	He	became	its	first	president.
The	Academy	was	still	one	of	the	three	or	four	leading	learned	bodies	in
the	world	till	 the	Nazis	“purged”	 it.	Similar	ventures	 in	Dresden,	Vienna,
and	St.	Petersburg	came	to	nothing	during	Leibniz’	lifetime,	but	after	his
death	the	plans	for	the	St.	Petersburg	Academy	of	Sciences	which	he	had
drawn	up	 for	 Peter	 the	Great	were	 carried	 out.	The	 attempt	 to	 found	 a
Viennese	 Academy	 was	 frustrated	 by	 the	 Jesuits	 when	 Leibniz	 visited
Austria	for	the	last	time,	in	1714.	Their	opposition	was	only	to	have	been
expected	 after	 what	 Leibniz	 had	 done	 for	 Arnauld.	 That	 they	 got	 the
better	of	the	master	diplomat	in	an	affair	of	petty	academic	politics	shows
how	badly	Leibniz	had	begun	to	slip	at	 the	age	of	sixty	eight.	He	was	no
longer	himself,	and	 indeed	his	 last	years	were	but	a	wasted	shadow	from
his	former	glory.

Having	 served	 princes	 all	 his	 life	 he	 now	 received	 the	 usual	 wages	 of
such	 service.	 Ill,	 fast	 ageing,	 and	harassed	by	 controversy,	 he	was	 kicked
out.



Leibniz	 returned	 to	 Brunswick	 in	 September,	 1714,	 to	 learn	 that	 his
employer	 the	 Elector	 George	 Louis—“the	 honest	 blockhead,”	 as	 he	 is
known	in	English	history—having	packed	up	his	duds	and	his	 snuff,	had
left	 for	 London	 to	 become	 the	 first	 German	 King	 of	 England.	 Nothing
would	 have	 pleased	 Leibniz	 better	 than	 to	 follow	 George	 to	 London,
although	his	enemies	at	the	Royal	Society	and	elsewhere	in	England	were
now	numerous	and	vicious	enough	owing	to	the	controversy	with	Newton.
But	the	boorish	George,	now	socially	a	gentleman,	had	no	further	use	for
Leibniz’	diplomacy,	and	curtly	ordered	the	brains	 that	had	helped	to	 lift
him	 into	civilized	 society	 to	 stick	 in	 the	Hanover	 library	and	get	on	with
their	everlasting	history	of	the	illustrious	Brunswick	family.

When	Leibniz	died	 two	years	 later	(1716)	 the	diplomatically	doctored
history	was	still	incomplete.	For	all	his	hard	labor	Leibniz	had	been	unable
to	bring	the	history	down	beyond	the	year	1005,	and	at	that	had	covered
less	than	three	hundred	years.	The	family	was	so	very	tangled	in	its	marital
adventures	that	even	the	universal	Leibniz	could	not	supply	them	all	with
unblemished	scutcheons.	The	Brunswickers	showed	their	appreciation	of
this	 immense	 labor	 by	 forgetting	 all	 about	 it	 till	 1843,	 when	 it	 was
published,	but	whether	 complete	or	 expurgated	will	not	be	known	until
the	rest	of	Leibniz’	manuscripts	have	been	sifted.

Today,	over	three	hundred	years	after	his	death,	Leibniz’	reputation	as
a	 mathematician	 is	 higher	 than	 it	 was	 for	 many,	 many	 years	 after	 his
secretary	followed	him	to	the	grave,	and	it	is	still	rising.

As	a	diplomat	and	statesman	Leibniz	was	as	good	as	 the	cream	of	 the
best	of	 them	 in	any	 time	or	any	place,	 and	 far	brainier	 than	all	of	 them
together.	 There	 is	 but	 one	 profession	 in	 the	 world	 older	 than	 his,	 and
until	 that	 is	made	 respectable	 it	would	be	premature	 to	 try	 any	man	 for
choosing	diplomacy	as	his	means	to	a	livelihood.



CHAPTER	EIGHT

Nature	or	Nurture?

THE	BERNOULLIS

These	 men	 certainly	 accomplished	 much	 and	 admirably	 attained	 the	 goal	 they	 had	 set	 themselves.—
JOHANNES	BERNOULLI

SINCE	THE	GREAT	DEPRESSION	began	deflating	western	civilization	eugenists,
geneticists,	 psychologists,	 politicians,	 and	 dictators—for	 very	 different
reasons—have	taken	a	renewed	interest	in	the	still	unsettled	controversy	of
heredity	 versus	 environment.	 At	 one	 extreme	 the	 hundred-percenter
proletarians	hold	that	anyone	can	be	a	genius	given	the	opportunity;	while
at	 the	other,	 equally	positive	Tories	 assert	 that	 genius	 is	 inborn	 and	will
out	even	in	a	London	slum.	Between	the	two	stretches	a	whole	spectrum	of
belief.	 The	 average	 opinion	 holds	 that	 nature,	 not	 nurture,	 is	 the
determining	 factor	 in	 the	 emergence	 of	 genius,	 but	 that	 without
deliberate	 or	 accidental	 assistance	 genius	 perishes.	 The	 history	 of
mathematics	 offers	 abundant	 material	 for	 a	 study	 of	 this	 interesting
problem.	Without	taking	sides—to	do	so	at	present	would	be	premature—
we	 may	 say	 that	 the	 evidence	 furnished	 by	 the	 life	 histories	 of
mathematicians	seems	to	favor	the	average	opinion.

Probably	 the	most	 striking	 case	history	 is	 that	of	 the	Bernoulli	 family,
which	 in	 three	 generations	 produced	 eight	 mathematicians,	 several	 of
them	outstanding,	who	 in	 turn	produced	 a	 swarm	of	 descendants	 about
half	of	whom	were	gifted	above	the	average	and	nearly	all	of	whom,	down
to	the	present	day,	have	been	superior	human	beings.	No	fewer	than	120
of	 the	 descendants	 of	 the	 mathematical	 Bernoullis	 have	 been	 traced
genealogically,	 and	 of	 this	 considerable	 posterity	 the	 majority	 achieved
distinction—sometimes	amounting	to	eminence—in	the	law,	scholarship,
science,	 literature,	 the	 learned	 professions,	 administration,	 and	 the	 arts.
None	 were	 failures.	 The	 most	 significant	 thing	 about	 a	 majority	 of	 the
mathematical	members	of	this	family	in	the	second	and	third	generations



is	 that	 they	 did	not	 deliberately	 choose	mathematics	 as	 a	 profession	but
drifted	into	it	in	spite	of	themselves	as	a	dipsomaniac	returns	to	alcohol.

As	the	Bernoulli	family	played	a	leading	part	in	developing	the	calculus
and	 its	 applications	 in	 the	 seventeenth	 and	 eighteenth	 centuries,	 they
must	be	given	more	than	a	passing	mention	in	even	the	briefest	account	of
the	evolution	of	modern	mathematics.	The	Bernoullis	and	Euler	were	 in
fact	 the	 leaders	 above	all	others	who	perfected	 the	calculus	 to	 the	point
where	quite	ordinary	men	could	use	 it	 for	 the	discovery	of	 results	which
the	greatest	of	the	Greeks	could	never	have	found.	But	the	mere	volume
of	 the	 Bernoulli	 family’s	 work	 is	 too	 vast	 for	 detailed	 description	 in	 an
account	like	the	present,	so	we	shall	treat	them	briefly	together.

The	 Bernoullis	 were	 one	 of	 many	 Protestant	 families	 who	 fled	 from
Antwerp	 in	 1583	 to	 escape	 massacre	 by	 the	 Catholics	 (as	 on	 St.
Bartholomew’s	Eve)	in	the	prolonged	persecution	of	the	Huguenots.	The
family	sought	refuge	first	in	Frankfort,	moving	on	presently	to	Switzerland,
where	they	settled	at	Basle.	The	founder	of	the	Bernoulli	dynasty	married
into	 one	 of	 the	 oldest	 Basle	 families	 and	 became	 a	 great	 merchant.
Nicolaus	 senior,	 who	 heads	 the	 genealogical	 table,	 was	 also	 a	 great
merchant,	 as	 his	 grandfather	 and	 great-grandfather	 had	 been.	 All	 these
men	married	daughters	of	merchants,	and	with	one	exception—the	great-
grandfather	 mentioned—accumulated	 large	 fortunes.	 The	 exception
showed	the	first	departure	from	the	family	tradition	of	trade	by	following
the	 profession	 of	medicine.	Mathematical	 talent	 was	 probably	 latent	 for



generations	in	this	shrewd	mercantile	family,	but	its	actual	emergence	was
explosively	sudden.

Referring	 now	 to	 the	 genealogical	 table	 we	 shall	 give	 a	 very	 brief
summary	 of	 the	 chief	 scientific	 activities	 of	 the	 eight	 mathematicians
descended	from	Nicolaus	senior	before	continuing	with	the	heredity.

Jacob	I	mastered	the	Leibnizian	form	of	the	calculus	by	himself.	From
1687	 to	his	 death	he	was	 professor	 of	mathematics	 at	Basle.	 Jacob	 I	was
one	 of	 the	 first	 to	 develop	 the	 calculus	 significantly	 beyond	 the	 state	 in
which	 Newton	 and	 Leibniz	 left	 it	 and	 to	 apply	 it	 to	 new	 problems	 of
difficulty	 and	 importance.	 His	 contributions	 to	 analytic	 geometry,	 the
theory	 of	 probability,	 and	 the	 calculus	 of	 variations	 were	 of	 the	 highest
importance.	 As	 the	 last	 will	 recur	 frequently	 (in	 the	 work	 of	 Euler,
Lagrange,	 and	 Hamilton),	 we	 may	 describe	 the	 nature	 of	 some	 of	 the
problems	 attacked	 by	 Jacob	 I	 in	 this	 subject.	 We	 have	 already	 seen	 a
specimen	of	the	type	of	problem	handled	by	the	calculus	of	variations	in
Fermat’s	principle	of	least	time.

The	 calculus	 of	 variations	 is	 of	 very	 ancient	 origin.	 According	 to	 one
legend,I	when	Carthage	was	founded	the	city	was	granted	as	much	land	as
a	 man	 could	 plow	 a	 furrow	 completely	 around	 in	 a	 day.	 What	 shape
should	 the	 furrow	 be,	 given	 that	 a	man	 can	 plow	 a	 straight	 furrow	 of	 a
certain	length	in	a	day?	Mathematically	stated,	what	is	the	figure	which	has
the	greatest	area	of	all	figures	having	perimeters	of	the	same	length?	This
is	 an	 isoperimetrical	 problem;	 the	 answer	 here	 is	 a	 circle.	 This	 seems
obvious,	 but	 it	 is	 by	 no	means	 easy	 to	 prove.	 (The	 elementary	 “proofs”
sometimes	 given	 in	 school	 geometries	 are	 rankly	 fallacious.)	 The
mathematics	of	 the	problem	comes	down	 to	making	 a	 certain	 integral	 a
maximum	subject	to	one	restrictive	condition.	Jacob	I	solved	this	problem
and	generalized	it.II

The	discovery	 that	 the	brachistochrone	 is	a	cycloid	has	been	noted	 in
previous	 chapters.	 This	 fact,	 that	 the	 cycloid	 is	 the	 curve	 of	 quickest
descent,	was	discovered	by	 the	brothers	 Jacob	 I	 and	 Johannes	 I	 in	1697,
and	 almost	 simultaneously	 by	 several	 others.	 But	 the	 cycloid	 is	 also	 the
tautochrone.	 This	 struck	 Johannes	 I	 as	 something	 wonderful	 and
admirable:	 “With	 justice	 we	 may	 admire	 Huygens	 because	 he	 first
discovered	that	a	heavy	particle	falls	on	a	cycloid	in	the	same	time	always,
no	matter	what	 the	 starting-point	may	 be.	But	 you	will	 be	petrified	with
astonishment	when	I	say	that	exactly	this	same	cycloid,	the	tautochrone	of



Huygens,	 is	 the	 brachistochrone	 we	 are	 seeking.”	 (Bliss,	 loc.	 cit.,	 p.	 54.)
Jacob	 also	 waxes	 enthusiastic.	 These	 again	 are	 instances	 of	 the	 sort	 of
problem	attacked	by	 the	calculus	of	 variations.	Lest	 they	 seem	 trivial,	we
repeat	 once	 more	 that	 a	 whole	 province	 of	 mathematical	 physics	 is
frequently	mapped	into	a	simple	variational	principle—like	Fermat’s	of	least
time	in	optics,	or	Hamilton’s	in	dynamics.

After	 Jacob’s	death	his	 great	 treatise	on	 the	 theory	of	probability,	 the
Ars	Conjectandi,	was	published	 in	1713.	This	contains	much	that	 is	 still	of
the	highest	usefulness	in	the	theory	of	probabilities	and	its	applications	to
insurance,	statistics,	and	the	mathematical	study	of	heredity.

Another	 research	 of	 Jacob’s	 shows	 how	 far	 he	 had	 developed	 the
differential	 and	 integral	 calculus:	 continuing	 the	 work	 of	 Leibniz,	 Jacob
made	 a	 fairly	 exhaustive	 study	 of	 catenaries—the	 curves	 in	 which	 a
uniform	chain	hangs	 suspended	between	 two	points,	or	 in	which	 loaded
chains	 hang.	 This	 was	 no	 mere	 curiosity.	 Today	 the	 mathematics
developed	 by	 Jacob	 I	 in	 this	 connection	 finds	 its	 use	 in	 applications	 to
suspension	 bridges	 and	 high-voltage	 transmission	 lines.	 When	 Jacob	 I
worked	all	 this	out	 it	was	new	and	difficult;	 today	 it	 is	an	exercise	 in	 the
first	course	in	the	calculus	or	mechanics.

Jacob	I	and	his	brother	Johannes	I	did	not	always	get	on	well	together.
Johannes	seems	to	have	been	the	more	quarrelsome	of	 the	two,	and	it	 is
certain	 that	 he	 treated	 his	 brother	 with	 something	 pretty	 close	 to
dishonesty	in	the	matter	of	isoperimetrical	problems.	The	Bernoullis	took
their	 mathematics	 in	 deadly	 earnest.	 Some	 of	 their	 letters	 about
mathematics	bristle	with	strong	language	that	is	usually	reserved	for	horse
thieves.	For	his	part	 Johannes	 I	not	only	attempted	 to	 steal	his	brother’s
ideas	but	threw	his	own	son	out	of	the	house	for	having	won	a	prize	from
the	 French	 Academy	 of	 Sciences	 for	 which	 Johannes	 himself	 had
competed.	After	all,	if	rational	human	beings	get	excited	about	a	game	of
cards,	why	 should	 they	not	blow	up	over	mathematics	which	 is	 infinitely
more	exciting?

Jacob	I	had	a	mystical	strain	which	is	of	some	significance	in	the	study
of	the	heredity	of	the	Bernoullis.	It	cropped	out	once	in	an	interesting	way
toward	 the	 end	 of	 his	 life.	 There	 is	 a	 certain	 spiral	 (the	 logarithmic	 or
equiangular)	which	 is	 reproduced	 in	 a	 similar	 spiral	 after	 each	 of	many
geometrical	 transformations.	 Jacob	 was	 fascinated	 by	 this	 recurrence	 of
the	spiral,	 several	of	whose	properties	he	discovered,	and	directed	that	a



spiral	 be	 engraved	 on	 his	 tombstone	 with	 the	 inscription	 Eadem	 mutata
resurgo	(Though	changed	I	shall	arise	the	same).

Jacob’s	motto	was	Invito	patre	sidera	verso	(Against	my	father’s	will	I	study
the	 stars)—in	 ironic	memory	 of	 his	 father’s	 futile	 opposition	 to	 Jacob’s
devoting	his	talents	to	mathematics	and	astronomy.	This	detail	favors	the
“nature”	 view	 of	 genius	 over	 the	 “nurture.”	 If	 his	 father	 had	 prevailed
Jacob	would	have	been	a	theologian.

Johannes	I,	brother	of	Jacob	I,	did	not	start	as	a	mathematician	but	as	a
doctor	 of	 medicine.	 His	 dispute	 with	 the	 brother	 who	 had	 generously
taught	him	mathematics	has	already	been	mentioned.	Johannes	was	a	man
of	violent	 likes	and	dislikes:	Leibniz	and	Euler	were	his	gods;	Newton	he
positively	 hated	 and	 greatly	 underestimated,	 as	 a	 bigoted	 champion	 of
Leibniz	was	almost	bound	to	do	from	envy	or	spite.	The	obstinate	father
attempted	to	cramp	his	younger	son	into	the	family	business,	but	Johannes
I,	 following	 the	 lead	 of	 his	 brother	 Jacob	 I,	 rebelled	 and	 went	 in	 for
medicine	 and	 the	 humanities,	 unaware	 that	 he	 was	 fighting	 against	 his
heredity.	At	the	age	of	eighteen	he	took	his	M.A.	degree.	Before	long	he
realized	his	mistake	in	choosing	medicine	and	turned	to	mathematics.	His
first	 academic	 appointment	 was	 at	 Groningen	 in	 1695	 as	 professor	 of
mathematics;	on	the	death	of	Jacob	I	in	1705	Johannes	I	succeeded	to	the
professorship	at	Basle.

Johannes	I	was	even	more	prolific	than	his	brother	in	mathematics	and
did	much	 to	 spread	 the	 calculus	 in	Europe.	His	 range	 included	physics,
chemistry,	and	astronomy	in	addition	to	mathematics.	On	the	applied	side
Johannes	 I	 contributed	 extensively	 to	 optics,	 wrote	 on	 the	 theory	 of	 the
tides	 and	 the	 mathematical	 theory	 of	 ship	 sails,	 and	 enunciated	 the
principle	of	virtual	displacements	in	mechanics.	Johannes	I	was	a	man	of
unusual	physical	 and	 intellectual	 vigor,	 remaining	active	 till	within	a	 few
days	of	his	death	at	the	age	of	eighty.

Nicolaus	 I,	 the	 brother	 of	 Jacob	 I	 and	 Johannes	 I,	 was	 also	 gifted	 in
mathematics.	Like	his	brothers	he	made	a	false	start.	At	the	age	of	sixteen
he	took	his	doctor’s	degree	in	philosophy	at	the	University	of	Basle,	and	at
twenty	earned	the	highest	degree	in	law.	He	was	first	a	professor	of	law	at
Bern	before	becoming	one	of	the	mathematical	faculty	at	the	Academy	of
St.	Petersburg.	At	 the	 time	of	his	death	he	was	 so	highly	 thought	of	 that
the	Empress	Catherine	gave	him	a	public	funeral	at	state	expense.



Heredity	came	out	curiously	in	the	second	generation.	Johannes	I	tried
to	 force	 his	 second	 son,	 Daniel,	 into	 business.	 But	 Daniel	 thought	 he
preferred	medicine	 and	 became	 a	 physician	 before	 landing,	 in	 spite	 of
himself,	in	mathematics.	At	the	age	of	eleven	Daniel	began	taking	lessons
in	mathematics	 from	his	elder	brother	Nicolaus	 III,	only	 five	 years	older
than	 himself.	 Daniel	 and	 the	 great	 Euler	 were	 intimate	 friends	 and	 at
times	 friendly	 rivals.	 Like	 Euler,	 Daniel	 Bernoulli	 has	 the	 distinction	 of
having	won	the	prize	of	the	French	Academy	ten	times	(on	a	few	occasions
the	prize	was	shared	with	other	successful	competitors).	Some	of	Daniel’s
best	work	went	 into	hydrodynamics,	which	he	developed	uniformly	 from
the	 single	 principle	 that	 later	 came	 to	 be	 called	 the	 conservation	 of
energy.	 All	 who	 work	 today	 in	 pure	 or	 applied	 fluid	 motion	 know	 the
name	of	Daniel	Bernoulli.

In	 1725	 (at	 the	 age	 of	 twenty	 five)	 Daniel	 became	 professor	 of
mathematics	at	St.	Petersburg,	where	the	comparative	barbarity	of	the	life
irked	him	so	greatly	that	he	returned	at	the	first	opportunity,	eight	years
later,	 to	 Basle,	 where	 he	 became	 professor	 of	 anatomy	 and	 botany,	 and
finally	 of	 physics.	 His	 mathematical	 work	 included	 the	 calculus,
differential	 equations,	 probability,	 the	 theory	 of	 vibrating	 strings,	 an
attempt	at	a	kinetic	theory	of	gases,	and	many	other	problems	in	applied
mathematics.	 Daniel	 Bernoulli	 has	 been	 called	 the	 founder	 of
mathematical	physics.

From	the	standpoint	of	heredity	it	is	interesting	to	note	that	Daniel	had
a	marked	vein	of	speculative	philosophy	in	his	nature—possibly	a	refined
sublimation	of	 the	Huguenot	 religion	of	his	ancestors.	The	 like	cropped
out	 in	 numerous	 later	 descendants	 of	 the	 illustrious	 refugees	 from
religious	intolerance.

The	 third	 mathematician	 in	 the	 second	 generation,	 Johannes	 II,
brother	of	Nicolaus	III	and	Daniel,	also	made	a	false	start	and	was	pulled
back	into	line	by	his	heredity—or	possibly	by	his	brothers.	Starting	out	in
law	 he	 became	 professor	 of	 eloquence	 at	 Basle	 before	 succeeding	 his
father	in	the	chair	of	mathematics.	His	work	was	principally	in	physics	and
was	sufficiently	distinguished	to	capture	the	Paris	prize	on	three	occasions
(once	 is	usually	enough	to	 satisfy	a	good	mathematician—provided	he	 is
good	enough).

Johannes	 III,	 a	 son	 of	 Johannes	 II,	 repeated	 the	 family	 tradition	 of
making	 a	 wrong	 start,	 and	 like	 his	 father	 began	 with	 law.	 At	 the	 age	 of



thirteen	he	took	his	doctor’s	degree	in	philosophy.	By	nineteen	Johannes
III	 had	 found	 his	 true	 vocation	 and	 was	 appointed	 astronomer	 royal	 at
Berlin.	His	interests	embraced	astronomy,	geography,	and	mathematics.

Jacob	II,	another	son	of	Johannes	II,	carried	on	the	family	blunder	by
starting	in	law,	only	to	change	over	at	twenty	one	to	experimental	physics.
He	also	turned	to	mathematics,	becoming	a	member	of	the	St.	Petersburg
Academy	in	the	section	of	mathematics	and	physics.	His	early	death	(at	the
age	 of	 thirty)	 by	 accidental	 drowning	 cut	 short	 a	 very	 promising	 career,
and	we	do	not	know	what	Jacob	II	really	had	in	him.	He	was	married	to	a
granddaughter	of	Euler.

The	 list	 of	 Bernoullis	 who	 showed	 mathematical	 talent	 is	 not	 yet
exhausted,	 but	 the	 rest	 were	 less	 distinguished.	 It	 is	 sometimes	 asserted
that	 the	 strain	 had	 worn	 thin.	Quite	 the	 contrary	 seems	 to	 be	 the	 case.
When	 mathematics	 was	 the	 most	 promising	 field	 for	 superior	 talent	 to
cultivate,	 as	 it	 was	 immediately	 after	 the	 invention	 of	 the	 calculus,	 the
gifted	Bernoullis	cultivated	mathematics.	But	mathematics	and	science	are
only	two	of	innumerable	fields	of	human	endeavor,	and	for	gifted	men	to
swarm	into	either	when	both	are	overcrowded	with	high	ability	indicates	a
lack	of	practical	 sense.	The	Bernoulli	 talent	was	not	expended;	 it	merely
spent	 itself	 on	 things	 of	 equal—or	 perhaps	 greater—social	 importance
than	mathematics	 when	 that	 field	 began	 to	 resemble	 Epsom	 Downs	 on
Derby	Day.

Those	interested	in	the	vagaries	of	heredity	will	find	plenty	of	material
in	 the	 history	 of	 the	 Darwin	 and	 Galton	 families.	 The	 case	 of	 Francis
Galton	 (a	 cousin	 of	 Charles	 Darwin)	 is	 particularly	 interesting,	 as	 the
mathematical	 study	 of	 heredity	 was	 founded	 by	 him.	 To	 rail	 at	 the
descendants	 of	 Charles	 Darwin	 because	 some	 of	 them	 have	 achieved
eminence	in	mathematics	or	mathematical	physics	rather	than	in	biology
is	 slightly	 silly.	 The	 genius	 is	 still	 there,	 and	 one	 expression	 of	 it	 is	 not
necessarily	 “better”	 or	 “higher”	 than	 another—unless	 we	 are	 the	 sort	 of
bigots	 who	 insist	 that	 everything	 should	 be	mathematics,	 or	 biology,	 or
sociology,	 or	 bridge	 and	 golf.	 It	 may	 be	 that	 the	 abandonment	 of
mathematics	 as	 the	 family	 trade	 by	 the	 Bernoullis	 was	 just	 one	 more
instance	of	their	genius.

Many	 legends	 and	 anecdotes	 have	 grown	 up	 round	 the	 famous
Bernoullis,	as	is	only	natural	in	the	case	of	a	family	as	gifted	and	as	violent
in	their	language	as	the	Bernoullis	sometimes	were.	One	of	these	ripe	old



chestnuts	 may	 be	 retailed	 again	 as	 it	 is	 one	 of	 the	 comparatively	 early
authentic	 instances	 of	 a	 story	 which	 must	 be	 at	 least	 as	 old	 as	 ancient
Egypt,	 and	 of	 which	 we	 daily	 see	 variants	 pinned	 onto	 all	 sorts	 of
prominent	 characters	 from	 Einstein	 down.	 Once	 when	 travelling	 as	 a
young	man	Daniel	modestly	introduced	himself	to	an	interesting	stranger
with	whom	he	had	been	conversing:	“I	am	Daniel	Bernoulli.”	“And	I,”	said
the	 other	 sarcastically,	 “am	 Isaac	Newton.”	 This	 delighted	Daniel	 to	 the
end	of	his	days	as	the	sincerest	tribute	he	had	ever	received.

I.	Actually,	here,	I	have	combined	two	legends.	Queen	Dido	was	given	a	bull’s	hide	to	“enclose”
the	greatest	area.	She	cut	it	into	one	thong	and	enclosed	a	semicircle.

II.	Historical	notes	on	this	and	other	problems	of	the	calculus	of	variations	will	be	found	in	the
book	by	G.	A.	Bliss,	Calculus	of	Variations,	Chicago,	1925.	The	Anglicized	form	of	Jacob	I	is	James.



CHAPTER	NINE

Analysis	Incarnate

EULER

History	shows	that	those	heads	of	empires	who	have	encouraged	the	cultivation	of	mathematics,	the	common
source	of	all	 the	exact	sciences,	are	also	 those	whose	reigns	have	been	the	most	brilliant	and	whose	glory	is	 the
most	durable.

—MICHEL	CHASLES

“EULER	CALCULATED	WITHOUT	APPARENT	EFFORT,	as	men	breathe,	or	as	eagles
sustain	themselves	in	the	wind”	(as	Arago	said),	is	not	an	exaggeration	of
the	 unequalled	mathematical	 facility	 of	 Leonard	 Euler	 (1707-1783),	 the
most	 prolific	 mathematician	 in	 history,	 and	 the	 man	 whom	 his
contemporaries	called	“analysis	incarnate.”	Euler	wrote	his	great	memoirs
as	 easily	 as	 a	 fluent	writer	 composes	 a	 letter	 to	 an	 intimate	 friend.	Even
total	blindness	during	the	last	seventeen	years	of	his	life	did	not	retard	his
unparalleled	 productivity;	 indeed,	 if	 anything,	 the	 loss	 of	 his	 eyesight
sharpened	Euler’s	perceptions	in	the	inner	world	of	his	imagination.

The	extent	of	Euler’s	work	was	not	accurately	known	even	in	1936,	but
it	 has	 been	 estimated	 that	 sixty	 to	 eighty	 large	 quarto	 volumes	 will	 be
required	 for	 the	 publication	 of	 his	 collected	 works.	 In	 1909	 the	 Swiss
Association	for	Natural	Science	undertook	the	collection	and	publication
of	 Euler’s	 scattered	 memoirs,	 with	 financial	 assistance	 from	 many
individuals	 and	 mathematical	 societies	 throughout	 the	 world—rightly
claiming	 that	Euler	belongs	 to	 the	whole	civilized	world	and	not	only	 to
Switzerland.	The	careful	estimates	of	the	probable	expense	(about	$80,000
in	the	money	of	1909)	were	badly	upset	by	the	discovery	in	St.	Petersburg
(Leningrad)	of	an	unsuspected	mass	of	Euler’s	manuscripts.

Euler’s	mathematical	 career	opened	 in	 the	 year	of	Newton’s	death.	A
more	 propitious	 epoch	 for	 a	 genius	 like	 that	 of	 Euler’s	 could	 not	 have
been	 chosen.	Analytic	 geometry	 (made	public	 in	1637)	had	been	 in	use
ninety	 years,	 the	 calculus	 about	 fifty,	 and	 Newton’s	 law	 of	 universal



gravitation,	 the	 key	 to	 physical	 astronomy,	 had	 been	 before	 the
mathematical	public	for	forty	years.	In	each	of	these	fields	a	vast	number
of	 isolated	 problems	 had	 been	 solved,	 with	 here	 and	 there	 notable
attempts	 at	 unification;	 but	 no	 systematic	 attack	 had	 yet	 been	 launched
against	the	whole	of	mathematics,	pure	and	applied,	as	it	then	existed.	In
particular	 the	 powerful	 analytical	 methods	 of	 Descartes,	 Newton,	 and
Leibniz	 had	 not	 yet	 been	 exploited	 to	 the	 limit	 of	 what	 they	 were	 then
capable,	especially	in	mechanics	and	geometry.

On	 a	 lower	 level	 algebra	 and	 trigonometry	 were	 then	 in	 shape	 for
systematization	 and	 extension;	 the	 latter	 particularly	 was	 ready	 for
essential	completion.	In	Fermat’s	domain	of	Diophantine	analysis	and	the
properties	of	the	common	whole	numbers	no	such	“temporary	perfection”
was	possible	 (it	 is	not	even	yet);	but	even	here	Euler	proved	himself	 the
master.	 In	 fact	 one	 of	 the	most	 remarkable	 features	 of	 Euler’s	 universal
genius	was	its	equal	strength	in	both	of	the	main	currents	of	mathematics,
the	continuous	and	the	discrete.

As	an	algorist	Euler	has	never	been	surpassed,	and	probably	never	even
closely	 approached,	 unless	 perhaps	 by	 Jacobi.	 An	 algorist	 is	 a
mathematician	who	devises	“algorithms”	(or	“algorisms”)	for	the	solution
of	 problems	 of	 special	 kinds.	 As	 a	 very	 simple	 example,	 we	 assume	 (or
prove)	 that	 every	positive	 real	number	has	 a	 real	 square	 root.	How	 shall
the	 root	 be	 calculated?	 There	 are	many	 ways	 known;	 an	 algorist	 devises
practicable	 methods.	 Or	 again,	 in	 Diophantine	 analysis,	 also	 in	 the
integral	calculus,	the	solution	of	a	problem	may	not	be	forthcoming	until
some	 ingenious	 (often	 simple)	 replacement	 of	 one	 or	 more	 of	 the
variables	 by	 functions	 of	 other	 variables	 has	 been	made;	 an	 algorist	 is	 a
mathematician	to	whom	such	ingenious	tricks	come	naturally.	There	is	no
uniform	mode	 of	 procedure—algorists,	 like	 facile	 rhymesters,	 are	 born,
not	made.

It	 is	 fashionable	today	to	despise	the	“mere	algorist”;	yet,	when	a	truly
great	one	like	the	Hindu	Ramanujan	arrives	unexpectedly	out	of	nowhere,
even	 expert	 analysts	 hail	 him	 as	 a	 gift	 from	 Heaven:	 his	 all	 but
supernatural	 insight	 into	 apparently	 unrelated	 formulas	 reveals	 hidden
trails	 leading	 from	 one	 territory	 to	 another,	 and	 the	 analysts	 have	 new
tasks	provided	 for	 them	 in	clearing	 the	 trails.	An	algorist	 is	 a	 “formalist”
who	loves	beautiful	formulas	for	their	own	sake.



Before	 going	 on	 to	 Euler’s	 peaceful	 but	 interesting	 life	 we	 must
mention	 two	 circumstances	 of	 his	 times	 which	 furthered	 his	 prodigious
activity	and	helped	to	give	it	a	direction.

In	the	eighteenth	century	the	universities	were	not	the	principal	centers
of	research	in	Europe.	They	might	have	become	such	sooner	than	they	did
but	 for	 the	 classical	 tradition	 and	 its	 understandable	hostility	 to	 science.
Mathematics	was	close	enough	to	antiquity	to	be	respectable,	but	physics,
being	more	recent,	was	suspect.	Further,	a	mathematician	 in	a	university
of	 the	 time	 would	 have	 been	 expected	 to	 put	 much	 of	 his	 effort	 on
elementary	teaching;	his	research,	if	any,	would	have	been	an	unprofitable
luxury,	precisely	as	in	the	average	American	institution	of	higher	learning
today.	The	Fellows	of	 the	British	universities	could	do	pretty	well	as	 they
chose.	Few,	however,	 chose	 to	do	anything,	 and	what	 they	accomplished
(or	 failed	to	accomplish)	could	not	affect	 their	bread	and	butter.	Under
such	laxity	or	open	hostility	there	was	no	good	reason	why	the	universities
should	have	led	in	science,	and	they	did	not.

The	 lead	 was	 taken	 by	 the	 various	 royal	 academies	 supported	 by
generous	or	farsighted	rulers.	Mathematics	owes	an	undischargeable	debt
to	 Frederick	 the	Great	 of	 Prussia	 and	Catherine	 the	Great	 of	 Russia	 for
their	 broadminded	 liberality.	 They	 made	 possible	 a	 full	 century	 of
mathematical	 progress	 in	 one	 of	 the	 most	 active	 periods	 in	 scientific
history.	 In	Euler’s	case	Berlin	and	St.	Petersburg	 furnished	 the	sinews	of
mathematical	 creation.	 Both	 of	 these	 foci	 of	 creativity	 owed	 their
inspiration	 to	 the	 restless	 ambition	of	Leibniz.	The	 academies	 for	which
Leibniz	 had	 drawn	 up	 the	 plans	 gave	 Euler	 his	 chance	 to	 be	 the	 most
prolific	 mathematician	 of	 all	 time;	 so,	 in	 a	 sense,	 Euler	 was	 Leibniz’
grandson.

The	 Berlin	 Academy	 had	 been	 slowly	 dying	 of	 brainlessness	 for	 forty
years	when	Euler,	at	the	instigation	of	Frederick	the	Great,	shocked	it	into
life	again;	and	the	St.	Petersburg	Academy,	which	Peter	the	Great	did	not
live	to	organize	in	accordance	with	Leibniz’	program,	was	firmly	founded
by	his	successor.

These	 Academies	 were	 not	 like	 some	 of	 those	 today,	 whose	 chief
function	is	to	award	membership	in	recognition	of	good	work	well	done;
they	 were	 research	 organizations	 which	 paid	 their	 leading	 members	 to
produce	scientific	research.	Moreover	the	salaries	and	perquisites	were	ample
for	 a	man	 to	 support	 himself	 and	 his	 family	 in	 decent	 comfort.	 Euler’s



household	at	one	time	consisted	of	no	fewer	than	eighteen	persons;	yet	he
was	 given	 enough	 to	 support	 them	 all	 adequately.	 As	 a	 final	 touch	 of
attractiveness	to	the	life	of	an	academician	in	the	eighteenth	century,	his
children,	if	worth	anything	at	all,	were	assured	of	a	fair	start	in	the	world.

This	 brings	 us	 to	 a	 second	 dominant	 influence	 on	 Euler’s	 vast
mathematical	 output.	 The	 rulers	 who	 paid	 the	 bills	 naturally	 wanted
something	in	addition	to	abstract	culture	for	their	money.	But	it	must	be
emphasized	 that	when	once	 the	rulers	had	obtained	a	reasonable	return
on	their	investment,	they	did	not	insist	that	their	employees	spend	the	rest
of	 their	 time	 on	 “productive”	 labor;	 Euler,	 Lagrange,	 and	 the	 other
academicians	 were	 free	 to	 do	 as	 they	 pleased.	 Nor	 was	 any	 noticeable
pressure	 brought	 to	 bear	 to	 squeeze	 out	 the	 few	 immediately	 practical
results	which	 the	 state	could	use.	Wiser	 in	 their	generation	 than	many	a
director	of	a	research	institute	today,	the	rulers	of	the	eighteenth	century
merely	 suggested	occasionally	what	 they	needed	at	once,	 and	 let	 science
take	 its	 course.	They	 seem	 to	 have	 felt	 instinctively	 that	 so-called	 “pure”
research	would	throw	off	as	by-products	the	instantly	practical	things	they
desired	if	given	a	hint	of	the	right	sort	now	and	then.

To	 this	 general	 statement	 there	 is	 one	 important	 exception,	 which
neither	proves	nor	disproves	the	rule.	It	so	happened	that	in	Euler’s	time
the	 outstanding	 problem	 in	 mathematical	 research	 chanced	 also	 to
coincide	with	what	was	probably	 the	 first	practical	problem	of	 the	age—
control	of	the	seas.	That	nation	whose	technique	in	navigation	surpassed
that	of	all	its	competitors	would	inevitably	rule	the	waves.	But	navigation	is
ultimately	 an	 affair	 of	 accurately	 determining	 one’s	 position	 at	 sea
hundreds	of	miles	 from	land,	and	of	doing	 it	 so	much	better	 than	one’s
competitors	that	they	can	be	outsailed	to	the	scene,	unfavorable	only	for
them,	of	a	naval	battle.	Britannia,	as	everyone	knows,	rules	the	waves.	That
she	does	so	is	due	in	no	small	measure	to	the	practical	application	which
her	navigators	were	able	to	make	of	purely	mathematical	investigations	in
celestial	mechanics	during	the	eighteenth	century.

One	 such	 application	 concerned	 Euler	 directly—if	 we	may	 anticipate
slightly.	The	founder	of	modern	navigation	is	of	course	Newton,	although
he	himself	never	bothered	his	head	about	the	subject	and	never	(so	far	as
seems	to	be	known)	planted	his	shoe	on	the	deck	of	a	ship.	Position	at	sea
is	 determined	 by	 observations	 on	 the	 heavenly	 bodies	 (sometimes
including	 the	 satellites	 of	 Jupiter	 in	 really	 fancy	 navigation);	 and	 after



Newton’s	 universal	 law	 had	 suggested	 that	 with	 sufficient	 patience	 the
positions	of	 the	planets	and	the	phases	of	 the	Moon	could	be	calculated
for	a	century	in	advance	if	necessary,	those	who	wished	to	govern	the	seas
set	 their	 computers	 on	 the	 nautical	 almanac	 to	 grinding	 out	 tables	 of
future	positions.

In	 such	 a	 practical	 enterprise	 the	 Moon	 offers	 a	 particularly	 vicious
problem,	 that	 of	 three	 bodies	 attracting	 one	 another	 according	 to	 the
Newtonian	law.	This	problem	will	recur	many	times	as	we	proceed	to	the
twentieth	century;	Euler	was	the	first	to	evolve	a	calculable	solution	for	the
problem	of	 the	Moon	(“the	 lunar	 theory”).	The	 three	bodies	 concerned
are	the	Moon,	the	Earth,	and	the	Sun.	Although	we	shall	defer	what	little
can	 be	 said	 here	 on	 this	 problem	 to	 later	 chapters,	 it	may	 be	 remarked
that	 the	 problem	 is	 one	 of	 the	 most	 difficult	 in	 the	 whole	 range	 of
mathematics.	 Euler	 did	 not	 solve	 it,	 but	 his	 method	 of	 approximative
calculation	(superseded	today	by	better	methods)	was	sufficiently	practical
to	enable	an	English	computer	to	calculate	the	lunar	tables	for	the	British
Admiralty.	 For	 this	 the	 computer	 received	 £5000	 (quite	 a	 sum	 for	 the
time),	and	Euler	was	voted	a	bonus	of	£300	for	the	method.

*		*		*

Léonard	 (or	 Leonhard)	 Euler,	 a	 son	 of	 Paul	 Euler	 and	 his	 wife
Marguerite	 Brucker,	 is	 probably	 the	 greatest	 man	 of	 science	 that
Switzerland	 has	 produced.	He	 was	 born	 at	 Basle	 on	 April	 15,	 1707,	 but
moved	the	following	year	with	his	parents	to	the	nearby	village	of	Riechen,
where	 his	 father	 became	 the	Calvinist	 pastor.	 Paul	 Euler	 himself	 was	 an
accomplished	mathematician,	having	been	a	pupil	of	Jacob	Bernoulli.	The
father	intended	Léonard	to	follow	in	his	footsteps	and	succeed	him	in	the
village	 church,	 but	 fortunately	 made	 the	 mistake	 of	 teaching	 the	 boy
mathematics.

Young	Euler	knew	early	what	he	wanted	to	do.	Nevertheless	he	dutifully
obeyed	his	father,	and	on	entering	the	University	of	Basle	studied	theology
and	Hebrew.	 In	mathematics	 he	 was	 sufficiently	 advanced	 to	 attract	 the
attention	of	Johannes	Bernoulli,	who	generously	gave	the	young	man	one
private	 lesson	a	week.	Euler	spent	 the	rest	of	 the	week	preparing	for	 the
next	 lesson	 so	as	 to	be	able	 to	meet	his	 teacher	with	as	 few	questions	as



possible.	 Soon	 his	 diligence	 and	marked	 ability	 were	 noticed	 by	 Daniel
and	Nicolaus	Bernoulli,	who	became	Euler’s	fast	friends.

Léonard	was	permitted	to	enjoy	himself	till	he	took	his	master’s	degree
in	1724	at	the	age	of	seventeen,	when	his	father	insisted	that	he	abandon
mathematics	and	put	all	his	time	on	theology.	But	the	father	gave	in	when
the	 Bernoullis	 told	 him	 that	 his	 son	 was	 destined	 to	 be	 a	 great
mathematician	and	not	the	pastor	of	Riechen.	Although	the	prophecy	was
fulfilled	Euler’s	early	religious	training	influenced	him	all	his	 life	and	he
never	discarded	a	particle	of	his	Calvinistic	faith.	Indeed	as	he	grew	older
he	 swung	 round	 in	 a	 wide	 orbit	 toward	 the	 calling	 of	 his	 father,
conducting	 family	 prayers	 for	his	whole	household	 and	usually	 finishing
off	with	a	sermon.

Euler’s	first	 independent	work	was	done	at	the	age	of	nineteen.	It	has
been	said	that	this	first	effort	reveals	both	the	strength	and	the	weakness
of	much	of	Euler’s	subsequent	work.	The	Paris	Academy	had	proposed	the
masting	 of	 ships	 as	 a	 prize	 problem	 for	 the	 year	 1727;	 Euler’s	 memoir
failed	to	win	the	prize	but	received	an	honorable	mention.	He	was	later	to
recoup	 this	 loss	 by	 winning	 the	 prize	 twelve	 times.	 The	 strength	 of	 the
work	 was	 the	 analysis—the	 technical	 mathematics—it	 contained;	 its
weakness	 the	remoteness	of	 the	connection,	 if	any,	with	practicality.	The
last	 is	not	 very	 surprising	when	we	remember	 the	 traditional	 jokes	about
the	nonexistent	 Swiss	 navy.	 Euler	might	have	 seen	 a	 boat	 or	 two	on	 the
Swiss	 lakes,	 but	 he	 had	 not	 yet	 seen	 a	 ship.	 He	 has	 been	 criticized,
sometimes	 justly,	 for	 letting	 his	mathematics	 run	 away	 with	 his	 sense	 of
reality.	 The	physical	 universe	was	 an	 occasion	 for	mathematics	 to	Euler,
scarcely	a	thing	of	much	interest	 in	itself;	and	if	 the	universe	failed	to	fit
his	analysis	it	was	the	universe	which	was	in	error.

Knowing	 that	 he	 was	 a	 born	 mathematician,	 Euler	 applied	 for	 the
professorship	at	Basle.	Failing	to	get	the	position,	he	continued	his	studies,
buoyed	 up	 by	 the	 hope	 of	 joining	 Daniel	 and	 Nicolaus	 Bernoulli	 at	 St.
Petersburg.	They	had	generously	offered	to	 find	a	place	 for	Euler	 in	 the
Academy	and	kept	him	well	posted.

At	this	stage	of	his	career	Euler	seems	to	have	been	curiously	indifferent
as	to	what	he	should	do,	provided	only	it	was	something	scientific.	When
the	Bernoullis	wrote	of	a	prospective	opening	in	the	medical	section	of	the
St.	Petersburg	Academy,	Euler	flung	himself	 into	physiology	at	Basle	and
attended	 the	 lectures	 on	medicine.	 But	 even	 in	 this	 field	 he	 could	 not



keep	 away	 from	 mathematics:	 the	 physiology	 of	 the	 ear	 suggested	 a
mathematical	 investigation	of	 sound,	which	 in	 turn	 led	out	 into	another
on	 the	propagation	of	waves,	and	so	on—this	early	work	kept	branching
out	like	a	tree	gone	mad	in	a	nightmare	all	through	Euler’s	career.

The	 Bernoullis	 were	 fast	 workers.	 Euler	 received	 his	 call	 to	 St.
Petersburg	in	1727,	officially	as	an	associate	of	the	medical	section	of	the
Academy.	By	a	wise	provision	every	imported	member	was	obliged	to	take
with	him	two	pupils—actually	apprentices	 to	be	 trained.	Poor	Euler’s	 joy
was	 quickly	 dashed.	 The	 very	 day	 he	 set	 foot	 on	Russian	 soil	 the	 liberal
Catherine	I	died.

Catherine,	Peter	the	Great’s	mistress	before	she	became	his	wife,	seems
to	have	been	a	broadminded	woman	in	more	ways	than	one,	and	it	was	she
who	 in	 her	 reign	 of	 only	 two	 years	 carried	 out	 Peter’s	 wishes	 in
establishing	the	Academy.	On	Catherine’s	death	the	power	passed	into	the
hands	of	an	unusually	brutal	 faction	during	 the	minority	of	 the	boy	czar
(who	 perhaps	 fortunately	 for	 himself	 died	 before	 he	 could	 begin	 his
reign).	 The	 new	 rulers	 of	 Russia	 looked	 upon	 the	 Academy	 as	 a
dispensable	 luxury	 and	 for	 some	 anxious	 months	 contemplated
suppressing	 it	 and	 sending	all	 the	 foreign	members	home.	Such	was	 the
state	of	affairs	when	Euler	arrived	 in	St.	Petersburg.	Nothing	was	 said	 in
the	 confusion	 about	 the	medical	 position	 to	 which	 he	 had	 been	 called,
and	 he	 slipped	 into	 the	 mathematical	 section,	 after	 having	 almost
accepted	a	naval	lieutenancy	in	desperation.

Thereafter	 things	went	better	and	Euler	 settled	down	 to	work.	For	 six
years	 he	 kept	 his	 nose	 to	 the	 grindstone,	 not	 wholly	 because	 he	 was
absorbed	 in	 his	 mathematics	 but	 partly	 because	 he	 dared	 not	 lead	 a
normal	social	life	on	account	of	the	treacherous	spies	everywhere.

In	 1733	 Daniel	 Bernoulli	 returned	 to	 free	 Switzerland,	 having	 had
enough	of	holy	Russia,	and	Euler,	at	the	age	of	twenty	six,	stepped	into	the
leading	mathematical	position	in	the	Academy.	Feeling	that	he	was	to	be
stuck	in	St.	Petersburg	for	the	rest	of	his	life,	Euler	decided	to	marry,	settle
down,	and	make	the	best	of	things.	The	lady	was	Catharina,	a	daughter	of
the	 painter	 Gsell,	 whom	 Peter	 the	 Great	 had	 taken	 back	 to	 Russia	 with
him.	 Political	 conditions	 became	 worse,	 and	 Euler	 longed	 more
desperately	 than	 ever	 to	 escape.	 But	 with	 the	 rapid	 arrival	 of	 one	 child
after	another	Euler	felt	more	securely	tied	than	before	and	took	refuge	in
incessant	work.	Some	biographers	trace	Euler’s	unmatched	productivity	to



this	 first	 sojourn	 in	 Russia;	 common	 prudence	 forced	 him	 into	 an
unbreakable	habit	of	industry.

Euler	 was	 one	 of	 several	 great	 mathematicians	 who	 could	 work
anywhere	 under	 any	 conditions.	 He	 was	 very	 fond	 of	 children	 (he	 had
thirteen	 of	 his	 own,	 all	 but	 five	 of	 whom	 died	 very	 young),	 and	 would
often	compose	his	memoirs	with	a	baby	in	his	lap	while	the	older	children
played	 all	 about	 him.	 The	 ease	 with	 which	 he	 wrote	 the	 most	 difficult
mathematics	is	incredible.

Many	 legends	of	his	constant	outflow	of	 ideas	have	survived.	Some	no
doubt	 are	 exaggerations,	 but	 it	 is	 said	 that	 Euler	 would	 dash	 off	 a
mathematical	paper	in	the	half	hour	or	so	before	the	first	and	second	calls
to	dinner.	As	soon	as	a	paper	was	finished	it	was	laid	on	top	of	the	growing
stack	 awaiting	 the	 printer.	When	material	 to	 fill	 the	 transactions	 of	 the
Academy	was	needed,	the	printer	would	gather	up	a	sheaf	from	the	top	of
the	 pile.	 Thus	 it	 happened	 that	 the	 dates	 of	 publication	 frequently	 ran
counter	 to	 those	 of	 composition.	 The	 crazy	 effect	 was	 heightened	 by
Euler’s	 habit	 of	 returning	many	 times	 to	 a	 subject	 in	 order	 to	 clarify	 or
extend	 what	 he	 had	 already	 done,	 so	 that	 occasionally	 a	 sequence	 of
papers	 on	 a	 given	 topic	 is	 seen	 in	 print	 through	 the	 wrong	 end	 of	 the
telescope.

When	 the	 boy	 czar	 died,	 Anna	 Ivanovna	 (niece	 of	 Peter)	 became
Empress	 in	 1730,	 and	 so	 far	 as	 the	 Academy	 was	 concerned,	 things
brightened	 up	 considerably.	 But	 under	 the	 indirect	 rule	 of	 Anna’s
paramour,	 Ernest	 John	 de	 Biron,	 Russia	 suffered	 one	 of	 the	 bloodiest
reigns	of	 terror	 in	 its	history,	 and	Euler	 settled	down	 to	 a	 spell	 of	 silent
work	that	was	to	last	ten	years.	Halfway	through	he	suffered	his	first	great
misfortune.	He	had	set	himself	to	win	the	Paris	prize	for	an	astronomical
problem	for	which	some	of	the	leading	mathematicians	had	asked	several
months’	time.	(As	a	similar	problem	occurs	 in	connection	with	Gauss	we
shall	not	describe	it	here.)	Euler	solved	it	in	three	days.	But	the	prolonged
effort	brought	on	an	illness	in	which	he	lost	the	sight	of	his	right	eye.

It	should	be	noted	that	the	modern	higher	criticism	which	has	been	so
effective	 in	 discrediting	 all	 the	 interesting	 anecdotes	 in	 the	 history	 of
mathematics	 has	 shown	 that	 the	 astronomical	 problem	 was	 in	 no	 way
responsible	 for	 the	 loss	 of	 Euler’s	 eye.	 But	 how	 the	 scholarly	 critics	 (or
anyone	else)	come	to	know	so	much	about	the	so-called	law	of	cause	and
effect	 is	a	mystery	 for	David	Hume’s	(a	contemporary	of	Euler)	ghost	 to



resolve.	With	this	caution	we	shall	tell	once	more	the	famous	story	of	Euler
and	the	atheistic	(or	perhaps	only	pantheistic)	French	philosopher	Denis
Diderot	 (1713-1784).	 This	 is	 slightly	 out	 of	 its	 chronological	 order,	 as	 it
happened	during	Euler’s	second	stay	in	Russia.

Invited	 by	Catherine	 the	Great	 to	 visit	 her	Court,	Diderot	 earned	his
keep	 by	 trying	 to	 convert	 the	 courtiers	 to	 atheism.	 Fed	 up,	 Catherine
commissioned	 Euler	 to	 muzzle	 the	 windy	 philosopher.	 This	 was	 easy
because	 all	 mathematics	 was	 Chinese	 to	 Diderot.	 De	 Morgan	 tells	 what
happened	(in	his	classic	Budget	of	Paradoxes,	1872):	“Diderot	was	informed
that	 a	 learned	 mathematician	 was	 in	 possession	 of	 an	 algebraical
demonstration	of	 the	 existence	 of	God,	 and	would	 give	 it	 before	 all	 the
Court,	 if	 he	 desired	 to	 hear	 it.	 Diderot	 gladly	 consented.	 .	 .	 .	 Euler
advanced	 toward	 Diderot,	 and	 said	 gravely,	 and	 in	 a	 tone	 of	 perfect
conviction:

It	 sounded	 like	 sense	 to	 Diderot.	 Humiliated	 by	 the	 unrestrained
laughter	 which	 greeted	 his	 embarrassed	 silence,	 the	 poor	 man	 asked
Catherine’s	permission	to	return	at	once	to	France.	She	graciously	gave	it.

Not	content	with	 this	masterpiece,	Euler	 in	all	 seriousness	painted	his
lily	with	solemn	proofs,	in	deadly	earnest,	that	God	exists	and	that	the	soul
is	not	a	material	substance.	It	is	reported	that	both	proofs	passed	into	the
treatises	on	theology	of	his	day.	These	are	probably	the	choicest	flowers	of
the	mathematically	unpractical	side	of	his	genius.

Mathematics	alone	did	not	absorb	all	of	Euler’s	energies	during	his	stay
in	 Russia.	 Wherever	 he	 was	 called	 upon	 to	 exercise	 his	 mathematical
talents	in	ways	not	too	far	from	pure	mathematics	he	gave	the	government
its	full	money’s	worth.	Euler	wrote	the	elementary	mathematical	textbooks
for	 the	 Russian	 schools,	 supervised	 the	 government	 department	 of
geography,	 helped	 to	 reform	 the	 weights	 and	 measures,	 and	 devised
practical	means	for	testing	scales.	These	were	but	some	of	his	activities.	No
matter	how	much	extraneous	work	he	did,	Euler	 continued	 to	pour	out
mathematics.

One	of	the	most	important	works	of	this	period	was	the	treatise	of	1736
on	 mechanics.	 Note	 that	 the	 date	 of	 publication	 lacks	 but	 a	 year	 of
marking	 the	 centenary	 of	 Descartes’	 publication	 of	 analytic	 geometry.
Euler’s	treatise	did	for	mechanics	what	Descartes’	had	done	for	geometry



—freed	 it	 from	 the	 shackles	 of	 synthetic	 demonstration	 and	 made	 it
analytical.	 Newton’s	 Principia	 might	 have	 been	 written	 by	 Archimedes;
Euler’s	mechanics	could	not	have	been	written	by	any	Greek.	For	the	first
time	the	full	power	of	the	calculus	was	directed	against	mechanics	and	the
modern	era	in	that	basic	science	began.	Euler	was	to	be	surpassed	in	this
direction	 by	 his	 friend	 Lagrange,	 but	 the	 credit	 for	 having	 taken	 the
decisive	step	is	Euler’s.

*		*		*

On	the	death	of	Anna	 in	1740	 the	Russian	government	became	more
liberal,	but	Euler	had	had	enough	and	was	glad	to	accept	the	invitation	of
Frederick	the	Great	to	join	the	Berlin	Academy.	The	Dowager	Queen	took
a	 great	 fancy	 to	 Euler	 and	 tried	 to	 draw	 him	 out.	 All	 she	 got	 was
monosyllables.

“Why	don’t	you	want	to	speak	to	me?”	she	asked.
“Madame,”	Euler	replied,	“I	come	from	a	country	where,	 if	you	speak,

you	are	hanged.”
The	 next	 twenty	 four	 years	 of	 his	 life	 were	 spent	 in	 Berlin,	 not

altogether	happily,	as	Frederick	would	have	preferred	a	polished	courtier
instead	 of	 the	 simple	 Euler.	 Although	 Frederick	 felt	 it	 his	 duty	 to
encourage	 mathematics	 he	 despised	 the	 subject,	 being	 no	 good	 at	 it
himself.	But	he	appreciated	Euler’s	talents	sufficiently	to	engage	them	in
practical	 problems—the	 coinage,	 water	 conduits,	 navigation	 canals,	 and
pension	systems,	among	others.

Russia	never	let	go	of	Euler	completely	and	even	while	he	was	in	Berlin
paid	 part	 of	 his	 salary.	 In	 spite	 of	 his	 many	 dependents	 Euler	 was
prosperous,	owning	a	farm	near	Charlottenburg	in	addition	to	his	house
in	Berlin.	During	 the	Russian	 invasion	 of	 the	March	 of	 Brandenburg	 in
1760	Euler’s	farm	was	pillaged.	The	Russian	general,	declaring	that	he	was
“not	 making	 war	 on	 the	 sciences,”	 indemnified	 Euler	 for	 considerably
more	 than	 the	 actual	 damage.	 When	 the	 Empress	 Elizabeth	 heard	 of
Euler’s	 loss	 she	 sent	him	a	handsome	 sum	 in	addition	 to	 the	more	 than
sufficient	indemnity.

One	cause	of	Euler’s	unpopularity	at	Frederick’s	court	was	his	inability
to	keep	out	of	arguments	on	philosophical	questions	about	which	he	knew
nothing.	 Voltaire,	 who	 spent	 much	 of	 his	 time	 toadying	 to	 Frederick,



delighted	with	the	other	brilliant	verbalists	surrounding	Frederick	in	tying
the	hapless	Euler	into	metaphysical	knots.	Euler	took	it	all	good-naturedly
and	 joined	 the	 others	 in	 roaring	 with	 laughter	 at	 his	 own	 ridiculous
blunders.	 But	 Frederick	 gradually	 became	 irritated	 and	 cast	 about	 for	 a
more	 sophisticated	 philosopher	 to	 head	 his	 Academy	 and	 entertain	 his
Court.

D’Alembert	 (whom	we	 shall	meet	 later)	 was	 invited	 to	Berlin	 to	 look
over	 the	 situation.	 He	 and	 Euler	 had	 had	 a	 slight	 coolness	 over
mathematics.	But	D’Alembert	was	not	the	man	to	let	a	personal	difference
cloud	 his	 judgment,	 and	 he	 told	 Frederick	 bluntly	 that	 it	 would	 be	 an
outrage	 to	 put	 any	 other	 mathematician	 over	 Euler.	 This	 only	 made
Frederick	more	 stubborn	 and	angrier	 than	ever,	 and	 conditions	became
intolerable	for	Euler.	His	sons,	he	felt,	would	have	no	chance	in	Prussia.	At
the	 age	 of	 fifty	 nine	 (in	 1766)	 he	 pulled	 up	 his	 stakes	 once	 more	 and
migrated	back	to	St.	Petersburg	at	the	cordial	invitation	of	Catherine	the
Great.

Catherine	 received	 the	 mathematician	 as	 if	 he	 were	 royalty,	 setting
aside	a	fully	furnished	house	for	Euler	and	his	eighteen	dependents,	and
donating	one	of	her	own	cooks	to	run	the	kitchen.

It	was	at	this	time	that	Euler	began	to	lose	the	sight	of	his	remaining	eye
(by	a	cataract),	and	before	 long	he	was	totally	blind.	The	progress	of	his
oncoming	 darkness	 is	 followed	 with	 alarm	 and	 sympathy	 in	 the
correspondence	 of	 Lagrange,	 D’Alembert,	 and	 other	 leading
mathematicians	 of	 the	 time.	 Euler	 himself	 watched	 the	 approach	 of
blindness	with	equanimity.	There	can	be	no	doubt	that	his	deep	religious
faith	helped	him	to	face	what	was	ahead	of	him.	But	he	did	not	“resign”
himself	 to	 silence	 and	darkness.	He	 immediately	 set	 about	 repairing	 the
irreparable.	Before	 the	 last	 light	 faded	he	accustomed	himself	 to	writing
his	 formulas	 with	 chalk	 on	 a	 large	 slate.	 Then,	 his	 sons	 (particularly
Albert)	acting	as	amanuenses,	he	would	dictate	the	words	explaining	the
formulas.	Instead	of	diminishing,	his	mathematical	productivity	increased.

All	 his	 life	 Euler	 had	 been	 blessed	 with	 a	 phenomenal	 memory.	 He
knew	Virgil’s	Aeneid	by	heart,	and	although	he	had	seldom	looked	at	 the
book	since	he	was	a	youth,	could	always	tell	the	first	and	last	lines	on	any
page	 of	 his	 copy.	His	memory	 was	 both	 visual	 and	 aural.	He	 also	 had	 a
prodigious	power	for	mental	calculation,	not	only	of	the	arithmetical	kind
but	 also	of	 the	more	difficult	 type	demanded	 in	higher	 algebra	 and	 the



calculus.	All	the	leading	formulas	of	the	whole	range	of	mathematics	as	it
existed	in	his	day	were	accurately	stowed	away	in	his	memory.

As	 one	 instance	 of	 his	 prowess,	 Condorcet	 tells	 how	 two	 of	 Euler’s
students	 had	 summed	 a	 complicated	 convergent	 series	 (for	 a	 particular
value	of	the	variable)	to	seventeen	terms,	only	to	disagree	by	a	unit	in	the
fiftieth	place	of	the	result.	To	decide	which	was	right	Euler	performed	the
whole	calculation	mentally;	his	answer	was	found	to	be	correct.	All	this	now
came	to	his	aid	and	he	did	not	greatly	miss	the	light.	But	even	at	that,	one
feat	of	his	seventeen	blind	years	almost	passes	belief.	The	lunar	theory—
the	motion	of	the	Moon,	the	only	problem	which	had	ever	made	Newton’s
head	 ache—received	 its	 first	 thorough	workout	 at	Euler’s	hands.	All	 the
complicated	analysis	was	done	entirely	in	his	head.

Five	 years	 after	 Euler’s	 return	 to	 St.	 Petersburg	 another	 disaster
overtook	him.	In	the	great	fire	of	1771	his	house	and	all	its	furnishings	were
destroyed,	 and	 it	 was	 only	 by	 the	 heroism	 of	 his	 Swiss	 servant	 (Peter
Grimm,	or	Grimmon)	 that	Euler	 escaped	with	his	 life.	At	 the	 risk	of	his
own	life	Grimm	carried	his	blind	and	ailing	master	through	the	flames	to
safety.	The	library	was	burned,	but	thanks	to	the	energy	of	Count	Orloff	all
of	Euler’s	manuscripts	were	saved.	The	Empress	Catherine	promptly	made
good	all	the	loss	and	soon	Euler	was	back	at	work	again.

In	 1776	 (when	 he	 was	 sixty	 nine)	 Euler	 suffered	 a	 greater	 loss	 in	 the
death	of	his	wife.	The	following	year	he	married	again.	The	second	wife,
Salome	Abigail	Gsell,	was	a	half-sister	of	the	first.	His	greatest	tragedy	was
the	 failure	 (through	 surgical	 carelessness,	 possibly)	 of	 an	 operation	 to
restore	 the	 sight	 of	 his	 left	 eye—the	 only	 one	 for	 which	 there	 was	 any
hope.	 The	 operation	was	 “successful”	 and	Euler’s	 joy	 passed	 all	 bounds.
But	 presently	 infection	 set	 in,	 and	 after	 prolonged	 suffering	 which	 he
described	as	hideous,	he	lapsed	back	into	darkness.

*		*		*

In	 looking	back	 over	Euler’s	 enormous	 output	we	may	 be	 inclined	 at
the	first	glance	to	believe	that	any	gifted	man	could	have	done	a	large	part
of	it	almost	as	easily	as	Euler.	But	an	inspection	of	mathematics	as	it	exists
today	 soon	 disabuses	 us.	 For	 the	 present	 state	 of	 mathematics	 with	 its
jungles	 of	 theories	 is	 relatively	 no	more	 complicated,	 when	we	 consider
the	 power	 of	 the	 methods	 now	 at	 our	 disposal,	 than	 what	 Euler	 faced.



Mathematics	 is	 ripe	 for	 a	 second	 Euler.	 In	 his	 day	 he	 systematized	 and
unified	 vast	 tracts	 cluttered	 with	 partial	 results	 and	 isolated	 theorems,
clearing	the	ground	and	binding	up	the	valuable	things	by	the	easy	power
of	 his	 analytical	 machinery.	 Even	 today	 much	 of	 what	 is	 learned	 in	 a
college	course	in	mathematics	is	practically	as	Euler	left	it—the	discussion
of	 conic	 sections	 and	 quadrics	 in	 three-space	 from	 the	 unified	 point	 of
view	provided	by	the	general	equation	of	the	second	degree,	for	example,
is	 Euler’s.	 Again,	 the	 subject	 of	 annuities	 and	 all	 that	 grows	 out	 of	 it
(insurance,	 old-age	 pensions,	 and	 so	 on)	 were	 put	 into	 the	 shape	 now
familiar	to	students	of	the	“mathematical	theory	of	investment”	by	Euler.

As	Arago	points	out,	one	source	of	Euler’s	great	and	immediate	success
as	a	teacher	through	his	writings	was	his	total	lack	of	false	pride.	If	certain
works	of	comparatively	low	intrinsic	merit	were	demanded	to	clarify	earlier
and	more	impressive	works,	Euler	did	not	hesitate	to	write	them.	He	had
no	fear	of	lowering	his	reputation.

Even	 on	 the	 creative	 side	 Euler	 combined	 instruction	 with	 discovery.
His	 great	 treatises	 of	 1748,	 1755	 and	 1768-70	 on	 the	 calculus	 (Introductio	 in
analysin	 infinitorum;	 Institutiones	 calculi	 differentialis;	 Institutiones	 calculi
integralis)	 instantly	 became	 classic	 and	 continued	 for	 three-quarters	 of	 a
century	to	inspire	young	men	who	were	to	become	great	mathematicians.
But	 it	 was	 in	 his	 work	 on	 the	 calculus	 of	 variations	 (Methodus	 inveniendi
lineas	 curvas	 maximi	 minimive	 proprietate	 gaudentes,	 1744)	 that	 Euler	 first
revealed	himself	as	a	mathematician	of	the	first	rank.	The	importance	of
this	subject	has	been	noted	in	previous	chapters.

Euler’s	 great	 step	 forward	 when	 he	 made	 mechanics	 analytical	 has
already	 been	 remarked;	 every	 student	 of	 rigid	 dynamics	 is	 familiar	 with
Euler’s	 analysis	 of	 rotations,	 to	 cite	 but	 one	 detail	 of	 this	 advance.
Analytical	mechanics	 is	 a	branch	of	pure	mathematics,	 so	 that	Euler	was
not	tempted	here,	as	in	some	of	his	other	flights	toward	the	practical,	to	fly
off	 on	 the	 first	 tangent	 he	 saw	 leading	 into	 the	 infinite	 blue	 of	 pure
calculation.	The	severest	criticism	which	Euler’s	contemporaries	made	of
his	work	was	his	uncontrollable	impulse	to	calculate	merely	for	the	sake	of
the	 beautiful	 analysis.	 He	 may	 occasionally	 have	 lacked	 a	 sufficient
understanding	 of	 the	 physical	 situations	 he	 attempted	 to	 reduce	 to
calculation	 without	 seeing	 what	 they	 were	 all	 about.	 Nevertheless,	 the
fundamental	 equations	 of	 fluid	motion,	 in	 use	 today	 in	 hydrodynamics,
are	Euler’s.	He	could	be	practical	enough	when	it	was	worth	his	trouble.



One	peculiarity	of	Euler’s	analysis	must	be	mentioned	in	passing,	as	 it
was	largely	responsible	for	one	of	the	main	currents	of	mathematics	in	the
nineteenth	century.	This	was	his	recognition	that	unless	an	infinite	series
is	convergent	it	is	unsafe	to	use.	For	example,	by	long	division	we	find

the	series	continuing	indefinitely.	In	this	put	x	=	½.	Then

The	study	of	convergence	(to	be	discussed	in	the	chapter	on	Gauss)	shows
us	 how	 to	 avoid	 absurdities	 like	 this.	 (See	 also	 the	 chapter	 on	Cauchy.)
The	 curious	 thing	 is	 that	 although	 Euler	 recognized	 the	 necessity	 for
caution	in	dealing	with	infinite	processes,	he	failed	to	observe	it	in	much	of
his	own	work.	His	 faith	 in	analysis	was	 so	great	 that	he	would	 sometimes
seek	a	preposterous	“explanation”	to	make	a	patent	absurdity	respectable.

But	 when	 all	 this	 is	 said,	 we	 must	 add	 that	 few	 have	 equalled	 or
approached	 Euler	 in	 the	 mass	 of	 sound	 and	 novel	 work	 of	 the	 first
importance	 which	 he	 put	 out.	 Those	 who	 love	 arithmetic—not	 a	 very
“important”	 subject,	 possibly—will	 vote	 Euler	 a	 palm	 in	 Diophantine
analysis	 of	 the	 same	 size	 and	 freshness	 as	 those	 worn	 by	 Fermat	 and
Diophantus	 himself.	 Euler	 was	 the	 first	 and	 possibly	 the	 greatest	 of	 the
mathematical	universalists.

Nor	was	he	merely	a	narrow	mathematician:	in	literature	and	all	of	the
sciences,	 including	the	biologic,	he	was	at	 least	well	read.	But	even	while
he	was	enjoying	his	Aeneid	Euler	could	not	help	seeing	a	problem	for	his
mathematical	genius	 to	attack.	The	 line	 “The	anchor	drops,	 the	 rushing
keel	 is	 stay’d”	 set	 him	 to	 working	 out	 the	 ship’s	 motion	 under	 such
circumstances.	 His	 omnivorous	 curiosity	 even	 swallowed	 astrology	 for	 a
time,	 but	he	 showed	 that	he	had	not	digested	 it	 by	politely	declining	 to
cast	the	horoscope	of	Prince	Ivan	when	ordered	to	do	so	in	1740,	pointing
out	 that	 horoscopes	 belonged	 in	 the	 province	 of	 the	 court	 astronomer.
The	poor	astronomer	had	to	do	it.

One	work	of	the	Berlin	period	revealed	Euler	as	a	graceful	(if	somewhat
too	pious)	writer,	the	celebrated	Letters	to	a	German	Princess,	composed	to
give	 lessons	 in	 mechanics,	 physical	 optics,	 astronomy,	 sound,	 etc.,	 to



Frederick’s	 niece,	 the	 Princess	 of	 Anhalt-Dessau.	 The	 famous	 letters
became	 immensely	 popular	 and	 circulated	 in	 book	 form	 in	 seven
languages.	Public	interest	in	science	is	not	the	recent	development	we	are
sometimes	inclined	to	imagine	it	is.

Euler	 remained	 virile	 and	powerful	of	mind	 to	 the	 very	 second	of	his
death,	which	occurred	in	his	seventy	seventh	year,	on	September	18,	1783.
After	having	amused	himself	one	afternoon	calculating	the	laws	of	ascent
of	balloons—on	his	 slate,	 as	usual—he	dined	with	Lexell	 and	his	 family.
“Herschel’s	 Planet”	 (Uranus)	 was	 a	 recent	 discovery;	 Euler	 outlined	 the
calculation	of	its	orbit.	A	little	later	he	asked	that	his	grandson	be	brought
in.	While	playing	with	the	child	and	drinking	tea	he	suffered	a	stroke.	The
pipe	dropped	from	his	hand,	and	with	the	words	“I	die,”	“Euler	ceased	to
live	and	calculate.”I

I.	The	quotation	is	from	Condorcet’s	Eloge.



CHAPTER	TEN

A	Lofty	Pyramid

LAGRANGE

I	do	not	know.—J.	L.	LAGRANGE

“LAGRANGE	 IS	 THE	 LOFTY	 PYRAMID	 of	 the	 mathematical	 sciences.”	 This	 was
Napoleon	 Bonaparte’s	 considered	 estimate	 of	 the	 greatest	 and	 most
modest	mathematician	of	 the	eighteenth	century,	 Joseph-Louis	Lagrange
(1736-1813),	whom	he	had	made	 a	 Senator,	 a	Count	of	 the	Empire,	 and	 a
Grand	 Officer	 of	 the	 Legion	 of	 Honor.	 The	 King	 of	 Sardinia	 and
Frederick	the	Great	had	also	honored	Lagrange,	but	less	lavishly	than	the
imperial	Napoleon.

Lagrange	 was	 of	 mixed	 French	 and	 Italian	 blood,	 the	 French
predominating.	 His	 grandfather,	 a	 French	 cavalry	 captain,	 had	 entered
the	 service	of	Charles	Emmanuel	 II,	King	of	Sardinia,	 and	on	 settling	at
Turin	 had	 married	 into	 the	 illustrious	 Conti	 family.	 Lagrange’s	 father,
once	Treasurer	of	War	for	Sardinia,	married	Marie-Thérèse	Gros,	the	only
daughter	 of	 a	 wealthy	 physician	 of	 Cambiano,	 by	 whom	 he	 had	 eleven
children.	Of	 this	numerous	brood	only	 the	youngest,	 Joseph-Louis,	born
on	January	25,	 1736,	 survived	beyond	 infancy.	The	 father	was	rich,	both	 in
his	 own	 right	 and	 his	 wife’s.	 But	 he	 was	 also	 an	 incorrigible	 speculator,
and	by	the	time	his	son	was	ready	to	inherit	the	family	fortune	there	was
nothing	 worth	 inheriting.	 In	 later	 life	 Lagrange	 looked	 back	 on	 this
disaster	 as	 the	 luckiest	 thing	 that	 had	 ever	 happened	 to	 him:	 “If	 I	 had
inherited	 a	 fortune	 I	 should	 probably	 not	 have	 cast	 my	 lot	 with
mathematics.”

At	school	Lagrange’s	first	interests	were	in	the	classics,	and	it	was	more
or	less	of	an	accident	that	he	developed	a	passion	for	mathematics.	In	line
with	his	classical	studies	he	early	became	acquainted	with	the	geometrical
works	 of	 Euclid	 and	Archimedes.	These	 do	not	 seem	 to	have	 impressed
him	 greatly.	 Then	 an	 essay	 by	 Halley	 (Newton’s	 friend)	 extolling	 the



superiority	of	 the	calculus	over	 the	synthetic	geometrical	methods	of	 the
Greeks	 fell	 into	 young	 Lagrange’s	 hands.	 He	 was	 captivated	 and
converted.	In	an	incredibly	short	time	he	had	mastered	entirely	by	himself
what	 in	his	day	was	modern	analysis.	At	 the	age	of	 sixteen	(according	 to
Delambre	 there	 may	 be	 a	 slight	 inaccuracy	 here)	 Lagrange	 became
professor	 of	 mathematics	 at	 the	 Royal	 Artillery	 School	 in	 Turin.	 Then
began	one	of	the	most	brilliant	careers	in	the	history	of	mathematics.

From	the	first	Lagrange	was	an	analyst,	never	a	geometer.	In	him	we	see
the	first	conspicuous	example	of	that	specialization	which	was	to	become
almost	 a	 necessity	 in	 mathematical	 research.	 Lagrange’s	 analytical
preferences	came	out	strongly	in	his	masterpiece,	the	Mécanique	analytique
(Analytical	Mechanics),	 which	 he	 had	 projected	 as	 a	 boy	 of	 nineteen	 at
Turin,	but	which	was	published	 in	Paris	only	 in	 1788	when	Lagrange	was
fifty	two.	“No	diagrams	will	be	found	in	this	work,”	he	says	in	the	preface.
But	with	a	half-humorous	libation	to	the	gods	of	geometry	he	remarks	that
the	science	of	mechanics	may	be	considered	as	the	geometry	of	a	space	of
four	 dimensions—three	 Cartesian	 coordinates	 with	 one	 time-coordinate
sufficing	 to	 locate	 a	 moving	 particle	 in	 both	 space	 and	 time,	 a	 way	 of
looking	 at	mechanics	 that	 has	 become	popular	 since	 1915	 when	Einstein
exploited	it	in	his	general	relativity.

Lagrange’s	 analytical	 attack	 on	 mechanics	 marks	 the	 first	 complete
break	 with	 the	 Greek	 tradition.	 Newton,	 his	 contemporaries,	 and	 his
immediate	successors	found	diagrams	helpful	in	their	study	of	mechanical
problems;	 Lagrange	 showed	 that	 greater	 flexibility	 and	 incomparably
greater	 power	 are	 attained	 if	 general	 analytical	 methods	 are	 employed
from	the	beginning.

At	 Turin	 the	 boyish	 professor	 lectured	 to	 students	 all	 older	 than
himself.	Presently	he	organized	the	more	able	into	a	research	society	from
which	the	Turin	Academy	of	Sciences	developed.	The	first	volume	of	the
Academy’s	 memoirs	 was	 published	 in	 1759,	 when	 Lagrange	 was	 twenty
three.	 It	 is	 usually	 supposed	 that	 the	modest	 and	 unobtrusive	 Lagrange
was	 responsible	 for	 much	 of	 the	 fine	 mathematics	 in	 these	 early	 works
published	by	others.	One	paper	by	Foncenex	was	so	good	that	the	King	of
Sardinia	 put	 the	 supposed	 author	 in	 charge	 of	 the	 Department	 of	 the
Navy.	Historians	of	mathematics	have	sometimes	wondered	why	Foncenex
never	lived	up	to	his	first	mathematical	success.



Lagrange	himself	 contributed	a	memoir	on	maxima	and	minima	(the
calculus	of	variations,	described	in	Chapters	4,	8)	 in	which	he	promises	to
treat	 the	 subject	 in	 a	 work	 from	 which	 he	 will	 deduce	 the	 whole	 of
mechanics,	of	both	solids	and	fluids.	Thus	at	twenty	three—actually	earlier
—Lagrange	had	imagined	his	masterpiece,	the	Mécanique	analytique,	which
does	for	general	mechanics	what	Newton’s	law	of	universal	gravitation	did
for	 celestial	 mechanics.	 Writing	 ten	 years	 later	 to	 the	 French
mathematician	 D’Alembert	 (1717–1783),	 Lagrange	 says	 he	 regards	 his
early	work,	the	calculus	of	variations,	thought	out	when	he	was	nineteen,
as	his	masterpiece.	It	was	by	means	of	this	calculus	that	Lagrange	unified
mechanics	and,	as	Hamilton	said,	made	of	it	“a	kind	of	scientific	poem.”

When	once	understood	 the	Lagrangian	method	 is	 almost	 a	 platitude.
As	some	have	remarked	the	Lagrangian	equations	dominating	mechanics
are	the	finest	example	in	all	science	of	the	art	of	getting	something	out	of
nothing.	 But	 if	 we	 reflect	 a	moment	 we	 see	 that	 any	 scientific	 principle
which	 is	 general	 to	 the	 extent	 of	 uniting	 a	 whole	 vast	 universe	 of
phenomena	must	be	simple:	only	a	principle	of	 the	utmost	simplicity	can
dominate	 a	 multitude	 of	 diverse	 problems	 which	 on	 even	 a	 close
inspection	appear	to	be	individual	and	distinct.

In	the	same	volume	of	Turin	memoirs	Lagrange	took	another	long	step
forward:	he	applied	 the	differential	 calculus	 to	 the	 theory	of	probability.
As	if	this	were	not	enough	for	the	young	giant	of	twenty	three	he	advanced
beyond	 Newton	 with	 a	 radical	 departure	 in	 the	mathematical	 theory	 of
sound,	bringing	that	theory	under	the	sway	of	the	mechanics	of	systems	of
elastic	 particles	 (rather	 than	 of	 the	mechanics	 of	 fluids),	 by	 considering
the	behavior	of	all	the	air	particles	in	one	straight	line	under	the	action	of
a	 shock	 transmitted	along	 the	 line	 from	particle	 to	particle.	 In	 the	 same
general	direction	he	also	settled	a	vexed	controversy	that	had	been	going
on	 for	 years	 between	 the	 leading	 mathematicians	 over	 the	 correct
mathematical	formulation	of	the	problem	of	a	vibrating	string—a	problem
of	 fundamental	 importance	 in	 the	 whole	 theory	 of	 vibrations.	 At	 twenty
three	 Lagrange	 was	 acknowledged	 the	 equal	 of	 the	 greatest
mathematicians	of	the	age—Euler	and	the	Bernoullis.

Euler	 was	 always	 generously	 appreciative	 of	 the	 work	 of	 others.	 His
treatment	 of	 his	 young	 rival	 Lagrange	 is	 one	 of	 the	 finest	 pieces	 of
unselfishness	 in	 the	 history	 of	 science.	 When	 as	 a	 boy	 of	 nineteen
Lagrange	sent	Euler	some	of	his	work	the	famous	mathematician	at	once



recognized	 its	 merit	 and	 encouraged	 the	 brilliant	 young	 beginner	 to
continue.	When	four	years	later	Lagrange	communicated	to	Euler	the	true
method	 for	 attacking	 the	 isoperimetrical	 problems	 (the	 calculus	 of
variations,	 described	 in	 connection	 with	 the	 Bernoullis),	 which	 had
baffled	 Euler	 with	 his	 semi-geometrical	 methods	 for	 many	 years,	 Euler
wrote	to	the	young	man	saying	that	the	new	method	had	enabled	him	to
overcome	his	difficulties.	And	instead	of	rushing	into	print	with	the	long-
sought	solution,	Euler	held	it	back	till	Lagrange	could	publish	his	first,	“so
as	not	to	deprive	you	of	any	part	of	the	glory	which	is	your	due.”

Private	 letters,	 however	 flattering,	 could	 not	 have	 helped	 Lagrange.
Realizing	this,	Euler	went	out	of	his	way	when	he	published	his	work	(after
Lagrange’s)	 to	 say	 how	 he	 had	 been	 held	 up	 by	 difficulties	 which,	 till
Lagrange	showed	the	way	over	 them,	were	 insuperable.	Finally,	 to	clinch
the	matter,	Euler	got	Lagrange	elected	as	a	foreign	member	of	the	Berlin
Academy	 (October	 2,	 1759)	 at	 the	 unusually	 early	 age	 of	 twenty	 three.
This	 official	 recognition	 abroad	 was	 a	 great	 help	 to	 Lagrange	 at	 home.
Euler	 and	 D’Alembert	 schemed	 to	 get	 Lagrange	 to	 Berlin.	 Partly	 for
personal	 reasons	 they	 were	 eager	 to	 see	 their	 brilliant	 young	 friend
installed	as	court	mathematician	at	Berlin.	After	lengthy	negotiations	they
succeeded,	 and	 the	 great	 Frederick,	 slightly	 outwitted	 in	 the	 whole
transaction,	was	childishly	(but	justifiably)	delighted.

Something	 must	 be	 said	 in	 passing	 about	 D’Alembert,	 Lagrange’s
devoted	friend	and	generous	admirer,	if	only	for	the	grateful	contrast	one
aspect	 of	 his	 character	 offers	 to	 that	 of	 the	 snobbish	Laplace,	 whom	we
shall	meet	later.

Jean	 le	 Rond	 d’Alembert	 took	 his	 name	 from	 the	 little	 chapel	 of	 St.
Jean	 le	 Rond	 hard	 by	 Notre-Dame	 in	 Paris.	 An	 illegitimate	 son	 of	 the
Chevalier	Destouches,	D’Alembert	had	been	abandoned	by	his	mother	on
the	steps	of	St.	Jean	le	Rond.	The	parish	authorities	turned	the	foundling
over	to	the	wife	of	a	poor	glazier,	who	reared	the	child	as	if	he	were	her
own.	The	Chevalier	was	 forced	by	 law	 to	pay	 for	his	bastard’s	education.
D’Alembert’s	real	mother	knew	where	he	was,	and	when	the	boy	early	gave
signs	of	genius,	sent	for	him,	hoping	to	win	him	over.

“You	are	only	my	stepmother,”	the	boy	told	her	(a	good	pun	in	English,
but	not	in	French);	“the	glazier’s	wife	is	my	true	mother.”	And	with	that	he
abandoned	his	own	flesh	and	blood	as	she	had	abandoned	hers.



When	 he	 became	 famous	 and	 a	 great	 figure	 in	 French	 science
D’Alembert	repaid	the	glazier	and	his	wife	by	seeing	that	they	did	not	fall
into	want	(they	preferred	to	keep	on	living	in	their	humble	quarters),	and
he	was	always	proud	to	claim	them	as	his	parents.	Although	we	shall	not
have	 space	 to	 consider	him	 apart	 from	Lagrange,	 it	must	 be	mentioned
that	 D’Alembert	 was	 the	 first	 to	 give	 a	 complete	 solution	 of	 the
outstanding	 problem	 of	 the	 precession	 of	 the	 equinoxes.	 His	 most
important	purely	mathematical	work	was	in	partial	differential	equations,
particularly	in	connection	with	vibrating	strings.

D’Alembert	 encouraged	 his	 modest	 young	 correspondent	 to	 attack
difficult	 and	 important	problems.	He	 also	 took	 it	 upon	himself	 to	make
Lagrange	 take	 reasonable	 care	 of	 his	 health—his	 own	 was	 not	 good.
Lagrange	 had	 in	 fact	 seriously	 impaired	 his	 digestion	 by	 quite
unreasonable	application	between	the	ages	of	sixteen	and	twenty	six,	and
all	his	life	thereafter	he	was	forced	to	discipline	himself	severely,	especially
in	 the	matter	 of	 overwork.	 In	 one	of	 his	 letters	D’Alembert	 lectures	 the
young	man	for	indulging	in	tea	and	coffee	to	keep	awake;	 in	another	he
lugubriously	 calls	 Lagrange’s	 attention	 to	 a	 recent	medical	 book	 on	 the
diseases	 of	 scholars.	 To	 all	 of	 which	 Lagrange	 blithely	 replies	 that	 he	 is
feeling	fine	and	working	like	mad.	But	in	the	end	he	paid	his	tax.

In	one	 respect	Lagrange’s	 career	 is	 a	 curious	parallel	 to	Newton’s.	By
middle	age	prolonged	concentration	on	problems	of	 the	first	magnitude
had	 dulled	 Lagrange’s	 enthusiasm,	 and	 although	 his	mind	 remained	 as
powerful	as	ever,	he	came	to	regard	mathematics	with	indifference.	When
only	 forty	 five	 he	 wrote	 to	 D’Alembert,	 “I	 begin	 to	 feel	 the	 pull	 of	 my
inertia	increasing	little	by	little,	and	I	cannot	say	that	I	shall	still	be	doing
mathematics	 ten	 years	 from	 now.	 It	 also	 seems	 to	 me	 that	 the	 mine	 is
already	too	deep,	and	that	unless	new	veins	are	discovered	it	will	have	to
be	abandoned.”

When	he	wrote	 this	Lagrange	was	 ill	 and	melancholic.	Nevertheless	 it
expressed	 the	 truth	 so	 far	 as	 he	 was	 concerned.	D’Alembert’s	 last	 letter
(September,	 1783),	 written	 a	month	 before	 his	 death,	 reverses	 his	 early
advice	 and	counsels	work	as	 the	only	 remedy	 for	Lagrange’s	psychic	 ills:
“In	 God’s	 name	 do	 not	 renounce	 work,	 for	 you	 the	 strongest	 of	 all
distractions.	 Goodbye,	 perhaps	 for	 the	 last	 time.	 Keep	 some	memory	 of
the	man	who	of	all	in	the	world	cherishes	and	honors	you	the	most.”



Happily	 for	 mathematics	 Lagrange’s	 blackest	 depression,	 with	 its
inescapable	corollary	that	no	human	knowledge	is	worth	striving	for,	was
twenty	 glorious	 years	 in	 the	 future	 when	 D’Alembert	 and	 Euler	 were
scheming	to	get	Lagrange	to	Berlin.	Among	the	great	problems	Lagrange
attacked	and	solved	before	going	to	Berlin	was	that	of	the	libration	of	the
Moon.	Why	does	 the	Moon	always	present	 the	 same	 face	 to	 the	Earth—
within	 certain	 slight	 irregularities	 that	 can	 be	 accounted	 for?	 It	 was
required	 to	deduce	 this	 fact	 from	 the	Newtonian	 law	of	gravitation.	The
problem	 is	 an	 instance	of	 the	 famous	 “Problem	of	Three	Bodies”—here
the	Earth,	Sun,	and	Moon—mutually	attracting	one	another	according	to
the	 law	 of	 the	 inverse	 square	 of	 the	 distances	 between	 their	 centers	 of
gravity.	(More	will	be	said	on	this	problem	when	we	come	to	Poincaré.)

For	his	solution	of	the	problem	of	libration	Lagrange	was	awarded	the
Grand	Prize	of	the	French	Academy	of	Sciences	in	1764—he	was	then	only
twenty	eight.

Encouraged	by	this	brilliant	success	the	Academy	proposed	a	yet	more
difficult	 problem,	 for	 which	 Lagrange	 again	 won	 the	 prize	 in	 1766.	 In
Lagrange’s	day	only	four	satellites	of	Jupiter	had	been	discovered.	Jupiter’s
system	(himself,	the	Sun,	and	his	satellites)	thus	made	a	six-body	problem.
A	complete	mathematical	solution	is	beyond	our	powers	even	today	(1936)
in	 a	 shape	 adapted	 to	 practical	 computation.	 But	 by	 using	 methods	 of
approximation	 Lagrange	 made	 a	 notable	 advance	 in	 explaining	 the
observed	inequalities.

Such	 applications	 of	 the	 Newtonian	 theory	 were	 one	 of	 Lagrange’s
major	interests	all	his	active	life.	In	1772	he	again	captured	the	Paris	prize
for	his	memoir	on	the	three-body	problem,	and	in	1774	and	1778	he	had
similar	 successes	 with	 the	 motion	 of	 the	 Moon	 and	 cometary
perturbations.

The	earlier	of	these	spectacular	successes	induced	the	King	of	Sardinia
to	 pay	 Lagrange’s	 expenses	 for	 a	 trip	 to	 Paris	 and	 London	 in	 1766.
Lagrange	was	then	thirty.	It	had	been	planned	that	he	was	to	accompany
Caraccioli,	 the	 Sardinian	 minister	 to	 England,	 but	 on	 reaching	 Paris
Lagrange	 fell	dangerously	 ill—the	 result	of	 an	over-generous	banquet	of
rich	 Italian	 dishes	 in	 his	 honor—and	 he	 was	 forced	 to	 remain	 in	 Paris.
While	there	he	met	all	the	leading	intellectuals,	including	the	Abbé	Marie,
who	was	later	to	prove	an	invaluable	friend.	The	banquet	cured	Lagrange



of	his	desire	to	live	in	Paris	and	he	eagerly	returned	to	Turin	as	soon	as	he
was	able	to	travel.

At	 last,	 on	November	 6,	 1766,	 Lagrange	 was	 welcomed,	 at	 the	 age	 of
thirty,	 to	 Berlin	 by	 Frederick,	 “the	 greatest	 King	 in	 Europe,”	 as	 he
modestly	 styled	himself,	who	would	be	honored	to	have	at	his	court	“the
greatest	 mathematician.”	 The	 last,	 at	 least,	 was	 true.	 Lagrange	 became
director	of	the	physico-mathematical	division	of	the	Berlin	Academy,	and
for	twenty	years	crowded	the	transactions	of	the	Academy	with	one	great
memoir	after	another.	He	was	not	required	to	lecture.

At	 first	 the	 young	 director	 found	 himself	 in	 a	 somewhat	 delicate
position.	Naturally	enough	the	Germans	rather	resented	foreigners	being
brought	 in	 over	 their	 heads	 and	 were	 inclined	 to	 treat	 Frederick’s
importations	with	a	little	less	than	cool	civility.	In	fact	they	were	frequently
quite	insulting.	But	in	addition	to	being	a	mathematician	of	the	first	rank
Lagrange	was	a	considerate,	gentle	soul	with	the	rare	gift	of	knowing	when
to	keep	his	mouth	shut.	In	letters	to	trusted	friends	he	could	be	outspoken
enough,	 even	 about	 the	 Jesuits,	whom	he	 and	D’Alembert	 seem	 to	have
disliked,	and	in	his	official	reports	to	academies	on	the	scientific	work	of
others	he	could	be	quite	blunt.	But	 in	his	 social	 contacts	he	minded	his
own	 business	 and	 avoided	 giving	 even	 justifiable	 offense.	 Until	 his
colleagues	got	used	to	his	presence	he	kept	out	of	their	way.

Lagrange’s	constitutional	dislike	of	all	disputes	stood	him	in	good	stead
at	 Berlin.	 Euler	 had	 blundered	 from	 one	 religious	 or	 philosophical
controversy	 to	another;	Lagrange,	 if	 cornered	and	pressed,	would	always
preface	his	replies	with	his	sincere	formula	“I	do	not	know.”	Yet	when	his
own	convictions	were	attacked	he	knew	how	to	put	up	a	spirited,	reasoned
defense.

On	the	whole	Lagrange	was	inclined	to	sympathize	with	Frederick	who
had	sometimes	been	irritated	by	Euler’s	tilting	at	philosophical	problems
about	 which	 he	 knew	 nothing.	 “Our	 friend	 Euler,”	 he	 wrote	 to
D’Alembert,	 “is	 a	 great	mathematician,	 but	 a	 bad	 enough	 philosopher.”
And	on	another	occasion,	referring	to	Euler’s	effusion	of	pious	moralizing
in	 the	celebrated	Letters	 to	 a	German	Princess,	 he	dubs	 the	 classic	 “Euler’s
commentary	on	the	Apocalypse”—incidentally	a	backhand	allusion	to	the
indiscretion	which	Newton	permitted	himself	when	he	had	 lost	his	 taste
for	natural	philosophy.	“It	is	incredible,”	Lagrange	said	of	Euler,	“that	he
could	have	been	so	 flat	and	childish	 in	metaphysics.”	And	for	himself,	 “I



have	a	great	aversion	to	disputes.”	When	he	did	philosophize	in	his	letters
it	was	with	an	unexpected	touch	of	cynicism	which	is	wholly	absent	from
the	works	he	published,	as	when	he	remarks,	“I	have	always	observed	that
the	pretensions	of	all	people	are	in	exact	inverse	ratio	to	their	merits;	this
is	 one	 of	 the	 axioms	 of	 morals.”	 In	 religious	 matters	 Lagrange	 was,	 if
anything	at	all,	agnostic.

Frederick	was	delighted	with	his	 prize	 and	 spent	many	 friendly	hours
with	Lagrange,	expounding	the	advantages	of	a	regular	life.	The	contrast
Lagrange	offered	to	Euler	was	particularly	pleasing	to	Frederick.	The	King
had	 been	 irritated	 by	 Euler’s	 too	 obvious	 piety	 and	 lack	 of	 courtly
sophistication.	He	had	even	gone	so	far	as	to	call	poor	Euler	a	“lumbering
cyclops	of	a	mathematician,”	because	Euler	at	 the	time	was	blind	in	only
one	of	his	eyes.	To	D’Alembert	the	grateful	Frederick	overflowed	in	both
prose	 and	 verse.	 “To	 your	 trouble	 and	 to	 your	 recommendation,”	 he
wrote,	“I	owe	the	replacement	in	my	Academy	of	a	mathematician	blind	in
one	eye	by	a	mathematician	with	two	eyes,	which	will	be	especially	pleasing
to	the	anatomical	section.”	In	spite	of	sallies	like	this	Frederick	was	not	a
bad	sort.

*		*		*

Shortly	 after	 settling	 in	 Berlin	 Lagrange	 sent	 to	 Turin	 for	 one	 of	 his
young	lady	relatives	and	married	her.	There	are	two	accounts	of	how	this
happened.	One	says	 that	Lagrange	had	 lived	 in	 the	same	house	with	 the
girl	and	her	parents	and	had	taken	an	interest	in	her	shopping.	Having	an
economical	 streak	 in	 his	 cautious	 nature,	 Lagrange	 was	 scandalized	 by
what	 he	 considered	 the	 girl’s	 extravagance	 and	 bought	 her	 ribbons
himself.	From	there	on	he	was	dragooned	into	marrying	her.

The	 other	 version	 can	 be	 inferred	 from	 one	 of	 Lagrange’s	 letters—
certainly	 the	 strangest	 confession	 of	 indifference	 ever	 penned	 by	 a
supposedly	 doting	 young	 husband.	 D’Alembert	 had	 joked	 his	 friend:	 “I
understand	 that	 you	 have	 taken	 what	 we	 philosophers	 call	 the	 fatal
plunge.	 .	 .	 .	A	great	mathematician	should	know	above	all	 things	how	 to
calculate	his	happiness.	I	do	not	doubt	then	that	after	having	performed
this	calculation	you	found	the	solution	in	marriage.”

Lagrange	 either	 took	 this	 in	 deadly	 earnest	 or	 set	 out	 to	 beat
D’Alembert	at	his	own	game—and	succeeded.	D’Alembert	had	expressed



surprise	that	Lagrange	had	not	mentioned	his	marriage	in	his	letters.
“I	 don’t	 know	whether	 I	 calculated	 ill	 or	 well,”	 Lagrange	 replied,	 “or

rather,	I	don’t	believe	I	calculated	at	all;	for	I	might	have	done	as	Leibniz
did,	who,	compelled	to	reflect,	could	never	make	up	his	mind.	I	confess	to
you	that	I	never	had	a	taste	for	marriage,	 .	 .	 .	but	circumstances	decided
me	to	engage	one	of	my	young	kinswomen	to	take	care	of	me	and	all	my
affairs.	If	I	neglected	to	inform	you	it	was	because	the	whole	thing	seemed
to	 me	 so	 inconsequential	 in	 itself	 that	 it	 was	 not	 worth	 the	 trouble	 of
informing	you	of	it.”

The	marriage	was	turning	out	happily	for	both	when	the	wife	declined
in	a	lingering	illness.	Lagrange	gave	up	his	sleep	to	nurse	her	himself	and
was	heartbroken	when	she	died.

He	 consoled	 himself	 in	 his	 work.	 “My	 occupations	 are	 reduced	 to
cultivating	 mathematics,	 tranquilly	 and	 in	 silence.”	 He	 then	 tells
D’Alembert	the	secret	of	the	perfection	of	all	his	work	which	has	been	the
despair	of	his	hastier	successors.	“As	I	am	not	pressed	and	work	more	for
my	pleasure	than	from	duty,	I	am	like	the	great	lords	who	build:	I	make,
unmake,	and	remake,	until	 I	am	passably	 satisfied	with	my	results,	which
happens	 only	 rarely.”	 And	 on	 another	 occasion,	 after	 complaining	 of
illness	brought	on	by	overwork,	he	says	it	is	impossible	for	him	to	rest:	“My
bad	habit	of	rewriting	my	memoirs	several	times	till	I	am	passably	satisfied
is	impossible	for	me	to	break.”

Not	all	of	Lagrange’s	main	efforts	during	his	twenty	years	at	Berlin	went
into	 celestial	 mechanics	 and	 the	 polishing	 of	 his	 masterpiece.	 One
digression—into	 Fermat’s	 domain—is	 of	 particular	 interest	 as	 it	 may
suggest	 the	 inherent	difficulty	of	 simple-looking	things	 in	arithmetic.	We
see	 even	 the	 great	 Lagrange	 puzzled	 over	 the	 unexpected	 effort	 his
arithmetical	researches	cost	him.

“I	have	been	occupied	these	last	few	days,”	he	wrote	to	D’Alembert	on
August	15,	1768,	“in	diversifying	my	studies	a	little	with	certain	problems	of
Arithmetic,	 and	 I	 assure	 you	 I	 found	many	more	 difficulties	 than	 I	 had
anticipated.	Here	is	one,	for	example,	at	whose	solution	I	arrived	only	with
great	trouble.	Given	any	positive	integer	n	which	is	not	a	square,	to	find	a
square	integer,	x2,	such	that	nx2	+	1	shall	be	a	square.	This	problem	is	of
great	 importance	 in	 the	 theory	 of	 squares	 [today,	 quadratic	 forms,	 to	 be
described	 in	 connection	 with	 Gauss]	 which	 [squares]	 are	 the	 principal
object	 in	Diophantine	 analysis.	Moreover	 I	 found	on	 this	 occasion	 some



very	 beautiful	 theorems	 of	 Arithmetic,	 which	 I	 will	 communicate	 to	 you
another	time	if	you	wish.”

The	 problem	 Lagrange	 describes	 has	 a	 long	 history	 going	 back	 to
Archimedes	and	the	Hindus.	Lagrange’s	classic	memoir	on	making	nx2	+	1
a	square	is	a	landmark	in	the	theory	of	numbers.	He	was	also	the	first	to
prove	 some	 of	 Fermat’s	 theorems	 and	 that	 of	 John	Wilson	 (1741-1793),
who	had	stated	that	 if	p	 is	any	prime	number,	 then	 if	all	 the	numbers	1,
2,	.	.	.	up	to	p—	1	are	multiplied	together	and	1	be	added	to	the	result,	the
sum	is	divisible	by	p.	The	like	is	not	true	if	p	is	not	prime.	For	example,	if	p
=	5,	1	×	2	×	3	×	4	+	1	=	25.	This	can	be	proved	by	elementary	reasoning	and
is	another	of	those	arithmetical	super-intelligence	tests.I

In	his	reply	D’Alembert	states	his	belief	that	Diophantine	analysis	may
be	useful	 in	 the	 integral	 calculus,	 but	does	not	 go	 into	detail.	Curiously
enough,	 the	 prophecy	 was	 fulfilled	 in	 the	 1870’s	 by	 the	 Russian
mathematician,	G.	Zolotareff.

Laplace	 also	 became	 interested	 in	 arithmetic	 for	 a	 while	 and	 told
Lagrange	that	the	existence	of	Fermat’s	unproved	theorems,	while	one	of
the	greatest	glories	of	French	mathematics,	was	also	its	most	conspicuous
blemish,	 and	 it	 was	 the	 duty	 of	 French	 mathematicians	 to	 remove	 the
blemish.	 But	 he	 prophesied	 tremendous	 difficulties.	 The	 root	 of	 the
trouble,	 in	his	opinion,	 is	 that	discrete	problems	(those	dealing	ultimately
with	1,	2,	3,	.	.	.)	are	not	yet	attackable	by	any	general	weapon	such	as	the
calculus	 provides	 for	 the	 continuous.	 D’Alembert	 also	 remarks	 of
arithmetic	 that	 he	 found	 it	 “more	 difficult	 than	 it	 seems	 at	 first.”	 These
experiences	 of	mathematicians	 like	 Lagrange	 and	 his	 friends	may	 imply
that	arithmetic	really	is	hard.

Another	 letter	 of	 Lagrange’s	 (February	 28,	 1769)	 records	 the
conclusion	of	the	matter.	“The	problem	I	spoke	of	has	occupied	me	much
more	 than	 I	 anticipated	 at	 first;	 but	 finally	 I	 am	 happily	 finished	 and	 I
believe	 I	 have	 left	 practically	 nothing	 to	 be	 desired	 in	 the	 subject	 of
indeterminate	equations	of	the	second	degree	in	two	unknowns.”	He	was
too	 optimistic	 here;	 Gauss	 had	 yet	 to	 be	 heard	 from—his	 father	 and
mother	had	still	seven	years	to	go	before	meeting	one	another.	Two	years
before	the	birth	of	Gauss	(in	1777),	Lagrange	looked	back	over	his	work
in	a	pessimistic	mood:	“The	arithmetical	researches	are	those	which	have
cost	me	most	trouble	and	are	perhaps	the	least	valuable.”



When	 he	 was	 feeling	 well	 Lagrange	 seldom	 lapsed	 into	 the	 error	 of
estimating	 the	 “importance”	 of	 his	 work.	 “I	 have	 always	 regarded
mathematics,”	 he	wrote	 to	Laplace	 in	 1777,	 “as	 an	object	 of	 amusement
rather	 than	 of	 ambition,	 and	 I	 can	 assure	 you	 that	 I	 enjoy	 the	works	 of
others	much	more	than	my	own,	with	which	I	am	always	dissatisfied.	You
will	see	by	that,	if	you	are	exempt	from	jealousy	by	your	own	success,	I	am
none	 the	 less	 so	 by	 my	 disposition.”	 This	 was	 in	 reply	 to	 a	 somewhat
pompous	 declaration	 by	Laplace	 that	 he	worked	 at	mathematics	 only	 to
appease	his	own	sublime	curiosity	and	did	not	give	a	hang	for	the	plaudits
of	“the	multitude”—which,	in	his	case,	was	partly	balderdash.

A	letter	of	September	15,	1782,	to	Laplace	is	of	great	historical	interest
as	 it	 tells	 of	 the	 finishing	 of	 the	 Mécanique	 analytique:	 “I	 have	 almost
completed	 a	 Treatise	 on	 Analytical	 Mechanics,	 founded	 solely	 on	 the
principle	or	formula	in	the	first	section	of	the	accompanying	memoir;	but
as	 I	do	not	know	when	or	where	 I	 can	get	 it	printed,	 I	 am	not	hurrying
with	the	finishing	touches.”

Legendre	 undertook	 the	 editing	 of	 the	 work	 for	 the	 press	 and
Lagrange’s	old	friend	the	Abbé	Marie	finally	persuaded	a	Paris	publisher
to	risk	his	reputation.	This	canny	individual	consented	to	proceed	with	the
printing	 only	 when	 the	 Abbé	 agreed	 to	 purchase	 all	 stock	 remaining
unsold	 after	 a	 certain	 date.	 The	 book	 did	 not	 appear	 until	 1788,	 after
Lagrange	had	left	Berlin.	A	copy	was	delivered	into	his	hands	when	he	had
grown	 so	 indifferent	 to	 all	 science	 and	 all	mathematics	 that	 he	 did	 not
even	 bother	 to	 open	 the	 book.	 For	 all	 he	 knew	 at	 the	 time	 the	 printer
might	have	got	it	out	in	Chinese.	He	did	not	care.

*		*		*

One	 investigation	 of	 Lagrange’s	 Berlin	 period	 is	 of	 the	 highest
importance	 in	 the	development	of	modern	algebra,	 the	memoir	of	1767
On	the	Solution	of	Numerical	Equations	and	the	subsequent	additions	dealing
with	the	general	question	of	the	algebraic	solvability	of	equations.	Possibly
the	 greatest	 importance	 of	 Lagrange’s	 researches	 in	 the	 theory	 and
solution	of	 equations	 is	 the	 inspiration	 they	proved	 to	be	 to	 the	 leading
algebraists	 of	 the	 early	 nineteenth	 century.	 Time	 after	 time	we	 shall	 see
the	men	who	finally	disposed	of	a	problem	which	had	baffled	algebraists
for	 three	 centuries	 or	 more	 returning	 to	 Lagrange	 for	 ideas	 and



inspiration.	Lagrange	himself	did	not	resolve	the	central	difficulty—that	of
stating	necessary	and	 sufficient	 conditions	 that	a	given	equation	 shall	be
solvable	 algebraically,	but	 the	germ	of	 the	 solution	 is	 to	be	 found	 in	his
work.

As	the	problem	is	one	of	those	major	things	in	all	algebra	which	can	be
simply	described	we	may	glance	at	it	in	passing;	it	will	recur	many	times	as
a	leading	motive	in	the	work	of	some	of	the	great	mathematicians	of	the
nineteenth	 century—Cauchy,	 Abel,	 Galois,	 Hermite,	 and	 Kronecker,
among	others.

First	it	may	be	emphasized	that	there	is	no	difficulty	whatever	in	solving
an	 algebraic	 equation	 with	 numerical	 coefficients.	 The	 labor	 may	 be
excessive	if	the	equation	is	of	high	degree,	say

3x101	–	17.3x70	+	x	–	11	=	0,

but	 there	 are	 many	 straightforward	 methods	 known	 whereby	 a	 root	 of
such	 a	 numerical	 equation	 can	 be	 found	 to	 any	 prescribed	 degree	 of
accuracy.	Some	of	these	are	part	of	the	regular	school	course	in	algebra.
But	in	Lagrange’s	day	uniform	methods	for	solving	numerical	equations	to
a	preassigned	degree	of	accuracy	were	not	commonplace—if	known	at	all.
Lagrange	provided	such	a	method.	Theoretically	it	did	what	was	required,
but	 it	 was	 not	 practical.	 No	 engineer	 faced	 with	 a	 numerical	 equation
today	would	dream	of	using	Lagrange’s	method.

The	really	significant	problem	arises	when	we	seek	an	algebraic	solution
of	an	equation	with	literal	coefficients,	say	ax2	+	bx	+	c	=	0,	or	ax3	+	bx2	+	cx	+
d	=	0,	and	so	on	for	degrees	higher	than	the	third.	What	is	required	is	a	set
of	 formulas	expressing	 the	unknown	x	 in	 terms	of	 the	given	a,	 b,	 c,	 .	 .	 .	 ,
such	that	if	any	one	of	these	expressions	for	x	be	put	in	the	lefthand	side
of	the	equation,	that	side	shall	reduce	to	zero.	For	an	equation	of	degree	n
the	 unknown	 x	 has	 precisely	 n	 values.	 Thus	 for	 the	 above	 quadratic
(second	degree)	equation,

are	the	two	values	which	when	substituted	for	x	will	reduce	ax2	+	bx	+	c	 to
zero.	The	required	values	of	x	in	any	case	are	to	be	expressed	in	terms	of	a,	b,	c,	.	.	.
by	 means	 of	 only	 a	 finite	 number	 of	 additions,	 subtractions,	 multiplications,



divisions,	 and	 extractions	 of	 roots.	 This	 is	 the	 problem.	 Is	 it	 solvable?	 The
answer	to	this	was	not	given	till	about	twenty	years	after	Lagrange’s	death,
but	the	clue	is	easily	traced	to	his	work.

As	 a	 first	 step	 toward	 a	 comprehensive	 theory	 Lagrange	 made	 an
exhaustive	 study	 of	 all	 the	 solutions	 given	 by	 his	 predecessors	 for	 the
general	equations	of	the	first	four	degrees,	and	succeeded	in	showing	that
all	of	the	dodges	by	which	solutions	had	been	obtained	could	be	replaced
by	a	uniform	procedure.	A	detail	in	this	general	method	contains	the	clue
mentioned.	Suppose	we	are	given	an	algebraic	expression	involving	letters
a,	b,	c,	 .	 .	 .:	how	many	different	expressions	can	be	derived	from	the	given
one	if	the	letters	in	it	are	interchanged	in	all	possible	ways?	For	example,
from	ab	+	cd	we	get	ad	+	cb	by	interchanging	b	and	d.	This	problem	suggests
another	 closely	 related	 one,	 also	 part	 of	 the	 clue	 Lagrange	was	 seeking.
What	 interchanges	 of	 letters	 will	 leave	 the	 given	 expression	 invariant
(unaltered)?	Thus	ab	+	cd	becomes	ba	+	cd	under	the	interchange	of	a	and
b,	which	is	the	same	as	ab	+	cd	since	ab	=	ba.	From	these	questions	the	theory
of	finite	groups	originated.	This	was	found	to	be	the	key	to	the	question	of
algebraic	solvability.	It	will	reappear	when	we	consider	Cauchy	and	Galois.

Another	 significant	 fact	 showed	 up	 in	 Lagrange’s	 investigation.	 For
degrees	2,	3,	and	4	the	general	algebraic	equation	is	solved	by	making	the
solution	 depend	 upon	 that	 of	 an	 equation	 of	 lower	 degree	 than	 the	 one
under	 discussion.	 This	 works	 beautifully	 and	 uniformly	 for	 equations	 of
degrees	2,	3,	and	4,	but	when	a	precisely	similar	process	 is	attempted	on
the	general	equation	of	degree	5,

ax5	+	bx4	+	cx3	+	dx2	+	ex	+	f	=	0,

the	resolvent	equation,	instead	of	being	of	degree	less	than	5	turns	out	to	be
of	degree	6.	This	has	the	effect	of	replacing	the	given	equation	by	a	harder
one.	The	method	which	works	for	2,	3,	4	breaks	down	for	5,	and	unless	there	is
some	way	round	the	awkward	6	the	road	is	blocked.	As	a	matter	of	fact	we
shall	see	that	there	is	no	way	of	avoiding	the	difficulty.	We	might	as	well	try
to	square	the	circle	or	trisect	an	angle	by	Euclidean	methods.

*		*		*

After	 the	 death	 of	 Frederick	 the	 Great	 (August	 17,	 1786)	 resentment
against	 non-Prussians	 and	 indifference	 to	 science	 made	 Berlin	 an



uncomfortable	 spot	 for	 Lagrange	 and	 his	 foreign	 associates	 in	 the
Academy,	and	he	 sought	his	 release.	This	was	granted	on	condition	 that
he	 continue	 to	 send	memoirs	 to	 the	 proceedings	 of	 the	 Academy	 for	 a
period	 of	 years,	 to	 which	 Lagrange	 agreed.	 He	 gladly	 accepted	 the
invitation	 of	 Louis	XVI	 to	 continue	 his	mathematical	 work	 in	 Paris	 as	 a
member	 of	 the	 French	Academy.	On	his	 arrival	 in	 Paris	 in	 1787	he	was
received	 with	 the	 greatest	 respect	 by	 the	 royal	 family	 and	 the	 Academy.
Comfortable	quarters	were	assigned	him	in	the	Louvre,	where	he	lived	till
the	Revolution,	 and	 he	 became	 a	 special	 favorite	 of	Marie	 Antoinette—
then	 less	 than	 six	 years	 from	 the	 guillotine.	 Marie	 was	 about	 nineteen
years	younger	than	Lagrange,	but	she	seemed	to	understand	him	and	did
what	she	could	to	lighten	his	overwhelming	depression.

At	the	age	of	fifty	one	Lagrange	felt	that	he	was	through.	It	was	a	clear
case	of	nervous	exhaustion	 from	 long-continued	and	excessive	overwork.
The	 Parisians	 found	 him	 gentle	 and	 agreeable	 in	 conversation,	 but	 he
never	 took	 the	 lead.	 He	 spoke	 but	 little	 and	 appeared	 distrait	 and
profoundly	 melancholy.	 At	 Lavoisier’s	 gatherings	 of	 scientific	 men
Lagrange	would	 stand	 staring	 absently	 out	 of	 a	 window,	 his	 back	 to	 the
guests	who	had	come	to	do	him	honor,	a	picture	of	sad	indifference.	He
said	himself	that	his	enthusiasm	was	extinct	and	that	he	had	lost	the	taste
for	mathematics.	If	he	were	told	that	some	mathematician	was	engaged	on
an	important	research	he	would	say	“So	much	the	better;	I	began	it;	I	shall
not	have	to	finish	it.”	The	Mécanique	analytique	 lay	unopened	on	his	desk
for	two	years.

Sick	 of	 everything	 smelling	 of	 mathematics	 Lagrange	 now	 turned	 to
what	 he	 considered	 his	 real	 interests—as	 Newton	 had	 done	 after	 the
Principia:	 metaphysics,	 the	 evolution	 of	 human	 thought,	 the	 history	 of
religions,	 the	general	 theory	of	 languages,	medicine,	 and	botany.	 In	 this
strange	miscellany	he	 surprised	his	 friends	with	his	 extensive	 knowledge
and	the	penetrating	quality	of	his	mind	on	matters	alien	to	mathematics.
Chemistry	at	 the	 time	was	 fast	becoming	a	 science—in	distinction	 to	 the
alchemy	which	preceded	it,	largely	through	the	efforts	of	Lagrange’s	close
friend	Lavoisier	(1743-1794).	In	a	sense	which	any	student	of	elementary
chemistry	 will	 appreciate	 Lagrange	 declared	 that	 Lavoisier	 had	 made
chemistry	“as	easy	as	algebra.”

As	for	mathematics,	Lagrange	considered	that	it	was	finished	or	at	least
passing	 into	 a	 period	 of	 decadence.	 Chemistry,	 physics,	 and	 science



generally	 he	 foresaw	 as	 the	 future	 fields	 of	 greatest	 interest	 to	 first-class
minds,	and	he	even	predicted	that	the	chairs	of	mathematics	in	academies
and	universities	would	presently	sink	to	the	undistinguished	level	of	those
for	Arabic.	In	a	sense	he	was	right.	Had	not	Gauss,	Abel,	Galois,	Cauchy,
and	 others	 injected	 new	 ideas	 into	 mathematics	 the	 surge	 of	 the
Newtonian	 impulse	 would	 have	 spent	 itself	 by	 1850.	 Happily	 Lagrange
lived	 long	 enough	 to	 see	 Gauss	 well	 started	 on	 his	 great	 career	 and	 to
realize	 that	 his	 own	 forebodings	had	been	unfounded.	We	may	 smile	 at
Lagrange’s	 pessimism	 today,	 thinking	 of	 the	 era	 before	 1800	 at	 its
brightest	as	only	the	dawn	of	the	modern	mathematics	in	the	first	hour	of
whose	morning	we	now	 stand,	wondering	what	 the	noon	will	 be	 like—if
there	is	to	be	any;	and	we	may	learn	from	his	example	to	avoid	prophecy.

The	 Revolution	 broke	 Lagrange’s	 apathy	 and	 galvanized	 him	 once
more	 into	 a	 living	 interest	 in	 mathematics.	 As	 a	 convenient	 point	 of
reference	we	may	remember	July	14,	1789,	 the	day	on	which	the	Bastille
fell.

When	 the	 French	 aristocrats	 and	men	of	 science	 at	 last	 realized	what
they	were	in	for,	they	urged	Lagrange	to	return	to	Berlin	where	a	welcome
awaited	him.	No	objection	would	have	been	raised	 to	his	departure.	But
he	 refused	 to	 leave	 Paris,	 saying	 he	 would	 prefer	 to	 stay	 and	 see	 the
“experiment”	through.	Neither	he	nor	his	friends	foresaw	the	Terror,	and
when	it	came	Lagrange	bitterly	regretted	having	stayed	until	it	was	too	late
to	 escape.	 He	 had	 no	 fear	 for	 his	 own	 life.	 In	 the	 first	 place	 as	 a	 half-
foreigner	 he	 was	 reasonably	 safe,	 and	 in	 the	 second	 he	 did	 not	 greatly
value	 his	 life.	 But	 the	 revolting	 cruelties	 sickened	 him	 and	 all	 but
destroyed	 what	 little	 faith	 he	 had	 left	 in	 human	 nature	 and	 common
sense.	 “Tu	 l‘as	 voulu”	 (“You	 wished	 it,”	 or	 “You	would	 do	 it”),	 he	 would
keep	reminding	himself	as	one	atrocity	after	another	shocked	him	into	a
realization	 of	 his	 error	 in	 staying	 to	 witness	 the	 inevitable	 horrors	 of	 a
revolution.

The	 grandiose	 schemes	 of	 the	 revolutionists	 for	 the	 regeneration	 of
mankind	and	the	reform	of	human	nature	left	him	cold.	When	Lavoisier
went	 to	 the	guillotine—as	he	no	doubt	would	have	deserved	had	 it	been
merely	a	question	of	social	justice—Lagrange	expressed	his	indignation	at
the	stupidity	of	the	execution:	“It	took	them	only	a	moment	to	cause	this
head	 to	 fall,	 and	a	hundred	years	perhaps	will	not	 suffice	 to	produce	 its
like.”	But	the	outraged	and	oppressed	citizens	had	assured	the	tax-farmer



Lavoisier	 that	 “the	 people	 have	 no	 need	 of	 science”	 when	 the	 great
chemist’s	contributions	to	science	were	urged	as	a	common-sense	reason
that	his	head	be	left	on	his	shoulders.	They	may	have	been	right.	Without
the	science	of	chemistry	soap	is	impossible.

Although	 practically	 the	 whole	 of	 Lagrange’s	 working	 life	 had	 been
spent	 under	 the	 patronage	 of	 royalty	 his	 sympathies	 were	 not	 with	 the
royalists.	 Nor	 were	 they	 with	 the	 revolutionists.	 He	 stood	 squarely	 and
unequivocally	on	 the	middle	ground	of	civilization	which	both	sides	had
ruthlessly	 invaded.	He	 could	 sympathize	 with	 the	 people	 who	 had	 been
outraged	 beyond	 human	 endurance	 and	 wish	 them	 success	 in	 their
struggle	to	gain	decent	living	conditions.	But	his	mind	was	too	realistic	to
be	impressed	by	any	of	the	chimerical	schemes	put	forth	by	the	leaders	of
the	 people	 for	 the	 amelioration	 of	 human	 misery,	 and	 he	 refused	 to
believe	 that	 the	 fabrication	of	 such	 schemes	was	 indubitable	evidence	of
the	 greatness	 of	 the	 human	 mind	 as	 claimed	 by	 the	 enthusiastic
guillotineers.	 “If	 you	 wish	 to	 see	 the	 human	mind	 truly	 great,”	 he	 said,
“enter	Newton’s	 study	 when	 he	 is	 decomposing	 white	 light	 or	 unveiling
the	system	of	the	world.”

They	treated	him	with	remarkable	tolerance.	A	special	decree	granted
him	his	 “pension,”	 and	when	 the	 inflation	by	paper	money	 reduced	 the
pension	to	nothing,	they	appointed	him	on	the	committee	of	inventions	to
eke	out	his	pay,	and	again	on	the	committee	for	the	mint.	When	the	École
Normale	 was	 established	 in	 1795	 (for	 an	 ephemeral	 first	 existence),
Lagrange	 was	 appointed	 professor	 of	 mathematics.	 When	 the	 Normale
closed	and	 the	great	École	Polytechnique	was	 founded	 in	 1797,	Lagrange
mapped	out	the	course	in	mathematics	and	was	the	first	professor.	He	had
never	taught	before	he	was	called	upon	to	lecture	to	ill-prepared	students.
Adapting	 himself	 to	 his	 raw	 material,	 Lagrange	 led	 his	 pupils	 through
arithmetic	 and	 algebra	 to	 analysis,	 seeming	more	 like	 one	 of	 his	 pupils
than	their	teacher.	The	greatest	mathematician	of	the	age	became	a	great
teacher	 of	 mathematics—preparing	 Napoleon’s	 fierce	 young	 brood	 of
military	 engineers	 for	 their	 part	 in	 the	 conquest	 of	 Europe.	 The	 sacred
superstition	that	a	man	who	knows	anything	is	 incapable	of	 teaching	was
shattered.	 Advancing	 far	 beyond	 the	 elements	 Lagrange	 developed	 new
mathematics	before	his	pupils’	eyes	and	presently	they	were	taking	part	in
the	development	themselves.



Two	 works	 thus	 developed	 were	 to	 exercise	 a	 great	 influence	 on	 the
analysis	 of	 the	 first	 three	 decades	 of	 the	nineteenth	 century.	 Lagrange’s
pupils	 found	 difficulty	 with	 the	 concepts	 of	 the	 infinitely	 small	 and	 the
infinitely	great	permeating	the	traditional	form	of	the	calculus.	To	remove
these	 difficulties	 Lagrange	 undertook	 the	 development	 of	 the	 calculus
without	the	use	of	Leibniz’	“infinitesimals”	and	without	Newton’s	peculiar
conception	 of	 a	 limit.	 His	 own	 theory	 was	 published	 in	 two	 works,	 the
Theory	 of	 Analytic	 Functions	 (1797),	 and	 the	 Lessons	 on	 the	 Calculus	 of
Functions	 (1801).	 The	 importance	 of	 these	 works	 is	 not	 in	 their
mathematics	but	in	the	impulse	they	gave	Cauchy	and	others	to	construct
a	 satisfactory	 calculus.	 Lagrange	 failed	 completely.	 But	 in	 saying	 this	 we
must	 remember	 that	 even	 in	 our	 own	 day	 the	 difficulties	 with	 which
Lagrange	 grappled	 unsuccessfully	 have	 not	 been	 completely	 overcome.
His	was	a	notable	attempt	and,	for	its	epoch,	satisfactory.	If	our	own	lasts	as
long	as	his	did	we	shall	have	done	well	enough.

Lagrange’s	most	 important	work	during	 the	period	of	 the	Revolution
was	 his	 leading	 part	 in	 perfecting	 the	 metric	 system	 of	 weights	 and
measures.	 It	was	due	to	Lagrange’s	 irony	and	common	sense	 that	12	was
not	chosen	as	a	base	instead	of	10.	The	“advantages”	of	12	are	obvious	and
continue	 to	 the	 present	 day	 to	 be	 set	 forth	 in	 impressive	 treatises	 by
earnest	propagandists	who	escape	 the	circle-squaring	 fraternity	only	by	a
hairsbreadth.	A	base	of	12	superimposed	on	the	10	of	our	number-system
would	 be	 a	 hexagonal	 peg	 in	 a	 pentagonal	 hole.	 To	 bring	 home	 the
absurdity	 of	 12	 even	 to	 the	 cranks,	 Lagrange	 proposed	 11	 as	 better	 yet
—any	prime	number	would	have	the	advantage	of	giving	all	fractions	in	the
system	 the	 same	 denominator.	 The	 disadvantages	 are	 numerous	 and
obvious	enough	to	anyone	who	understands	short	division.	The	committee
saw	the	point	and	stuck	to	10.

Laplace	 and	 Lavoisier	 were	 members	 of	 the	 committee	 as	 first
constituted,	but	after	 three	months	they	were	“purged”	out	of	 their	seats
with	 some	 others.	 Lagrange	 remained	 as	 president.	 “I	 do	 not	 know	why
they	kept	me,”	he	remarked,	modestly	unaware	that	his	gift	for	silence	had
saved	not	only	his	seat	but	his	head.

In	spite	of	all	his	interesting	work	Lagrange	was	still	lonely	and	inclined
to	despondency.	He	was	rescued	from	this	twilight	between	life	and	death
at	 the	 age	 of	 fifty	 six	 by	 a	 young	 girl	 nearly	 forty	 years	 his	 junior,	 the
daughter	 of	 his	 friend	 the	 astronomer	 Lemonnier.	 She	 was	 touched	 by



Lagrange’s	unhappiness	and	insisted	on	marrying	him.	Lagrange	gave	in,
and	contrary	to	all	the	laws	of	whatever	it	may	be	that	governs	the	way	of	a
man	with	a	maid,	 the	marriage	 turned	out	 ideal.	The	young	wife	proved
not	only	devoted	but	competent.	She	made	it	her	life	to	draw	her	husband
out	 and	 reawaken	 his	 desire	 to	 live.	 For	 his	 part	 Lagrange	 gladly	made
many	concessions	and	accompanied	his	wife	to	balls	where	he	would	never
have	thought	of	going	alone.	Before	 long	he	could	not	bear	 to	have	her
out	 of	 his	 sight	 for	 long,	 and	 during	 her	 brief	 absences—shopping—he
was	miserable.

Even	 in	 his	 new	 happiness	 Lagrange	 retained	 his	 curiously	 detached
attitude	 to	 life	 and	 his	 perfect	 honesty	 about	 his	 own	wishes.	 “I	 had	 no
children	by	my	first	marriage,”	he	said;	“I	don’t	know	whether	I	shall	have
any	by	my	 second.	 I	 scarcely	desire	 any.”	Of	all	his	 successes	 the	one	he
prized	 most	 highly,	 he	 said	 simply	 and	 sincerely,	 was	 having	 found	 so
tender	and	devoted	a	companion	as	his	young	wife.

Honors	were	showered	on	him	by	the	French.	The	man	who	had	been	a
favorite	of	Marie	Antoinette	now	became	an	 idol	of	 the	people	who	had
put	her	to	death.	In	1796	when	France	annexed	Piedmont,	Talleyrand	was
ordered	 to	wait	 in	 state	on	Lagrange’s	 father,	 still	 living	 in	Turin,	 to	 tell
him	 that	 “Your	 son,	 whom	 Piedmont	 is	 proud	 to	 have	 produced	 and
France	 to	possess,	 has	done	honor	 to	 all	mankind	by	his	 genius.”	When
Napoleon	 turned	 to	 civil	 affairs	 between	 his	 campaigns	 he	 often	 talked
with	 Lagrange	 on	 philosophical	 questions	 and	 the	 function	 of
mathematics	in	a	modern	state,	and	conceived	the	highest	respect	for	the
gently-spoken	 man	 who	 always	 thought	 before	 he	 spoke	 and	 who	 was
never	dogmatic.

Beneath	 his	 calm	 reserve	 Lagrange	 concealed	 an	 ironic	 wit	 which
flashed	 out	 unexpectedly	 on	 occasion.	 Sometimes	 it	 was	 so	 subtle	 that
coarser	men—Laplace,	for	one—missed	the	point	when	it	was	directed	at
themselves.	Once	in	defense	of	experiment	and	observation	against	mere
woolgathering	 and	 vague	 theorizing	 Lagrange	 remarked	 “These
astronomers	are	queer;	they	won’t	believe	in	a	theory	unless	it	agrees	with
their	observations.”	Noticing	his	rapt	forgetfulness	at	a	musicale,	someone
asked	him	why	he	liked	music.	“I	like	it	because	it	isolates	me,”	he	replied.
“I	hear	the	first	three	measures;	at	the	fourth	I	distinguish	nothing;	I	give
myself	up	to	my	thoughts;	nothing	interrupts	me;	and	it	is	thus	that	I	have
solved	more	 than	one	difficult	 problem.”	Even	his	 sincere	 reverence	 for



Newton	has	a	faint	flavor	of	the	same	gentle	irony.	“Newton,”	he	declared,
“was	assuredly	the	man	of	genius	par	excellence,	but	we	must	agree	that	he
was	 also	 the	 luckiest:	 one	 finds	 only	 once	 the	 system	of	 the	world	 to	 be
established.”	 And	 again:	 “How	 lucky	 Newton	 was	 that	 in	 his	 time	 the
system	of	the	world	still	remained	to	be	discovered!”

Lagrange’s	 last	 scientific	 effort	 was	 the	 revision	 and	 extension	 of	 the
Mécanique	 analytique	 for	 a	 second	 edition.	 All	 his	 old	 power	 returned	 to
him	although	he	was	past	seventy.	Resuming	his	former	habits	he	worked
incessantly,	only	to	discover	that	his	body	would	no	longer	obey	his	mind.
Presently	he	began	to	have	fainting	spells,	especially	on	getting	out	of	bed
in	the	morning.	One	day	his	wife	found	him	unconscious	on	the	floor,	his
head	 badly	 cut	 by	 a	 fall	 against	 the	 edge	 of	 a	 table.	 Thereafter	 he
moderated	his	pace	but	kept	on	working.	His	illness,	which	he	knew	to	be
grave,	 did	 not	 disturb	 his	 serenity;	 all	 his	 life	 Lagrange	 lived	 as	 a
philosopher	would	like	to	live,	indifferent	to	his	fate.

Two	 days	 before	 Lagrange	 died	 Monge	 and	 other	 friends	 called,
knowing	that	he	was	dying	and	that	he	wished	to	tell	 them	something	of
his	 life.	They	found	him	temporarily	better,	except	for	 lapses	of	memory
which	obliterated	what	he	had	wished	to	tell	them.

“I	was	very	ill	yesterday,	my	friends,”	he	said.	“I	felt	I	was	going	to	die;
my	body	grew	weaker	 little	by	 little;	my	 intellectual	and	physical	 faculties
were	extinguished	insensibly;	I	observed	the	well-graduated	progression	of
the	 diminution	 of	 my	 strength,	 and	 I	 came	 to	 the	 end	 without	 sorrow,
without	 regrets,	 and	 by	 a	 very	 gentle	 decline.	 Oh,	 death	 is	 not	 to	 be
dreaded,	and	when	it	comes	without	pain,	it	is	a	last	function	which	is	not
unpleasant.”

He	believed	that	the	seat	of	life	is	in	all	the	organs,	in	the	whole	of	the
bodily	machine,	which,	in	his	case,	weakened	equally	in	all	its	parts.

“In	a	few	moments	there	will	be	no	more	functions	anywhere,	death	will
be	everywhere;	death	is	only	the	absolute	repose	of	the	body.

“I	wish	to	die;	yes,	I	wish	to	die,	and	I	find	a	pleasure	in	it.	But	my	wife
did	not	wish	it.	In	these	moments	I	should	have	preferred	a	wife	less	good,
less	eager	to	revive	my	strength,	who	would	have	let	me	end	gently.	I	have
had	my	career;	I	have	gained	some	celebrity	in	Mathematics.	I	never	hated
anyone,	I	have	done	nothing	bad,	and	it	would	be	well	to	end;	but	my	wife
did	not	wish	it.”



He	soon	had	his	wish.	A	fainting	spell	from	which	he	never	awoke	came
on	shortly	after	his	friends	had	left.	He	died	early	on	the	morning	of	April
10,	1813,	in	his	seventy	sixth	year.

I.	A	 ridiculous	 “proof”	by	a	Spanish	gentleman	 is	 funny	enough	 to	be	quoted.	The	customary
abbreviation	for	1	×	2	×	.	.	.	×	n	is	n!	Now	p	−1	+	1	=	p	which	is	divisible	by	p.	Put	exclamation	points
throughout:	(p	−1)!	+	1!	=	p!.	The	right	side	is	again	divisible	by	p;	hence	(p	−1)!	+	1	is	divisible	by	p.
Unfortunately	this	works	equally	well	if	p	is	not	prime.



CHAPTER	ELEVEN

From	Peasant	to	Snob

LAPLACE

All	the	effects	of	nature	are	only	the	mathematical	consequences	of	a	small	number	of	immutable	laws.—P.	S.
LAPLACE

THE	MARQUIS	 PIERRE-SIMON	DE	LAPLACE	 (1749-1827)	was	not	born	a	peasant
nor	did	he	die	a	snob.	Yet	to	within	small	quantities	of	the	second	order
his	illustrious	career	is	comprised	within	the	limits	indicated,	and	it	is	from
this	approximate	point	of	view	that	he	is	of	greatest	interest	as	a	specimen
of	humanity.

As	 a	 mathematical	 astronomer	 Laplace	 has	 justly	 been	 called	 the
Newton	of	France;	as	a	mathematician	he	may	be	regarded	as	the	founder
of	the	modern	phase	of	the	theory	of	probability.	On	the	human	side	he	is
perhaps	 the	most	 conspicuous	 refutation	of	 the	pedagogical	 superstition
that	noble	pursuits	necessarily	ennoble	a	man’s	character.	Yet	 in	spite	of
all	 his	 amusing	 foibles—his	 greed	 for	 titles,	 his	 political	 suppleness,	 and
his	desire	to	shine	in	the	constantly	changing	spotlight	of	public	esteem—
Laplace	 had	 elements	 of	 true	 greatness	 in	 his	 character.	 We	 may	 not
believe	 all	 that	 he	 said	 about	 his	 unselfish	 devotion	 to	 truth	 for	 truth’s
sake,	and	we	may	smile	at	the	care	with	which	he	rehearsed	his	sententious
last	 words—“What	 we	 know	 is	 not	 much;	 what	 we	 do	 not	 know	 is
immense”—in	 an	 endeavor	 to	 telescope	 Newton’s	 boy	 playing	 on	 the
seashore	 into	 a	 neat	 epigram,	 but	 we	 cannot	 deny	 that	 Laplace	 in	 his
generosity	to	unknown	beginners	was	anything	but	a	shifty	and	ungrateful
politician.	 To	 give	 one	 young	 man	 a	 helping	 hand	 up	 Laplace	 once
cheated	himself.

Very	 little	 is	known	of	Laplace’s	early	years.	His	parents	were	peasants
living	 in	 Beaumont-en-Auge,	 Department	 of	 Calvados,	 France,	 where
Pierre-Simon	 was	 born	 on	 March	 23,	 1749.	 The	 obscurity	 surrounding
Laplace’s	 childhood	 and	 youth	 is	 due	 to	 his	 own	 snobbishness:	 he	 was



thoroughly	 ashamed	 of	 his	 humble	 parents	 and	 did	 everything	 in	 his
power	to	conceal	his	peasant	origin.

Laplace	 got	 his	 chance	 through	 the	 friendly	 interest	 of	 wealthy
neighbors	on	 the	occasion,	presumably,	of	his	having	 shown	 remarkable
talent	in	the	village	school.	It	is	said	that	his	first	success	was	in	theological
disputations.	 If	 this	 is	 true	 it	 is	 an	 interesting	 prelude	 to	 the	 somewhat
aggressive	 atheism	of	 his	maturity.	He	 took	 to	mathematics	 early.	 There
was	 a	 military	 academy	 at	 Beaumont,	 which	 Laplace	 attended	 as	 an
externe,	 and	 in	which	he	 is	 said	 to	have	 taught	mathematics	 for	 a	 time.
One	 dubious	 legend	 states	 that	 the	 young	 man’s	 prodigious	 memory
attracted	more	attention	than	his	mathematical	ability	and	was	responsible
for	the	cordial	recommendations	from	influential	people	which	he	carried
with	 him	 to	 Paris	 when,	 at	 the	 age	 of	 eighteen	 he	 wiped	 the	 mud	 of
Beaumont	off	his	boots	 forever	and	 set	out	 to	 seek	his	 fortune.	His	own
estimate	 of	 his	 powers	 was	 high,	 but	 not	 too	 high.	 With	 justified	 self-
confidence	 young	 Laplace	 invaded	 Paris	 to	 conquer	 the	 mathematical
world.

Arriving	 in	 Paris,	 Laplace	 called	 on	 D’Alembert	 and	 sent	 in	 his
recommendations.	He	was	not	received.	D’Alembert	was	not	interested	in
young	 men	 who	 came	 recommended	 only	 by	 prominent	 people.	 With
remarkable	 insight	 for	 so	 young	a	man	Laplace	 sensed	what	 the	 trouble
was.	He	returned	to	his	lodgings	and	wrote	D’Alembert	a	wonderful	letter
on	 the	 general	 principles	 of	mechanics.	 This	 did	 the	 trick.	 In	 his	 reply
inviting	Laplace	 to	 call,	D’Alembert	wrote:	 “Sir,	 you	 see	 that	 I	paid	 little
enough	attention	to	your	recommendations;	you	don’t	need	any.	You	have
introduced	 yourself	 better.	 That	 is	 enough	 for	 me;	 my	 support	 is	 your
due.”	 A	 few	 days	 later,	 thanks	 to	 D’Alembert,	 Laplace	 was	 appointed
professor	of	mathematics	at	the	Military	School	of	Paris.

Laplace	now	threw	himself	into	his	life	work—the	detailed	application
of	 the	Newtonian	 law	of	gravitation	 to	 the	entire	 solar	 system.	 If	he	had
done	nothing	else	he	would	have	been	greater	 than	he	was.	The	kind	of
man	Laplace	would	have	liked	to	be	is	described	in	a	letter	of	1777,	when
he	was	twenty	seven,	to	D’Alembert.	The	picture	Laplace	gives	of	himself	is
one	of	the	strangest	mixtures	of	fact	and	fancy	a	man	ever	perpetrated	in
the	way	of	self-analysis.

“I	 have	 always	 cultivated	 mathematics	 by	 taste	 rather	 than	 from	 the
desire	 for	 a	 vain	 reputation,”	 he	 declares.	 “My	 greatest	 amusement	 is	 to



study	 the	 march	 of	 the	 inventors,	 to	 see	 their	 genius	 at	 grips	 with	 the
obstacles	they	have	encountered	and	overcome.	I	then	put	myself	in	their
place	 and	 ask	myself	 how	 I	 should	 have	 gone	 about	 surmounting	 these
same	 obstacles,	 and	 although	 this	 substitution	 in	 the	 great	 majority	 of
instances	 has	 only	 been	 humiliating	 to	 my	 self-love,	 nevertheless	 the
pleasure	 of	 rejoicing	 in	 their	 success	 has	 amply	 repaid	me	 for	 this	 little
humiliation.	If	I	am	fortunate	enough	to	add	something	to	their	works,	I
attribute	 all	 the	 merit	 to	 their	 first	 efforts,	 well	 persuaded	 that	 in	 my
position	they	would	have	gone	much	farther	than	I.	.	.	.	”

He	may	 be	 granted	 the	 first	 sentence.	 But	 what	 about	 the	 rest	 of	 his
smug	little	essay	which	might	have	been	handed	in	by	a	priggish	youngster
of	 ten	 to	 his	 gullible	 Sunday-school	 teacher?	 Notice	 particularly	 the
generous	 attribution	 of	 his	 own	 “modest”	 successes	 to	 the	 preliminary
work	 of	 his	 predecessors.	Nothing	 could	 be	 farther	 from	 the	 truth	 than
this	 frank	avowal	of	 indebtedness.	To	call	 a	 spade	a	 spade,	Laplace	 stole
outrageously,	right	and	left,	wherever	he	could	lay	his	hands	on	anything
of	 his	 contemporaries	 and	 predecessors	 which	 he	 could	 use.	 From
Lagrange,	for	example,	he	lifted	the	fundamental	concept	of	the	potential
(to	be	described	presently);	 from	Legendre	he	took	whatever	he	needed
in	the	way	of	analysis;	and	finally,	in	his	masterpiece,	the	Mécanique	céleste,
he	deliberately	omits	references	to	the	work	of	others	incorporated	in	his
own,	with	the	intention	of	leaving	posterity	to	infer	that	he	alone	created
the	 mathematical	 theory	 of	 the	 heavens.	 Newton,	 of	 course,	 he	 cannot
avoid	mentioning	repeatedly.	Laplace	need	not	have	been	so	ungenerous.
His	 own	 colossal	 contributions	 to	 the	 dynamics	 of	 the	 solar	 system	 easily
overshadow	the	works	of	others	whom	he	ignores.

*		*		*

The	 complications	 and	 difficulties	 of	 the	 problem	 Laplace	 attacked
cannot	 be	 conveyed	 to	 anyone	 who	 has	 never	 seen	 anything	 similar
attempted.	 In	 discussing	 Lagrange	 we	 mentioned	 the	 problem	 of	 three
bodies.	What	Laplace	undertook	was	 similar,	but	on	a	grander	 scale.	He
had	 to	 work	 out	 from	 the	 Newtonian	 law	 the	 combined	 effects	 of	 the
perturbations—cross-pulling	 and	 hauling—of	 all	 the	 members	 of	 the
Sun’s	family	of	planets	on	one	another	and	on	the	Sun.	Would	Saturn,	in
spite	of	an	apparently	steady	decrease	of	his	mean	motion,	wander	off	into



space,	or	would	he	continue	as	a	member	of	 the	Sun’s	 family?	Or	would
the	accelerations	of	Jupiter	and	the	Moon	ultimately	cause	one	to	fall	into
the	Sun	and	 the	other	 to	 smash	down	on	 the	Earth?	Were	 the	effects	of
these	perturbations	cumulative	and	dissipative,	or	were	they	periodic	and
conservative?	These	and	similar	riddles	were	details	of	the	grand	problem:
is	the	solar	system	stable	or	is	it	unstable?	It	is	assumed	that	the	Newtonian
law	 of	 gravitation	 is	 indeed	 universal	 and	 the	 only	 one	 controlling	 the
motions	of	the	planets.

Laplace’s	first	important	step	toward	the	general	problem	was	taken	in
1773,	when	he	was	twenty	four,	in	which	he	proved	that	the	mean	distances
of	the	planets	from	the	Sun	are	invariable	to	within	certain	slight	periodic
variations.

When	Laplace	attacked	 the	problem	of	 stability	expert	opinion	was	at
best	 neutral.	Newton	 himself	 believed	 that	 divine	 intervention	might	 be
necessary	 from	 time	 to	 time	 to	 put	 the	 solar	 system	 back	 in	 order	 and
prevent	it	from	destruction	or	dissolution.	Others,	like	Euler,	impressed	by
the	difficulties	of	the	lunar	theory	(motion	of	the	Moon),	rather	doubted
whether	the	motions	of	the	planets	and	their	satellites	could	be	accounted
for	on	the	Newtonian	hypothesis.	The	forces	involved	were	too	numerous,
and	 their	 mutual	 interactions	 too	 complicated,	 for	 any	 reasonably	 fair
guess.	Until	Laplace	proved	the	stability	of	the	solar	system	one	man’s	guess
was	as	good	as	another’s.

To	dispose	here	of	an	objection	which	the	reader	doubtless	has	already
raised,	it	may	be	stated	that	Laplace’s	solution	of	the	problem	of	stability	is
good	 only	 for	 the	 highly	 idealized	 solar	 system	 which	 Newton	 and	 he
imagined.	Tidal	 friction	(acting	 like	a	brake	on	diurnal	 rotation)	among
other	things	was	ignored.	Since	the	Mécanique	céleste	was	published	we	have
learned	a	great	deal	about	the	solar	system	and	everything	in	it	of	which
Laplace	was	ignorant.	It	is	probably	not	too	radical	to	say	that	the	problem
of	 stability	 for	 the	actual	 solar	 system—as	opposed	 to	Laplace’s	 ideal—is
still	 open.	 However,	 the	 experts	 on	 celestial	 mechanics	 might	 disagree,
and	a	competent	opinion	can	be	obtained	only	from	them.

As	a	matter	of	temperament	some	find	the	Laplacian	conception	of	an
eternally	stable	solar	system	repeating	the	complicated	cycle	of	its	motions
time	after	 time	 for	ever	and	ever	as	depressing	as	an	endless	nightmare.
For	 these	 there	 is	 the	recent	comfort	 that	 the	Sun	will	probably	explode



some	day	as	a	nova.	Then	stability	will	cease	to	trouble	us,	for	we	shall	all
quite	suddenly	become	perfect	gases.

For	 this	 brilliant	 start	 Laplace	 was	 rewarded	 with	 the	 first	 substantial
honor	of	his	career	when	he	was	barely	twenty	four,	associate	membership
in	the	Academy	of	Sciences.	His	subsequent	scientific	life	is	summarized	by
Fourier:	 “Laplace	 gave	 to	 all	 his	 works	 a	 fixed	 direction	 from	 which	 he
never	 deviated;	 the	 imperturbable	 constancy	 of	 his	 views	 was	 always	 the
principal	feature	of	his	genius.	He	was	already	£when	he	began	his	attack
on	the	solar	system]	at	the	extreme	of	mathematical	analysis,	knowing	all
that	is	most	ingenious	in	this,	and	no	one	was	more	competent	than	he	to
extend	 its	 domain.	He	had	 solved	 a	 capital	 problem	of	 astronomy	 [that
communicated	to	the	Academy	in	1773],	and	he	decided	to	devote	all	his
talents	 to	mathematical	astronomy,	which	he	was	destined	to	perfect.	He
meditated	 profoundly	 on	 his	 great	 project	 and	 passed	 his	 whole	 life
perfecting	 it	 with	 a	 perseverance	 unique	 in	 the	 history	 of	 science.	 The
vastness	of	the	subject	flattered	the	just	pride	of	his	genius.	He	undertook
to	compose	the	Almagest	of	his	age—the	Mécanique	céleste;	and	his	immortal
work	 carries	 him	 as	 far	 beyond	 that	 of	 Ptolemy	 as	 the	 analytical	 science
[mathematical	analysis]	of	the	moderns	surpasses	the	Elements	of	Euclid.”

This	 is	 no	more	 than	 just.	Whatever	 Laplace	 did	 in	mathematics	 was
designed	 as	 an	 aid	 to	 the	 solution	of	 the	 grand	problem.	Laplace	 is	 the
great	 example	 of	 the	 wisdom—for	 a	man	 of	 genius—of	 directing	 all	 of
one’s	efforts	to	a	single	central	objective	worthy	of	the	best	that	a	man	has
in	him.	Occasionally	Laplace	was	tempted	to	turn	aside,	but	not	for	long.
Once	 he	 was	 strongly	 attracted	 by	 the	 theory	 of	 numbers,	 but	 quickly
abandoned	 it	 on	 realizing	 that	 its	 puzzles	 were	 likely	 to	 cost	 him	more
time	than	he	could	spare	from	the	solar	system.	Even	his	epochal	work	in
the	theory	of	probabilities,	although	at	first	sight	off	the	main	road	of	his
interests,	was	inspired	by	his	need	for	it	in	mathematical	astronomy.	Once
well	into	the	theory	he	saw	that	it	is	indispensable	in	all	exact	science	and
felt	justified	in	developing	it	to	the	limit	of	his	powers.

*		*		*

The	Mécanique	céleste,	which	bound	all	Laplace’s	astronomical	work	into
a	reasoned	whole,	was	published	in	parts	over	a	period	of	twenty	six	years.
Two	volumes	appeared	 in	1799,	dealing	with	 the	motions	of	 the	planets,



their	 shapes	 (as	 rotating	 bodies),	 and	 the	 tides;	 two	 further	 volumes	 in
1802	and	1805	continued	the	investigation,	which	was	finally	completed	in
the	 fifth	 volume,	 1823-25.	 The	 mathematical	 exposition	 is	 extremely
concise	and	occasionally	awkward.	Laplace	was	interested	in	results,	not	in
how	 he	 got	 them.	 To	 avoid	 condensing	 a	 complicated	 mathematical
argument	 to	a	brief,	 intelligible	 form	he	 frequently	omits	everything	but
the	conclusion,	with	the	optimistic	remark	“Il	est	aisé	à	voir”	 (It	 is	easy	 to
see).	He	himself	would	often	be	unable	to	restore	the	reasoning	by	which
he	had	“seen”	these	easy	things	without	hours—sometimes	days—of	hard
labor.	Even	gifted	readers	soon	acquired	the	habit	of	groaning	whenever
the	famous	phrase	appeared,	knowing	that	as	likely	as	not	they	were	in	for
a	week’s	blind	work.

A	 more	 readable	 account	 of	 the	 main	 results	 of	 the	Mécanique	 céleste
appeared	in	1796,	the	classic	Exposition	du	système	du	monde	(Exposition	of
the	 System	 of	 the	 World),	 which	 has	 been	 described	 as	 Laplace’s
masterpiece	with	all	the	mathematics	left	out.	In	this	work,	as	in	the	long
nonmathematical	 introduction	 (153	 quarto	 pages)	 to	 the	 treatise	 on
probabilities	 (third	edition,	1820),	Laplace	 revealed	himself	 as	 almost	 as
great	a	writer	as	he	was	a	mathematician.	Anyone	wishing	to	glimpse	the
scope	and	fascination	of	the	theory	of	probability,	without	being	held	up
by	 technicalities	 intelligible	 only	 to	mathematicians,	 could	not	 do	better
than	 to	 read	Laplace’s	 introduction.	Much	has	been	done	 since	Laplace
wrote,	especially	in	recent	years	and	particularly	in	the	foundations	of	the
theory	 of	 probability,	 but	 his	 exposition	 is	 still	 classic	 and	 a	 perfect
expression	of	at	least	one	philosophy	of	the	whole	subject.	The	theory,	it
need	scarcely	be	said,	is	not	yet	complete.	Indeed	it	is	beginning	to	seem
as	if	it	has	not	yet	been	begun—the	next	generation	may	have	it	all	to	do
over	again.

One	 interesting	 detail	 of	 Laplace’s	 astronomical	 work	 may	 be
mentioned	in	passing,	the	famous	nebular	hypothesis	of	the	origin	of	the
solar	system.	Apparently	unaware	that	Kant	had	anticipated	him,	Laplace
(only	half	 seriously)	proposed	the	hypothesis	 in	a	note.	His	mathematics
was	 inadequate	 for	 a	 systematic	 attack,	 and	 it	 was	 not	 till	 Jeans	 in	 the
present	century	resumed	the	discussion	that	it	had	any	scientific	meaning.

Lagrange	 and	Laplace,	 the	 two	 leading	French	men	of	 science	of	 the
eighteenth	 century,	 offer	 an	 interesting	 contrast,	 and	 one	 typical	 of	 a
difference	which	was	to	become	increasingly	sharp	with	the	expansion	of



mathematics:	 Laplace	 belongs	 to	 the	 tribe	 of	 mathematical	 physicists,
Lagrange	to	that	of	pure	mathematicians.	Poisson,	himself	a	mathematical
physicist,	seems	to	favor	Laplace	as	the	more	desirable	type:

“There	 is	a	profound	difference	between	Lagrange	and	Laplace	 in	all
their	work,	whether	 in	a	 study	of	numbers	or	 the	 libration	of	 the	Moon.
Lagrange	 often	 appeared	 to	 see	 in	 the	 questions	 he	 treated	 only
mathematics,	of	which	 the	questions	were	 the	occasion—hence	 the	high
value	he	put	 upon	 elegance	 and	 generality.	 Laplace	 saw	 in	mathematics
principally	 a	 tool,	 which	 he	 modified	 ingeniously	 to	 fit	 every	 special
problem	 as	 it	 arose.	 One	 was	 a	 great	 mathematician;	 the	 other	 a	 great
philosopher	 who	 sought	 to	 know	 nature	 by	making	 higher	mathematics
serve	it.”

Fourier	 (whom	we	 shall	 consider	 later)	 was	 also	 struck	 by	 the	 radical
difference	 between	 Lagrange	 and	 Laplace.	 Himself	 rather	 narrowly
“practical”	 in	his	mathematical	outlook,	Fourier	was	 yet	 capable—at	one
time—of	estimating	Lagrange	at	his	true	worth:

“Lagrange	 was	 no	 less	 a	 philosopher	 than	 he	 was	 a	 great
mathematician.	 By	 his	 whole	 life	 he	 proved,	 in	 the	 moderation	 of	 his
desires,	his	immovable	attachment	to	the	general	interests	of	humanity,	by
the	noble	simplicity	of	his	manners	and	the	elevation	of	his	character,	and
finally	by	the	accuracy	and	the	depth	of	his	scientific	works.”

Coming	from	Fourier	this	statement	is	remarkable.	It	may	smack	of	the
bland	rhetoric	we	are	accustomed	to	expect	in	French	funeral	orations,	yet
it	 is	 true,	 at	 least	 today.	 Lagrange’s	 great	 influence	 on	 modern
mathematics	 is	 due	 to	 “the	 depth	 and	 accuracy	 of	 his	 scientific	 works,”
qualities	which	are	sometimes	absent	from	Laplace’s	masterpieces.

To	the	majority	of	his	contemporaries	and	immediate	followers	Laplace
ranked	higher	than	Lagrange.	This	was	due	partly	to	the	magnitude	of	the
problem	 Laplace	 attacked—the	 grandiose	 project	 of	 demonstrating	 that
the	solar	system	is	a	gigantic	perpetual	motion	machine.	A	sublime	project
in	 itself,	 no	 doubt,	 but	 essentially	 illusory:	 not	 enough	 about	 the	 actual
physical	 universe	 was	 known	 in	 Laplace’s	 day—or	 even	 in	 our	 own—to
give	the	problem	any	real	significance,	and	it	will	probably	be	many	years
before	 mathematics	 is	 sufficiently	 advanced	 to	 handle	 the	 complicated
mass	 of	 data	 we	 now	 have.	 Mathematical	 astronomers	 will	 doubtless
continue	 to	 play	with	 idealized	models	 of	 “the	universe,”	 or	 even	of	 the
infinitely	 less	 impressive	 solar	 system,	 and	will	 continue	 to	 flood	us	with



inspiring	or	depressing	bulletins	regarding	the	destiny	of	mankind;	but	in
the	 end	 the	 by-products	 of	 their	 investigations—the	 perfection	 of	 the
purely	 mathematical	 tools	 they	 have	 devised—will	 be	 their	 fairly
permanent	contribution	to	the	advancement	of	science	(as	opposed	to	the
propagation	 of	 guessing),	 precisely	 as	 has	 happened	 in	 the	 case	 of
Laplace.

If	 the	foregoing	seems	too	strong,	consider	what	has	happened	to	the
Mécanique	 céleste.	 Does	 anyone	 but	 an	 academic	 mathematician	 really
believe	 today	 that	 Laplace’s	 conclusions	 about	 the	 stability	 of	 the	 solar
system	are	a	reliable	verdict	on	the	infinitely	complicated	situation	which
Laplace	replaced	by	an	idealized	dream?	Possibly	many	do;	but	no	worker
in	mathematical	physics	doubts	the	power	and	utility	of	the	mathematical
methods	developed	by	Laplace	to	attack	his	ideal.

To	take	but	one	instance,	the	theory	of	the	potential	is	more	significant
today	 than	 Laplace	 ever	 dreamed	 it	 would	 become.	 Without	 the
mathematics	of	this	theory	we	should	be	halted	almost	at	the	beginning	of
our	attempt	to	understand	electromagnetism.	Out	of	this	theory	grew	one
vigorous	branch	of	the	mathematics	of	boundary-value	problems,	today	of
greater	significance	for	physical	science	than	the	whole	Newtonian	theory
of	gravitation.	The	concept	of	the	potential	was	a	mathematical	inspiration
of	the	first	order—it	made	possible	an	attack	on	physical	problems	which
otherwise	would	have	been	unapproachable.

The	 potential	 is	 merely	 the	 function	 u	 described	 in	 connection	 with
fluid	 motion	 and	 Laplace’s	 equation	 in	 the	 chapter	 on	 Newton.	 The
function	u	 is	there	a	“velocity	potential”;	if	it	is	a	question	of	the	force	of
Newtonian	 gravitational	 attraction,	 u	 is	 a	 “gravitational	 potential.”	 The
introduction	of	the	potential	into	the	theories	of	fluid	motion,	gravitation,
electromagnetism,	and	elsewhere	was	one	of	the	longest	strides	ever	taken
in	mathematical	physics.	It	had	the	effect	of	replacing	partial	differential
equations	in	two	or	three	unknowns	by	equations	in	one	unknown.

*		*		*

In	 1785,	 at	 the	 age	 of	 thirty	 six,	 Laplace	 was	 promoted	 to	 full
membership	in	the	Academy.	Important	as	this	honor	was	in	the	career	of
a	man	of	 science,	 the	 year	 1785	 stands	 out	 as	 a	 landmark	of	 yet	 greater
significance	 in	 Laplace’s	 career	 as	 a	 public	 character.	 For	 in	 that	 year



Laplace	had	the	unique	distinction	of	examining	a	singular	candidate	of
sixteen	at	the	Military	School.	This	youth	was	destined	to	upset	Laplace’s
plans	and	deflect	him	from	his	avowed	devotion	to	mathematics	 into	the
muddy	waters	of	politics.	The	young	man’s	name	was	Napoleon	Bonaparte
(1769-1821).

Laplace	rode	through	the	Revolution	on	horseback,	as	it	were,	and	saw
everything	 in	 comparative	 safety.	 But	 no	 man	 of	 his	 prominence	 and
restless	ambition	could	escape	danger	entirely.	 If	De	Pastoret	knew	what
he	was	 talking	 about	 in	 his	 eulogy,	 both	Lagrange	 and	Laplace	 escaped
the	guillotine	only	because	they	were	requisitioned	to	calculate	trajectories
for	the	artillery	and	to	help	in	directing	the	manufacture	of	saltpetre	for
gunpowder.	Neither	was	forced	to	eat	grass	as	some	less	necessary	savants
were	driven	to	do,	nor	was	either	so	careless	as	to	betray	himself,	as	their
unfortunate	friend	Condorcet	did,	by	ordering	an	aristocrat’s	omelet.	Not
knowing	 how	many	 eggs	 go	 into	 a	 normal	 omelet	 Cordorcet	 ordered	 a
dozen.	The	good	cook	asked	Condorcet	his	trade.	“Carpenter.”—“Let	me
see	your	hands.	You’re	no	carpenter.”	That	was	the	end	of	Laplace’s	close
friend	Condorcet.	They	either	poisoned	him	in	prison	or	let	him	commit
suicide.

After	the	Revolution	Laplace	went	in	heavily	for	politics,	possibly	in	the
hope	of	beating	Newton’s	 record.	The	French	refer	politely	 to	Laplace’s
“versatility”	as	a	politician.	This	is	too	modest.	Laplace’s	alleged	defects	as
a	 politician	 are	 his	 true	 greatness	 in	 the	 slippery	 game.	 He	 has	 been
criticized	 for	 his	 inability	 to	 hold	 public	 office	 under	 successive	 regimes
without	 changing	 his	 politics.	 It	 would	 seem	 that	 a	 man	 who	 is	 sharp
enough	 to	 convince	 opposing	 parties	 that	 he	 is	 a	 loyal	 supporter	 of
whichever	one	happens	to	be	in	power	at	the	moment	is	a	politician	of	no
mean	 order.	 It	 was	 his	 patrons	 who	 played	 the	 game	 like	 amateurs,	 not
Laplace.	What	would	we	 think	 of	 a	Republican	Postmaster	General	 who
gave	 all	 the	 fattest	 jobs	 to	 undeserving	 Democrats?	 Or	 the	 other	 way
about?	Laplace	got	a	better	job	every	time	the	government	flopped.	It	cost
him	 nothing	 to	 switch	 overnight	 from	 rabid	 republicanism	 to	 ardent
royalism.

Napoleon	 shoved	 everything	Laplace’s	way,	 including	 the	 portfolio	 of
the	 interior—about	 which	more	 later.	 All	 the	Napoleonic	 orders	 of	 any
note	 adorned	 the	 versatile	mathematician’s	 chest—including	 the	 Grand
Cross	of	the	Legion	of	Honor	and	the	Order	of	the	Reunion,	and	he	was



made	 a	 Count	 of	 the	 Empire.	 Yet	 what	 did	 he	 do	 when	Napoleon	 fell?
Signed	the	decree	which	banished	his	benefactor.

After	the	restoration	Laplace	had	no	difficulty	in	transferring	his	loyalty
to	Louis	XVIII,	 especially	 as	 he	now	 sat	 in	 the	Chamber	of	 Peers	 as	 the
Marquis	de	Laplace.	Louis	recognized	his	supporter’s	merits	and	in	1816
appointed	 Laplace	 president	 of	 the	 committee	 to	 reorganize	 the	 École
Polytechnique.

Perhaps	 the	most	perfect	 expressions	of	Laplace’s	political	 genius	 are
those	 to	be	 found	 in	his	 scientific	writings.	 It	 takes	 real	genius	 to	doctor
science	according	to	fluctuating	political	opinion	and	get	away	with	it.	The
first	edition	of	the	Exposition	du	système	du	monde,	dedicated	to	the	Council
of	Five	Hundred,	closes	with	 these	noble	words:	 “The	greatest	benefit	of
the	astronomical	sciences	is	to	have	dissipated	errors	born	of	ignorance	of
our	 true	 relations	 with	 nature,	 errors	 all	 the	more	 fatal	 since	 the	 social
order	 must	 rest	 solely	 on	 these	 relations.	 Truth	 and	 justice	 are	 its
immutable	 bases.	 Far	 from	 us	 be	 the	 dangerous	 maxim	 that	 it	 may
sometimes	be	useful	to	deceive	or	to	enslave	men	the	better	to	insure	their
happiness!	Fatal	experiences	have	proved	in	all	ages	that	these	sacred	laws
are	 never	 infringed	 with	 impunity.”	 In	 1824	 this	 is	 suppressed	 and	 the
Marquis	 de	 Laplace	 substitutes:	 “Let	 us	 conserve	 with	 care	 and	 increase
the	store	of	this	advanced	knowledge,	the	delight	of	thinking	beings.	It	has
rendered	important	services	to	navigation	and	geography;	but	its	greatest
benefit	 is	 to	 have	 dissipated	 the	 fears	 produced	 by	 celestial	 phenomena
and	to	have	destroyed	the	errors	born	of	 ignorance	of	our	true	relations
with	nature,	errors	which	will	soon	reappear	if	the	torch	of	the	sciences	is
extinguished.”	 In	 loftiness	 of	 sentiment	 there	 is	 but	 little	 to	 choose
between	these	two	sublime	maxima.

This	 is	 enough	 on	 the	 debit	 side	 of	 the	 ledger.	 The	 last	 extract	 does
indeed	 suggest	 one	 trait	 in	 which	 Laplace	 overtopped	 all	 courtiers—his
moral	 courage	where	his	 true	 convictions	were	 questioned.	The	 story	 of
Laplace’s	 encounter	 with	 Napoleon	 over	 the	Mécanique	 céleste	 shows	 the
mathematician	as	he	 really	was.	Laplace	had	presented	Napoleon	with	 a
copy	 of	 the	work.	Thinking	 to	 get	 a	 rise	 out	 of	 Laplace,	Napoleon	 took
him	to	task	for	an	apparent	oversight.	“You	have	written	this	huge	book	on
the	 system	 of	 the	 world	 without	 once	 mentioning	 the	 author	 of	 the
universe.”	 “Sire,”	 Laplace	 retorted,	 “I	 had	 no	 need	 of	 that	 hypothesis.”



When	Napoleon	repeated	this	to	Lagrange,	the	latter	remarked	“Ah,	but
that	is	a	fine	hypothesis.	It	explains	so	many	things.”

It	took	nerve	to	stand	up	to	Napoleon	and	tell	him	the	truth.	Once	at	a
session	of	 the	 Institut	when	Napoleon	was	 in	one	of	his	most	 insultingly
bad	 tempers	 he	 caused	 poor	 old	 Lamarck	 to	 burst	 into	 tears	 with	 his
deliberate	brutality.

Also	 on	 the	 credit	 side	was	Laplace’s	 sincere	 generosity	 to	 beginners.
Biot	tells	how	as	a	young	man	he	read	a	paper	before	the	Academy	when
Laplace	 was	 present,	 and	 was	 drawn	 aside	 afterward	 by	 Laplace	 who
showed	 him	 the	 identical	 discovery	 in	 a	 yellowed	 old	manuscript	 of	 his
own,	still	unpublished.	Cautioning	Biot	to	secrecy,	Laplace	told	him	to	go
ahead	 and	 publish	 his	 work.	 This	 was	 but	 one	 of	 several	 such	 acts.
Beginners	 in	mathematical	 research	were	his	 stepchildren,	Laplace	 liked
to	say,	but	he	treated	them	as	well	as	he	did	his	own	son.

As	 it	 is	 often	 quoted	 as	 an	 instance	 of	 the	 unpracticality	 of
mathematicians	we	 shall	 give	Napoleon’s	 famous	 estimate	 of	Laplace,	 of
which	he	is	reported	to	have	delivered	himself	while	he	was	a	prisoner	at
St.	Helena.

“A	mathematician	of	the	first	rank,	Laplace	quickly	revealed	himself	as
only	a	mediocre	administrator;	from	his	first	work	we	saw	that	we	had	been
deceived.	Laplace	saw	no	question	from	its	 true	point	of	view;	he	sought
subtleties	 everywhere,	 had	 only	 doubtful	 ideas,	 and	 finally	 carried	 the
spirit	of	the	infinitely	small	into	administration.”

This	sarcastic	 testimonial	was	 inspired	by	Laplace’s	short	 tenure—only
six	weeks—of	the	Ministry	of	the	Interior.	However,	as	Lucien	Bonaparte
needed	a	job	at	the	moment	and	succeeded	Laplace,	Napoleon	may	have
been	 rationalizing	 his	 well-known	 inclination	 to	 nepotism.	 Laplace’s
testimonial	 for	 Napoleon	 has	 not	 been	 preserved.	 It	 might	 have	 run
somewhat	as	follows.

“A	soldier	of	the	first	rank,	Napoleon	quickly	revealed	himself	as	only	a
mediocre	 politician;	 from	his	 first	 exploits	 we	 saw	 that	 he	was	 deceived.
Napoleon	saw	all	questions	 from	the	obvious	point	of	view;	he	suspected
treachery	 everywhere	 but	 where	 it	 was,	 had	 only	 a	 childlike	 faith	 in	 his
supporters,	and	finally	carried	the	spirit	of	infinite	generosity	into	a	den	of
thieves.”

Which,	 after	 all,	 was	 the	more	 practical	 administrator?	The	man	who
could	not	hang	onto	his	gains	and	who	died	a	prisoner	of	his	enemies,	or



the	 other	 who	 continued	 to	 gather	 wealth	 and	 honor	 to	 the	 day	 of	 his
death?

Laplace	 spent	 his	 last	 days	 in	 comfortable	 retirement	 at	 his	 country
estate	at	Arcueil,	not	far	from	Paris.	After	a	short	illness	he	died	on	March
5,	 1827,	 in	 his	 seventy	 eighth	 year.	 His	 last	 words	 have	 already	 been
reported.



CHAPTER	TWELVE

Friends	of	an	Emperor

MONGE	AND	FOURIER

I	cannot	tell	you	the	efforts	to	which	I	was	condemned	to	understand	something	of	the	diagrams	of	Descriptive
Geometry,	which	I	detest.

—CHARLES	HERMITE
Fourier’s	 Theorem	 is	 not	 only	 one	 of	 the	most	 beautiful	 results	 of	modern	 analysis,	 but	 it	may	 be	 said	 to

furnish	an	indispensable	instrument	in	the	treatment	of	nearly	every	recondite	question	in	modern	physics.
—WILLIAM	THOMSON	AND	P.	G.	TAIT

THE	 CAREERS	 OF	 GASPARD	 MONGE	 (1746-1818)	 and	 Joseph	 Fourier	 (1768-
1830)	 are	 curiously	 parallel	 and	 may	 be	 considered	 together.	 On	 the
mathematical	 side	 each	 made	 one	 fundamental	 contribution:	 Monge
invented	 descriptive	 geometry	 (not	 to	 be	 confused	 with	 the	 projective
geometry	 of	 Desargues,	 Pascal,	 and	 others);	 Fourier	 started	 the	 current
phase	of	mathematical	physics	with	his	classic	investigations	on	the	theory
of	heat-conduction.

Without	 Monge’s	 geometry—originally	 invented	 for	 use	 in	 military
engineering—the	 wholesale	 spawning	 of	 machinery	 in	 the	 nineteenth
century	would	probably	have	been	impossible.	Descriptive	geometry	is	the
root	 of	 all	 the	mechanical	 drawing	 and	 graphical	methods	 that	 help	 to
make	mechanical	engineering	a	fact.

The	methods	inaugurated	by	Fourier	in	his	work	on	the	conduction	of
heat	 are	 of	 a	 similar	 importance	 in	 boundary-value	 problems—a	 trunk
nerve	of	mathematical	physics.

Monge	 and	 Fourier	 between	 them	 are	 thus	 responsible	 for	 a
considerable	 part	 of	 our	 own	 civilization,	 Monge	 on	 the	 practical	 and
industrial	side,	Fourier	on	the	purely	scientific.	But	even	on	the	practical
side	 Fourier’s	 methods	 are	 indispensable	 today;	 they	 are	 in	 fact	 a
commonplace	 in	 all	 electrical	 and	 acoustical	 engineering	 (including
wireless)	beyond	the	rule	of	thumb	and	handbook	stages.



A	 third	man	must	 be	named	with	 these	mathematicians,	 although	we
shall	 not	 take	 space	 to	 tell	 his	 life:	 the	 chemist	 Count	 Claude-Louis
Berthollet,	(1748-1822),	a	close	 friend	of	Monge,	Laplace,	Lavoisier,	and
Napoleon.	With	Lavoisier,	Berthollet	is	regarded	as	one	of	the	founders	of
modern	 chemistry.	 He	 and	Monge	 became	 so	 thick	 that	 their	 admirers
gave	 up	 trying	 to	 distinguish	 between	 them	 in	 their	 nonscientific	 labors
and	called	them	simply	Monge-Berthollet.

Gaspard	Monge,	born	on	May	10,	1746,	at	Beaune,	France,	was	a	son	of
Jacques	 Monge,	 a	 peddler	 and	 knife	 grinder	 who	 had	 a	 tremendous
respect	 for	 education	 and	 who	 sent	 his	 three	 sons	 through	 the	 local
college.	All	the	sons	had	successful	careers;	Gaspard	was	the	genius	of	the
family.	 At	 the	 college	 (run	 by	 a	 religious	 order)	 Gaspard	 regularly
captured	the	first	prize	in	everything	and	earned	the	unique	distinction	of
having	puer	aureus	inscribed	after	his	name.

At	the	age	of	fourteen	Monge’s	peculiar	combination	of	talents	showed
up	in	the	construction	of	a	fire	engine.	“How	could	you,	without	a	guide
or	a	model,	carry	through	such	an	undertaking	successfully?”	he	was	asked
by	 the	 astonished	 citizens.	 Monge’s	 reply	 is	 a	 summary	 of	 the
mathematical	 part	 of	 his	 career	 and	 of	 much	 of	 the	 rest.	 “I	 had	 two
infallible	 means	 of	 success:	 an	 invincible	 tenacity,	 and	 fingers	 which
translated	 my	 thought	 with	 geometric	 fidelity.”	 He	 was	 in	 fact	 a	 born
geometer	 and	 engineer	 with	 an	 unsurpassed	 gift	 for	 visualizing
complicated	space-relations.

At	the	age	of	sixteen	he	made	a	wonderful	map	of	Beaune	entirely	on
his	 own	 initiative,	 constructing	 his	 own	 surveying	 instruments	 for	 the
purpose.	This	map	got	him	his	first	great	chance.

Impressed	by	his	obvious	genius,	Monge’s	teachers	recommended	him
for	the	professorship	of	physics	at	the	college	in	Lyon	run	by	their	order.
Monge	was	 appointed	 at	 the	 age	 of	 sixteen.	His	 affability,	 patience,	 and
lack	of	 all	 affectation,	 added	 to	his	 sound	knowledge,	made	him	a	great
teacher.	The	order	begged	him	to	take	their	vows	and	cast	his	lot	for	life
with	 them.	Monge	consulted	his	 father.	The	astute	knife	grinder	advised
caution.

Some	days	 later,	 on	 a	 visit	 home,	Monge	met	 an	 officer	 of	 engineers
who	had	seen	the	famous	map.	The	officer	begged	Jacques	to	send	his	son
to	the	military	school	at	Mézières.	Perhaps	fortunately	for	Monge’s	future
career	 the	 officer	 omitted	 to	 state	 that	 on	 account	 of	 his	 humble	 birth



Monge	 could	never	 get	 a	 commission.	Not	 knowing	 this,	Monge	 eagerly
accepted	and	proceeded	to	Mézières.

Monge	 quickly	 learned	 where	 he	 stood	 at	Mézières.	 There	 were	 only
twenty	 pupils	 at	 the	 school,	 of	 whom	 ten	 were	 graduated	 each	 year	 as
lieutenants	in	engineering.	The	rest	were	destined	for	the	“practical”	work
—the	dirty	 jobs.	Monge	did	not	complain.	He	rather	enjoyed	himself,	as
the	 routine	 work	 in	 surveying	 and	 drawing	 left	 him	 plenty	 of	 time	 for
mathematics.	An	 important	 part	 of	 the	 regular	 course	was	 the	 theory	 of
fortification,	in	which	the	problem	was	to	design	the	works	so	that	no	part
should	be	exposed	to	the	direct	fire	of	the	enemy.	The	usual	calculations
demanded	endless	arithmetic.	One	day	Monge	handed	in	his	solution	of	a
problem	of	this	sort.	It	was	turned	over	to	a	superior	officer	for	inspection.

Skeptical	 that	 anyone	could	have	 solved	 the	problem	 in	 the	 time,	 the
officer	 declined	 to	 check	 the	 solution.	 “Why	 should	 I	 give	 myself	 the
trouble	 of	 subjecting	 a	 supposed	 solution	 to	 tedious	 verifications?	 The
author	has	not	even	taken	the	time	to	group	his	figures.	I	can	believe	in	a
great	facility	 in	calculation,	but	not	in	miracles!”	Monge	persisted,	saying
he	 had	not	 used	 arithmetic.	His	 tenacity	 won;	 the	 solution	was	 checked
and	found	correct.

This	 was	 the	 beginning	 of	 descriptive	 geometry.	 Monge	 was	 at	 once
given	a	minor	teaching	position	to	instruct	the	future	military	engineers	in
the	 new	 method.	 Problems	 which	 had	 been	 nightmares	 before—
sometimes	solved	only	by	tearing	down	what	had	been	built	and	beginning
all	 over	 again—were	 now	 as	 simple	 as	 ABC.	 Monge	 was	 sworn	 not	 to
divulge	his	method,	and	for	fifteen	years	it	was	a	jealously	guarded	military
secret.	 Only	 in	 1794	 was	 he	 allowed	 to	 teach	 it	 publicly,	 at	 the	 École
Normale	 in	 Paris,	 where	 Lagrange	 was	 among	 the	 auditors.	 Lagrange’s
reaction	 to	 descriptive	 geometry	 was	 like	 M.	 Jourdain’s	 when	 he
discovered	 that	 he	 had	 been	 talking	 prose	 all	 his	 life.	 “Before	 hearing
Monge,”	 Lagrange	 said	 after	 a	 lecture,	 “I	 did	 not	 know	 that	 I	 knew
descriptive	geometry.”

*		*		*

The	idea	behind	it	all	now	seems	as	ridiculously	simple	to	us	as	it	did	to
Lagrange.	Descriptive	 geometry	 is	 a	method	 for	 representing	 solids	 and
other	 figures	 in	ordinary	 three-dimensional	 space	on	one	 plane.	 Imagine



first	 two	 planes	 at	 right	 angles	 to	 one	 another,	 like	 two	 pages	 of	 a	 thin
book	opened	at	a	ninety	degree	angle;	one	plane	is	horizontal,	the	other
vertical.	 The	 figure	 to	 be	 represented	 is	 projected	 onto	 each	 of	 these
planes	by	rays	perpendicular	to	the	plane.	There	are	thus	two	projections
of	 the	 figure;	 that	on	 the	horizontal	plane	 is	 called	a	plan	 of	 the	 figure,
that	 on	 the	 vertical	 plane	 an	 elevation.	 The	 vertical	 plane	 is	 now	 turned
down	(“rabbatted”)	till	it	and	the	horizontal	plane	lie	in	one	plane	(that	of
the	horizontal	plane)—as	if	the	book	were	now	opened	out	flat	on	a	table.

The	solid	or	other	figure	in	space	is	now	represented	by	two	projections
on	 one	 plane	 (that	 of	 the	 drawing	 board).	 A	 plane,	 for	 instance,	 is
represented	by	its	traces—the	straight	lines	in	which	it	cut	the	vertical	and
horizontal	planes	before	 the	 former	was	rabbatted;	a	 solid,	 say	a	cube,	 is
represented	by	 the	projections	of	 its	 edges	 and	 vertices.	Curved	 surfaces
cut	 the	vertical	and	horizontal	planes	 in	curves;	 these	curves,	or	 traces	of
the	surface,	represent	the	surface	on	the	one	plane.

When	these	and	other	equally	simple	remarks	are	developed	we	have	a
descriptive	method	which	puts	on	one	flat	sheet	of	paper	what	we	ordinarily
visualize	 in	 space	 of	 three	 dimensions.	 A	 short	 training	 enables	 the
draughtsman	 to	 read	 such	 representations	 as	 easily	 as	 others	 read	 good
photographs—and	 to	 get	 a	 great	 deal	 more	 out	 of	 them.	 This	 was	 the
simple	invention	that	revolutionized	military	engineering	and	mechanical
design.	Like	many	of	the	first-rate	things	in	applied	mathematics	its	most
conspicuous	 feature	 is	 its	 simplicity.	 There	 are	 many	 ways	 in	 which
descriptive	geometry	can	be	developed	or	modified,	but	they	all	go	back	to
Monge.	The	subject	is	now	so	thoroughly	worked	out	that	it	is	not	of	much
interest	to	professional	mathematicians.

To	finish	with	Monge’s	contributions	to	mathematics	before	continuing
with	 his	 life,	 we	 recall	 that	 his	 name	 is	 familiar	 to	 every	 student	 in	 the
second	 course	 in	 the	 calculus	 today	 in	 connection	with	 the	 geometry	 of
surfaces.	 Monge’s	 great	 step	 forward	 was	 a	 systematic	 (and	 brilliant)
application	of	the	calculus	to	the	investigation	of	the	curvature	of	surfaces.
In	his	general	theory	of	curvature	Monge	prepared	the	way	for	Gauss,	who
in	his	turn	was	to	inspire	Riemann,	who	again	was	to	develop	the	geometry
known	by	his	name	in	the	theory	of	relativity.

It	 seems	 rather	 a	 pity	 that	 a	 born	 geometer	 like	Monge	 should	 have
lusted	after	the	fleshpots	of	Egypt,	but	so	he	did.	His	work	in	differential
equations,	closely	connected	with	 that	 in	geometry,	also	 showed	what	he



had	 in	 him.	 Years	 after	 he	 left	Mézières,	 where	 these	 great	 things	 were
done,	 Monge	 lectured	 on	 his	 discoveries	 to	 his	 colleagues	 at	 the	 Ecole
Polytechnique.	 Lagrange	 again	 was	 an	 auditor.	 “My	 dear	 colleague,”	 he
told	Monge	after	 the	 lecture,	“you	have	 just	explained	some	very	elegant
things;	 I	 should	have	 liked	 to	have	 done	 them	myself.”	And	on	 another
occasion:	“With	his	application	of	analysis	to	geometry	this	devil	of	a	man
will	 make	 himself	 immortal!”	 He	 did;	 and	 it	 is	 interesting	 to	 note	 that
although	 more	 urgent	 calls	 on	 his	 genius	 distracted	 him	 from
mathematics,	 he	 never	 lost	 his	 talent.	 Like	 all	 the	 great	mathematicians
Monge	was	a	mathematician	to	the	last.

*		*		*

In	 1768,	 at	 the	 age	 of	 twenty	 two,	 Monge	 was	 promoted	 to	 the
professorship	 of	 mathematics	 at	 Mézières,	 and	 three	 years	 later,	 on	 the
death	of	the	professor	of	physics,	stepped	into	his	place	also.	The	double
work	did	not	bother	him	at	all.	Powerfully	built	and	as	strong	of	body	as	he
was	of	mind,	Monge	was	always	capable	of	doing	three	or	four	men’s	work
and	frequently	did.

His	 marriage	 had	 a	 touch	 of	 eighteenth	 century	 romance.	 At	 a
reception	Monge	heard	some	noble	bounder	slandering	a	young	widow	to
get	 even	with	her	 for	having	 rejected	him.	 Shouldering	his	way	 through
the	 cackling	 crowd,	 Monge	 demanded	 to	 know	 whether	 he	 had	 heard
aright.	“What	is	it	to	you?”	Monge	demonstrated	with	a	punch	on	the	jaw.
There	was	no	duel.	A	 few	months	 later	 at	 another	 reception	Monge	was
very	much	 taken	by	 a	 charming	 young	woman.	On	being	 introduced	he
recognized	her	name—Madame	Horbon—as	that	of	the	unknown	lady	he
had	 tried	 to	 fight	 a	 duel	 for.	 She	 was	 the	 widow,	 only	 twenty,	 and
somewhat	 reluctant	 to	 marry	 before	 her	 late	 husband’s	 affairs	 were
straightened	out.	“Never	mind	all	that,”	Monge	reassured	her,	“I’ve	solved
lots	of	more	difficult	problems	in	my	time.”	Monge	and	she	were	married
in	 1777.	 She	 survived	 him	 and	 did	 what	 she	 could	 to	 perpetuate	 his
memory—unaware	that	her	husband	had	raised	his	own	monument	long
before	he	ever	met	her.	Monge’s	wife	was	the	one	human	being	who	stuck
to	him	through	everything.	Even	Napoleon	at	the	very	last	would	have	let
him	down	on	account	of	his	age.



At	 about	 this	 time	Monge	began	 corresponding	with	D’Alembert	 and
Condorcet.	 In	1780	these	 two	had	 induced	the	Government	 to	 found	an
institute	 at	 the	 Louvre	 for	 the	 study	 of	 hydraulics.	Monge	 was	 called	 to
Paris	to	take	charge,	on	the	understanding	that	he	spend	half	his	time	at
Mézières.	He	was	then	thirty	four.	Three	years	later	he	was	relieved	of	his
duties	at	Mézières	and	appointed	examiner	of	candidates	for	commissions
in	the	navy,	a	position	which	he	held	till	the	outbreak	of	the	Revolution	in
1789.

In	 looking	 back	 over	 the	 careers	 of	 all	 these	 mathematicians	 of	 the
Revolutionary	 period	 we	 cannot	 help	 noticing	 how	 blind	 they	 and
everyone	else	were	to	what	now	seems	so	obvious	to	us.	Not	one	of	them
suspected	 that	 he	 was	 sitting	 on	 a	 mine	 and	 that	 the	 train	 was	 already
sputtering.	Possibly	our	 successors	 in	2036	will	be	 saying	 the	 same	about
us.

For	 the	 six	 years	 he	 held	 the	 naval	 job	 Monge	 proved	 himself	 an
incorruptible	public	 servant.	Disgruntled	aristocrats	 threatened	him	with
dire	penalties	when	he	unmercifully	disqualified	 their	 incompetent	 sons,
but	Monge	never	gave	 in.	 “Get	 someone	else	 to	run	 the	 job	 if	 you	don’t
like	 the	 way	 I	 am	 doing	 it.”	 As	 a	 consequence	 the	 navy	 was	 ready	 for
business	in	1789.

His	 birth	 and	 his	 experiences	 with	 snobs	 seeking	 unmerited	 favors
made	Monge	a	natural	revolutionist.	By	first-hand	experience	he	knew	the
corruption	of	 the	old	order	and	 the	economic	disabilities	of	 the	masses,
and	 he	 believed	 that	 the	 time	 had	 come	 for	 a	 new	 deal.	 But	 like	 the
majority	of	early	liberals	Monge	did	not	know	that	a	mob	which	has	once
tasted	 blood	 is	 not	 satisfied	 till	 no	 more	 is	 forthcoming.	 The	 early
revolutionists	had	more	faith	in	Monge	than	he	had	in	himself.	Against	his
better	 judgment	 they	 forced	 him	 into	 the	Ministry	 of	 the	Navy	 and	 the
Colonies	on	August	10,	1792.	He	was	the	man	for	the	position,	but	it	was
not	healthy	to	be	a	public	official	in	the	Paris	of	1792.

The	mob	was	 already	out	of	hand;	Monge	was	put	on	 the	Provisional
Executive	 Council	 to	 attempt	 some	 measure	 of	 control.	 A	 son	 of	 the
people	himself,	Monge	felt	that	he	understood	them	better	than	did	some
of	his	friends—Condorcet,	for	instance,	who	had	wisely	declined	the	naval
job	to	save	his	head.

But	 there	are	people	and	people,	all	of	whom	together	comprise	“the
people.”	 By	 February,	 1793	 Monge	 found	 himself	 suspect	 of	 being	 not



quite	radical	enough,	and	on	the	13th	he	resigned,	only	 to	be	re-elected
on	the	18th	to	a	job	which	stupid	political	interference,	“liberty,	equality,
and	fraternity”	among	the	sailors,	and	approaching	bankruptcy	of	the	state
had	made	impossible.	Any	day	during	this	difficult	time	Monge	might	have
found	 himself	 on	 the	 scaffold.	 But	 he	 never	 truckled	 to	 ignorance	 and
incompetence,	telling	his	critics	to	their	faces	that	he	knew	what	was	what
while	 they	 knew	 nothing.	 His	 only	 anxiety	 was	 that	 dissension	 at	 home
would	lay	France	open	to	an	attack	which	would	nullify	all	the	gains	of	the
Revolution.

At	 last,	 on	 April	 10,	 1793,	 Monge	 was	 allowed	 to	 resign	 in	 order	 to
undertake	 more	 urgent	 work.	 The	 anticipated	 attack	 was	 now	 plainly
visible.

With	the	arsenals	almost	empty	the	Convention	began	raising	an	army
of	 900,000	 men	 for	 defense.	 Only	 a	 tenth	 of	 the	 necessary	 munitions
existed	 and	 there	 was	 no	 hope	 of	 importing	 the	 requisite	 materials—
copper	 and	 tin	 for	 the	 manufacture	 of	 bronze	 cannon,	 saltpetre	 for
gunpowder,	and	steel	for	firearms.	“Give	us	saltpetre	from	the	earth	and	in
three	days	we	shall	be	loading	our	cannon,”	Monge	told	the	Convention.
All	 very	 well,	 they	 retorted,	 but	 where	 were	 they	 to	 get	 the	 saltpetre?
Monge	and	Berthollet	showed	them.

The	 entire	 nation	 was	 mobilized.	 Under	 Monge’s	 direction	 bulletins
were	sent	to	every	town,	farmstead,	and	village	in	France	telling	the	people
what	 to	 do.	 Led	 by	 Berthollet	 the	 chemists	 invented	 new	 and	 better
methods	for	refining	the	raw	material	and	simplified	the	manufacture	of
gunpowder.	 The	 whole	 of	 France	 became	 a	 vast	 powder	 factory.	 The
chemists	also	showed	the	people	where	to	 find	tin	and	copper—in	clock
metal	and	church	bells.	Monge	was	the	soul	of	it	all.	With	his	prodigious
capacity	for	work	he	spent	his	days	supervising	the	foundries	and	arsenals,
and	 his	 nights	 writing	 bulletins	 for	 the	 direction	 of	 the	 workers,	 and
throve	on	it.	His	bulletin	on	The	Art	of	Manufacturing	Cannon	became	the
factory	handbook.

Monge	was	not	without	enemies	as	the	Revolution	continued	to	fester.
One	day	Monge’s	wife	heard	that	Berthollet	and	her	husband	were	to	be
denounced.	Frantic	with	 fear	 she	 ran	 to	 the	Tuileries	 to	 learn	 the	 truth.
She	found	Berthollet	sitting	quietly	under	the	chestnut	trees.	Yes;	he	had
heard	the	rumor,	but	believed	nothing	would	happen	for	a	week.	“Then,”



he	 added	 with	 his	 habitual	 composure,	 “we	 shall	 certainly	 be	 arrested,
tried,	condemned,	and	executed.”

When	Monge	 came	 home	 that	 evening	 his	 wife	 told	 him	Berthollet’s
prediction.	 “My	 word!”	 Monge	 exclaimed;	 “I	 know	 nothing	 of	 all	 that.
What	 I	 do	 know	 is	 that	 my	 cannon	 factories	 are	 going	 forward
marvelouslly!”

Shortly	 after	 this	 Citizen	Monge	 was	 denounced	 by	 the	 porter	 at	 his
lodgings.	This	was	too	much,	even	for	Monge.	He	prudently	left	Paris	till
the	storm	blew	over.

*		*		*

The	 third	 stage	of	Monge’s	 career	 opened	 in	 1796	with	 a	 letter	 from
Napoleon.	The	two	had	already	met	 in	1792,	but	Monge	was	unaware	of
the	fact.	Monge	at	the	time	was	fifty,	Napoleon	twenty	three	years	younger.

“Permit	me,”	Napoleon	wrote,	 “to	 thank	 you	 for	 the	 cordial	 welcome
that	a	young	artillery	officer,	little	in	favor,	received	from	the	Minister	of
the	 Navy	 in	 1792;	 he	 has	 preciously	 preserved	 its	 memory.	 You	 see	 this
officer	 in	 the	 present	 general	 of	 the	 Army	 [of	 invasion]	 of	 Italy;	 he	 is
happy	to	extend	you	a	hand	of	recognition	and	friendship.”

Thus	 began	 the	 long	 intimacy	 between	 Monge	 and	 Napoleon.
Commenting	 on	 this	 singular	 alliance,	 AragoI	 reports	 Napoleon’s	 words
“Monge	loved	me	as	one	loves	a	mistress.”	On	the	other	side	Monge	seems
to	have	been	the	only	man	for	whom	Napoleon	ever	had	an	unselfish	and
abiding	 friendship.	Napoleon	knew	of	course	 that	Monge	had	helped	 to
make	his	career	possible;	but	that	was	not	the	root	of	his	affection	for	the
older	man.

The	“recognition”	mentioned	in	Napoleon’s	letter	was	the	appointment
of	Monge	and	Berthollet	by	the	Directory	as	commissioners	sent	to	Italy	to
select	 the	 paintings,	 sculpture,	 and	 other	 works	 of	 art	 “donated”	 by	 the
Italians	(after	being	bled	white	of	money)	as	part	of	their	contribution	to
the	 expenses	 of	 Napoleon’s	 campaign.	 In	 picking	 over	 the	 loot	 Monge
developed	a	keen	appreciation	of	art	and	became	quite	a	connoisseur.

The	 practical	 implications	 of	 the	 looting,	 however,	 disturbed	 him
somewhat,	 and	 when	 enough	 to	 furnish	 the	 Louvre	 half	 a	 dozen	 times
over	had	been	lifted	and	shipped	to	Paris,	Monge	counselled	moderation.
It	would	not	do,	he	said,	in	governing	a	people	either	for	their	own	good



or	 for	 that	of	 the	conquerors	 to	beggar	 them	completely.	His	advice	was
heeded,	and	the	goose	continued	laying	its	golden	eggs.

After	the	Italian	adventure	Monge	joined	Napoleon	at	his	chateau	near
Udine.	 The	 two	 became	 great	 cronies,	 Napoleon	 revelling	 in	 Monge’s
conversation	 and	 inexhaustible	 fund	 of	 interesting	 information,	 and
Monge	 basking	 in	 the	 commander-in-chief’s	 genial	 humor.	 At	 public
banquets	Napoleon	always	ordered	 the	band	 to	 strike	up	 the	Marseillaise
—“Monge	is	an	enthusiast	for	it!”	Indeed	he	was,	shouting	it	at	the	top	of
his	lungs	before	sitting	down	to	meals,

“Allons,	enfants	de	la	patrie,
Le	jour	de	gloire	est	arrivé!”

It	 will	 be	 our	 special	 privilege	 to	 see	 the	 day	 of	 glory	 arriving	 in	 the
company	of	another	great	Napoleonic	mathematician—Poncelet.

In	December,	1797,	Monge	made	a	 second	trip	 to	Italy,	 this	 time	as	a
member	 of	 the	 commission	 to	 investigate	 the	 “great	 crime”	 of	 General
Duphot’s	assassination.	The	General	had	been	shot	down	in	Rome	while
standing	near	Lucien	Bonaparte.	The	commission	(rudely	anticipated	by
one	 of	 the	 martyred	 General’s	 brothers	 in	 arms)	 somewhat	 lamely
prescribed	 a	 republic	 modelled	 on	 the	 French	 for	 the	 obstreperous
Italians.	 “There	 must	 be	 an	 end	 of	 everything,	 even	 of	 the	 rights	 of
conquest,”	as	one	of	the	negotiators	remarked	when	the	matter	of	further
extortions	came	up.

How	right	 this	canny	diplomat	was	came	out	eight	months	 later	when
the	 Italians	 scrapped	 their	 republic	 to	 the	 great	 embarrassment	 of
Napoleon,	then	in	Cairo,	and	to	the	greater	embarrassment	of	Monge	and
Fourier	who	happened	to	be	with	him.

Monge	was	one	of	the	dozen	or	so	to	whom	Napoleon	in	1798	confided
his	 plan	 for	 the	 invasion,	 conquest,	 and	 civilization	of	Egypt.	As	 Fourier
enters	naturally	here	we	shall	go	back	and	pick	him	up.

*		*		*

Jean-Baptiste-Joseph	 Fourier,	 born	 on	 March	 21,	 1768,	 at	 Auxerre,
France,	 was	 the	 son	 of	 a	 tailor.	 Orphaned	 at	 the	 age	 of	 eight,	 he	 was
recommended	to	the	Bishop	of	Auxerre	by	a	charitable	lady	who	had	been
captivated	by	the	boy’s	good	manners	and	serious	deportment—little	did



she	dream	what	he	was	to	become.	The	Bishop	got	Fourier	into	the	local
military	 college	 run	by	 the	Benedictines,	where	 the	boy	 soon	proved	his
genius.	By	 the	 age	of	 twelve	he	was	writing	magnificent	 sermons	 for	 the
leading	church	dignitaries	of	Paris	to	palm	off	as	their	own.	At	thirteen	he
was	 a	 problem	 child,	 wayward,	 petulant,	 and	 full	 of	 the	 devil	 generally.
Then,	at	his	first	encounter	with	mathematics,	he	changed	as	if	by	magic.
He	knew	what	had	ailed	him	and	cured	himself.	To	provide	 light	 for	his
mathematical	 studies	 after	 he	 was	 supposed	 to	 be	 asleep	 he	 collected
candle-ends	 in	 the	 kitchen	 and	 wherever	 he	 could	 find	 them	 in	 the
college.	His	secret	study	was	an	inglenook	behind	a	screen.

The	good	Benedictines	prevailed	upon	the	young	genius	to	choose	the
priesthood	as	his	profession,	and	he	entered	the	abbey	of	Saint-Benoît	to
become	a	novitiate.	But	before	Fourier	could	take	his	vows	1789	arrived.	He
had	 always	 wanted	 to	 be	 a	 soldier	 and	 had	 chosen	 the	 priesthood	 only
because	commissions	were	not	given	to	sons	of	tailors.	The	Revolution	set
him	free.	His	old	friends	at	Auxerre	were	broadminded	enough	to	see	that
Fourier	would	never	make	 a	monk.	They	 took	him	back	 and	made	him
professor	of	mathematics.	This	was	the	first	step—a	long	one—toward	his
ambition.	Fourier	proved	his	versatility	by	teaching	his	colleagues’	classes
when	they	were	 ill,	usually	better	 than	they	did	themselves,	 in	everything
from	physics	to	the	classics.

In	December,	1789,	Fourier	(then	twenty	one)	went	 to	Paris	 to	present
his	 researches	 on	 the	 solution	 of	 numerical	 equations	 before	 the
Academy.	This	work	advanced	beyond	Lagrange,	and	is	still	of	value,	but
as	 it	 is	 overshadowed	 by	 Fourier’s	methods	 in	mathematical	 physics,	 we
shall	 not	 discuss	 it	 further;	 it	 may	 be	 found	 in	 elementary	 texts	 on	 the
theory	of	equations.	The	subject	became	one	of	his	lifelong	interests.

On	returning	to	Auxerre	Fourier	joined	the	people’s	party	and	used	his
natural	 eloquence,	 which	 had	 enabled	 him	 as	 a	 small	 boy	 to	 compose
stirring	sermons,	to	stir	up	the	people	to	put	an	end	to	mere	sermonizers
(among	others).

From	the	first	Fourier	was	an	enthusiast	 for	 the	Revolution—till	 it	got
out	 of	 hand.	 During	 the	 Terror,	 ignoring	 the	 danger	 to	 himself,	 he
protested	 against	 the	 needless	 brutality.	 If	 he	 were	 living	 today	 Fourier
would	 probably	 belong	 to	 the	 intelligentsia,	 blissfully	 unaware	 that	 such
are	among	 the	 first	 to	be	 swept	 into	 the	gutter	when	 the	 real	 revolution
begins.	 He	 was	 all	 for	 the	 masses	 and	 the	 renaissance	 of	 science	 and



culture	 which	 the	 intellectuals	 imagined	 they	 foresaw.	 Instead	 of	 the
generous	encouragement	of	the	sciences	which	he	had	predicted,	Fourier
presently	saw	men	of	science	riding	in	the	tumbrils	or	fleeing	the	country,
and	science	itself	fighting	for	its	life	in	a	rapidly	rising	tide	of	barbarism.

It	is	to	Napoleon’s	everlasting	credit	that	he	was	one	of	the	first	to	see
with	 cold-blooded	 clarity	 that	 ignorance	 of	 itself	 can	 do	 nothing	 but
destroy.	His	own	remedy	in	the	end	may	not	have	been	much	better,	but
he	 did	 recognize	 that	 such	 a	 thing	 as	 civilization	might	 be	 possible.	 To
check	 the	 mere	 blood-letting	 Napoleon	 ordered	 or	 encouraged	 the
creation	of	schools.	But	there	were	no	teachers.	All	the	brains	that	might
have	been	pressed	 into	 immediate	 service	had	 long	 since	 fallen	 into	 the
buckets.	 It	 became	 imperative	 to	 train	 a	 new	 teaching	 corps	 of	 fifteen
hundred,	and	for	this	purpose	the	École	Normale	was	created	in	1794.	As
a	 reward	 for	his	 recruiting	 in	Auxerre	Fourier	was	 called	 to	 the	 chair	of
mathematics.

With	 this	 appointment	 a	 new	 era	 in	 the	 teaching	 of	 French
mathematics	 began.	 Remembering	 the	 deadly	 lectures	 of	 defunct
professors,	memorized	and	delivered	verbatim	the	same	year	after	dreary
year,	 the	Convention	called	 in	 creators	 of	mathematics	 to	do	 the	 teaching,
and	forbade	them	to	lecture	from	any	notes	at	all.	The	lectures	were	to	be
delivered	standing	(not	sitting	half	asleep	behind	a	desk),	and	were	to	be	a
free	interchange	of	questions	and	explanations	between	the	professor	and
his	class.	It	was	up	to	the	lecturer	to	prevent	a	session	from	degenerating
into	a	profitless	debate.

The	success	of	this	scheme	even	surpassed	expectations	and	led	to	one
of	 the	 most	 brilliant	 periods	 in	 the	 history	 of	 French	 mathematics	 and
science.	Both	at	the	short-lived	Normale	and	the	enduring	Polytechnique
Fourier	 demonstrated	 his	 genius	 for	 teaching.	 At	 the	 Polytechnique	 he
enlivened	his	lectures	on	mathematics	by	out-of-the-way	historical	allusions
(many	of	which	he	was	the	first	to	trace	to	their	sources),	and	he	skilfully
tempered	abstractions	with	interesting	applications.

Fourier	 was	 still	 turning	 out	 engineers	 and	 mathematicians	 at	 the
Polytechnique	when	Napoleon	in	1798	decided	to	take	him	along	as	one
of	the	Legion	of	Culture	to	civilize	Egypt—“to	offer	a	succouring	hand	to
unhappy	 peoples,	 to	 free	 them	 from	 the	 brutalizing	 yoke	 under	 which
they	have	groaned	for	centuries,	and	finally	to	endow	them	without	delay
with	all	the	benefits	of	European	civilization.”



Incredible	as	it	may	seem,	the	quotation	is	not	from	Signor	Mussolini	in
1935	 justifying	 an	 invasion	 of	 Ethiopia,	 but	 from	 Arago	 in	 1833	 setting
forth	the	lofty	and	humane	aims	of	Napoleon’s	assault	on	Egypt.	It	will	be
interesting	to	see	how	the	unregenerate	inhabitants	of	Egypt	received	“all
the	 benefits	 of	 European	 civilization”	 which	 Messrs.	 Monge,	 Berthollet,
and	 Fourier	 strove	 to	 ram	 down	 their	 throats,	 and	 what	 those	 three
musketeers	 of	 European	 culture	 themselves	 got	 out	 of	 their	 unselfish
missionary	work.

*		*		*

The	French	fleet	of	five	hundred	ships	arrived	at	Malta	on	June	9,	1798,
and	three	days	later	captured	the	place.	As	a	first	step	toward	civilizing	the
East,	 Monge	 started	 fifteen	 elementary	 schools	 and	 a	 higher	 school
somewhat	on	the	lines	of	the	Polytechnique.	A	week	later	the	fleet	was	on
its	 way	 again,	 with	 Monge	 aboard	 Napoleon’s	 flagship,	 l’Orient.	 Every
morning	Napoleon	outlined	a	program	for	discussion	after	dinner	in	the
evening.	Needless	to	say,	Monge	was	the	star	of	these	soirées.	Among	the
topics	 solemnly	debated	were	 the	 age	of	 the	 earth,	 the	possibility	 of	 the
world	coming	to	an	end	by	fire	or	water,	and	“Are	the	planets	inhabited?”
The	 last	 suggests	 that	even	at	 this	 comparatively	early	 stage	of	his	career
Napoleon’s	ambitions	outran	Alexander’s.

The	 fleet	 reached	Alexandria	 on	 July	 1,	 1798.	Monge	was	 one	 of	 the
first	 to	 leap	 ashore,	 and	 it	 was	 only	 by	 exercising	 his	 authority	 as
Commander	in	Chief	that	Napoleon	restrained	the	Marseillaising	geometer
from	participating	in	the	assault	on	the	city.	It	would	never	do	to	have	the
Legion	 of	 Culture	 annihilated	 in	 the	 first	 skirmish	 before	 the	 work	 of
civilization	could	begin;	so	Napoleon	sent	Monge	and	the	rest	of	them	up
the	Nile	by	boat	to	Cairo.

While	Monge	and	company	 lolled	 like	Cleopatra	and	her	court	under
their	 sunshade,	 Napoleon	marched	 resolutely	 along	 the	 bank,	 civilizing
the	 uncultured	 (and	 poorly	 armed)	 inhabitants	 with	 shot	 and	 flame.
Presently	 the	 intrepid	 General	 heard	 a	 devil	 of	 a	 cannonade	 from	 the
direction	 of	 the	 river.	 Guessing	 the	 worst	 he	 abandoned	 the	 battle	 in
which	 he	 was	 engaged	 at	 the	moment	 and	 galloped	 to	 the	 rescue.	 The
blessed	boat	was	hard	aground	on	a	 sand	bar.	There	was	Monge	 serving
the	 cannon	 like	 a	 veteran.	Napoleon	 arrived	 just	 in	 the	 nick	 of	 time	 to



chase	 the	 attackers	 up	 the	 bank	 and	 give	 Monge	 his	 well-merited
decoration	 for	 conspicuous	bravery.	 So	Monge	 after	 all	 had	his	way	 and
got	 his	 sniff	 of	 powder.	 Napoleon	 was	 so	 overjoyed	 at	 having	 saved	 his
friend	that	he	did	not	regret	the	decisive	victory	Monge’s	rescue	had	cost
him.

Following	the	victory	of	July	20,	1798,	at	the	Battle	of	the	Pyramids,	the
triumphant	army	whooped	into	Cairo.	Everything	went	off	 like	fireworks,
precisely	as	that	great	idealist	Napoleon	had	dreamed,	but	for	one	trifling
fizzle.	 The	 obtuse	 Egyptians	 cared	 not	 a	 single	 curse	 for	 the	 cultural
banquet	 which	 Messrs.	 Monge,	 Fourier,	 and	 Berthollet	 spread	 before
them	at	the	Egyptian	Institute	(founded,	August	27,	1798,	in	parody	of	the
Institut	 de	 France),	 but	 sat	 like	 mummies	 through	 the	 great	 chemist’s
scientific	 legerdemain,	 the	 enthusiastic	 Monge’s	 concerts,	 and	 the
historical	disquisitions	of	the	scholarly	Fourier	on	the	glories	of	their	own
mummified	 civilization.	 The	 sweating	 savants	 shed	 their	 sangfroid,
damning	 their	 prospective	 enlightenees	 as	 tasteless	 cattle	 incapable	 of
relishing	 the	 rich	 hash	 of	 French	 erudition	 offered	 for	 their	 spiritual
nourishment,	but	to	no	avail.	Once	more	the	wily,	“unsophisticated”	native
made	a	complete	ass	of	his	determined	uplifters	by	holding	his	peace	and
waiting	for	the	plague	of	locusts	to	be	blown	away	in	the	scavenging	winds.
To	 keep	 his	 self-respect	 till	 the	 breezes	 blew,	 the	 uncivilized	 Egyptian
criticized	 the	 superior	civilization	of	his	conquerors	 in	 the	one	 language
they	 could	 understand.	 Three	 hundred	 of	Napoleon’s	 bravest	 had	 their
hairy	 throats	cut	at	one	 swipe	 in	a	 street	brawl.	Monge	himself	 saved	his
own	 windpipe	 and	 those	 of	 his	 beleaguered	 companions	 only	 by	 an
exhibition	 of	 heroism	 for	 which	 any	 Boy	 Scout	 today	 in	 the	 English-
speaking	world	might	well	receive	a	medal.

This	 ingratitude	 on	 the	 part	 of	 the	 unregenerate	 Egyptians	 cut
Napoleon	to	the	quick.	His	suspicion	that	 it	was	his	moral	duty	to	desert
his	companions	 in	arms	was	strengthened	by	disturbing	news	from	Paris.
During	 his	 absence	 things	 on	 the	 Continent	 had	 been	 going	 from
purgatory	 to	 damnation;	 and	 now	 he	 must	 hurry	 back	 to	 preserve	 the
honor	 of	 France	 and	 his	 own	 skin.	 Monge	 shared	 the	 General’s
confidence;	 the	 less	 beloved	 Fourier	 did	 not.	 Fourier,	 however,	 had	 the
satisfaction	 of	 knowing	 that	 he	 was	 considerable	 enough	 in	 his
commander’s	masterful	eyes	 to	be	 left	 in	Cairo	to	educate	Egypt	or	have
his	 throat	cut,	when	Napoleon,	accompanied	by	the	complaisant	Monge,



took	secret	passage	for	France	without	so	much	as	an	adieu	to	the	troops
who	had	suffered	hell	 for	him	in	the	desert.	Not	being	a	Commander	in
Chief,	Fourier	was	not	entitled	to	take	to	his	heels	 in	the	face	of	danger.
He	stayed,	perforce.	Only	in	1801,	when	the	French	after	Trafalgar	finally
acknowledged	that	the	British,	not	they,	were	to	regenerate	the	Egyptians,
did	the	devoted—but	disillusioned—Fourier	return	to	France.

*		*		*

The	return	trip	of	Monge	and	Napoleon	was	 less	amusing	for	both	of
them	 than	 the	 voyage	 out.	 Instead	 of	 speculating	 about	 the	 end	 of	 the
world	Napoleon	 spent	much	 anxious	 thought	 on	 his	 own	 probable	 end
should	the	British	sailors	bag	him.	The	reward	for	desertion	in	the	field,
he	recalled,	was	a	strictly	private	interview	with	a	firing	squad.	Would	the
British	 treat	him	as	 a	deserter	 for	having	 run	away	 from	his	 army?	 If	he
must	die	he	would	die	theatrically.

“Monge,”	he	 said	one	day,	 “if	we	are	attacked	by	 the	British,	our	 ship
must	be	blown	up	the	instant	they	board	us.	I	charge	you	to	carry	it	out.”

The	very	next	day	a	sail	topped	the	horizon	and	all	hands	stood	to	their
posts	 to	repel	 the	expected	attack.	But	 it	 turned	out	to	be	a	French	ship
after	all.

“Where’s	Monge?”	somebody	asked	when	all	the	excitement	was	over.
They	 found	 him	 in	 the	 powder	magazine	 with	 a	 lighted	 lamp	 in	 his

hand.	 If	only	 that	had	been	a	British	 ship—.	They	always	blow	 in	 fifteen
minutes	or	fifteen	years	too	late.

Berthollet	 and	 Monge	 arrived	 home	 looking	 like	 a	 pair	 of	 tramps.
Neither	 had	 had	 a	 change	 of	 clothes	 since	 he	 left,	 and	 it	 was	 only	 with
difficulty	that	Monge	got	by	his	wife’s	porter.

The	 friendship	with	Napoleon	 continued	 unmarred.	 Probably	Monge
was	the	only	man	in	France	who	dared	to	stand	up	to	Napoleon	and	tell
him	 the	 truth	 in	 the	 days	 of	 his	 greatest	 arrogance.	 When	 Napoleon
crowned	himself	Emperor	the	young	men	of	 the	Polytechnique	revolted.
They	were	Monge’s	pride.

“Well,	Monge,”	Napoleon	remarked	one	day,	“your	pupils	are	nearly	all
in	 revolt	 against	 me;	 they	 have	 decidedly	 declared	 themselves	 my
enemies.”



“Sire,”	 Monge	 replied,	 “we	 have	 had	 trouble	 enough	 to	 make
republicans	 out	 of	 them;	 give	 them	 time	 to	 become	 imperialists.
Moreover,	permit	me	to	say,	you	have	turned	rather	abruptly!”

Little	 spats	 like	 this	 meant	 nothing	 between	 old	 lovers.	 In	 1804
Napoleon	 showed	 his	 appreciation	 of	 Monge’s	 merits	 by	 creating	 him
Count	 of	 Péluse	 (Pelusium).	 For	 his	 part	 Monge	 accepted	 the	 honor
gratefully	and	lived	up	to	the	title	with	all	the	usual	trappings	of	nobility,
forgetting	that	he	had	once	voted	for	the	abolition	of	all	titles.

And	so	it	went,	in	an	ever	more	dazzling	blaze	of	splendor	till	the	year
1812,	which	was	 to	have	ushered	 in	 the	day	of	glory,	but	which	brought
instead	the	retreat	from	Moscow.	Too	old	(he	was	sixty	six)	to	accompany
Napoleon	into	Russia,	Monge	had	stayed	behind	in	France	at	his	country
estate,	 eagerly	 following	 the	 progress	 of	 the	 Grand	 Army	 through	 the
official	 bulletins.	When	 he	 read	 the	 fatal	 “Bulletin	 29,”	 announcing	 the
disaster	 to	 French	 arms,	 Monge	 suffered	 a	 stroke	 of	 apoplexy.	 On
recovering	 he	 said,	 “A	 little	 while	 ago	 I	 did	 not	 know	 something	 that	 I
know	now;	I	know	how	I	shall	die.”

Monge	was	to	be	spared	for	the	final	curtain;	Fourier	helped	to	lower	it.
On	his	return	from	Egypt	Fourier	was	appointed	(January	2,	1802)	prefect
of	 the	Department	 of	 Isère,	 with	 headquarters	 at	Grenoble.	 The	 district
was	 then	 in	political	 turmoil;	Fourier’s	 first	 task	was	 to	restore	order.	He
was	met	by	a	curious	opposition	which	he	subdued	in	a	ludicrous	fashion.
While	 in	 Egypt	 Fourier	 had	 taken	 a	 leading	 part	 in	 administering	 the
archaeological	 research	 of	 the	 Institute.	 The	 good	 citizens	 of	 Grenoble
were	much	upset	 by	 the	 religious	 implications	of	 some	of	 the	 Institute’s
discoveries,	 particularly	 the	 great	 age	 assigned	 to	 the	 older	monuments,
which	conflicted	(they	imagined)	with	the	chronology	of	the	Bible.	They
were	quite	satisfied	however	and	took	Fourier	to	their	bosoms	when,	as	the
result	of	some	further	archaeological	researches	nearer	home,	he	dug	up
a	saint	in	his	own	family,	the	blessed	Pierre	Fourier,	his	great-uncle,	whose
memory	 was	 hallowed	 because	 he	 had	 founded	 a	 religious	 order.	 His
respectability	 established,	 Fourier	 accomplished	 a	 vast	 amount	 of	 useful
work,	draining	marshlands,	stamping	out	malaria,	and	otherwise	lifting	his
district	out	of	the	Middle	Ages.

*		*		*



It	 was	 while	 at	Grenoble	 that	 Fourier	 composed	 the	 immortal	Theorie
analytique	de	la	chaleur	(The	Mathematical	Theory	of	Heat),	a	landmark	in
mathematical	 physics.	 His	 first	 memoir	 on	 the	 conduction	 of	 heat	 was
submitted	 in	1807.	This	was	 so	promising	 that	 the	Academy	encouraged
Fourier	to	continue	by	setting	a	contribution	to	the	mathematical	theory
of	heat	as	its	problem	for	the	Grand	Prize	in	1812.	Fourier	won	the	prize,
but	 not	without	 some	 criticism	which	he	 resented	deeply	 but	which	was
well	taken.

Laplace,	 Lagrange,	 and	 Legendre	 were	 the	 referees.	While	 admitting
the	 novelty	 and	 importance	 of	 Fourier’s	 work	 they	 pointed	 out	 that	 the
mathematical	treatment	was	faulty,	leaving	much	to	be	desired	in	the	way
of	rigor.	Lagrange	himself	had	discovered	special	cases	of	Fourier’s	main
theorem	but	had	been	deterred	from	proceeding	to	the	general	result	by
the	difficulties	which	he	now	pointed	out.	These	subtle	difficulties	were	of
such	 a	 nature	 that	 their	 removal	 at	 the	 time	 would	 probably	 have	 been
impossible.	 More	 than	 a	 century	 was	 to	 elapse	 before	 they	 were
satisfactorily	met.

In	passing	it	is	interesting	to	observe	that	this	dispute	typifies	a	radical
distinction	 between	 pure	 mathematicians	 and	 mathematical	 physicists.
The	only	weapon	at	the	disposal	of	pure	mathematicians	is	sharp	and	rigid
proof,	and	unless	an	alleged	theorem	can	withstand	the	severest	criticism
of	which	its	epoch	is	capable,	pure	mathematicians	have	but	little	use	for
it.

The	 applied	 mathematician	 and	 the	 mathematical	 physicist,	 on	 the
other	 hand,	 are	 seldom	 so	 optimistic	 as	 to	 imagine	 that	 the	 infinite
complexity	 of	 the	 physical	 universe	 can	 be	 described	 fully	 by	 any
mathematical	 theory	 simple	enough	 to	be	understood	by	human	beings.
Nor	do	they	greatly	regret	that	Airy’s	beautiful	(or	absurd)	picture	of	the
universe	 as	 a	 sort	 of	 interminable,	 self-solving	 system	 of	 differential
equations	has	 turned	out	 to	be	an	 illusion	born	of	mathematical	bigotry
and	Newtonian	determinism;	they	have	something	more	real	to	appeal	to
at	 their	 own	back	door—the	physical	 universe	 itself.	They	 can	 experiment
and	 check	 the	 deductions	 of	 their	 purposely	 imperfect	 mathematics
against	 the	 verdict	 of	 experience—which,	 by	 the	 very	 nature	 of
mathematics,	 is	 impossible	 for	 a	 pure	 mathematician.	 If	 their
mathematical	predictions	are	contradicted	by	experiment	they	do	not,	as	a



mathematician	might,	turn	their	backs	on	the	physical	evidence,	but	throw
their	mathematical	tools	away	and	look	for	a	better	kit.

This	 indifference	 of	 scientists	 to	 mathematics	 for	 its	 own	 sake	 is	 as
enraging	to	one	type	of	pure	mathematician	as	the	omission	of	a	doubtful
iota	subscript	is	to	another	type	of	pedant.	The	result	is	that	but	few	pure
mathematicians	 have	 ever	 made	 a	 significant	 contribution	 to	 science—
apart,	 of	 course,	 from	 inventing	many	 of	 the	 tools	 which	 scientists	 find
useful	 (perhaps	 indispensable).	And	 the	 curious	part	 of	 it	 all	 is	 that	 the
very	purists	who	object	to	the	boldly	imaginative	attack	of	the	scientists	are
the	 loudest	 in	 their	 insistence	 that	 mathematics,	 contrary	 to	 a	 widely
diffused	belief,	is	not	all	an	affair	of	grubbing,	meticulous	accuracy,	but	is
as	creatively	imaginative,	and	sometimes	as	loose,	as	great	poetry	or	music
can	be	on	occasion.	Sometimes	the	physicists	beat	 the	mathematicians	at
their	 own	 game	 in	 this	 respect:	 ignoring	 the	 glaring	 lack	 of	 rigor	 in
Fourier’s	classic	on	 the	analytical	 theory	of	heat,	Lord	Kelvin	called	 it	 “a
great	mathematical	poem.”

As	has	already	been	stated	Fourier’s	main	advance	was	in	the	direction
of	boundary-value	problems	 (described	 in	 the	 chapter	on	Newton)—the
fitting	 of	 solutions	 of	 differential	 equations	 to	 prescribed	 initial
conditions,	probably	 the	 central	problem	of	mathematical	physics.	 Since
Fourier	 applied	 this	 method	 to	 the	 mathematical	 theory	 of	 heat
conduction	a	crowded	century	of	splendidly	gifted	men	has	gone	farther
than	he	would	ever	have	dreamed	possible,	but	his	step	was	decisive.	One
or	two	of	the	things	he	did	are	simple	enough	for	description	here.

In	algebra	we	learn	to	plot	the	graphs	of	simple	algebraic	equations	and
soon	 notice	 that	 the	 curves	 we	 get,	 if	 continued	 sufficiently	 far,	 do	 not
break	 off	 suddenly	 and	 end	 for	 good.	 What	 sort	 of	 an	 equation	 would
result	 in	 a	 graph	 like	 that	 of	 the	 heavy	 line	 segment	 (finite	 length,
terminated	at	both	ends)	repeated	indefinitely	as	in	the	figure?



Such	graphs,	made	up	of	disjointed	fragments	of	straight	or	curved	lines
recur	 repeatedly	 in	 physics,	 for	 example	 in	 the	 theories	 of	 heat,	 sound,
and	fluid	motion.	It	can	be	proved	that	it	is	impossible	to	represent	them
by	 finite,	 closed,	mathematical	 expressions;	an	 infinity	 of	 terms	 occur	 in
their	 equations.	 “Fourier’s	 Theorem”	 provides	 a	means	 for	 representing
and	investigating	such	graphs	mathematically:	it	expresses	(within	certain
limitations)	a	given	function	continuous	within	a	certain	interval,	or	with
only	a	 finite	number	of	discontinuities	 in	 the	 interval,	and	having	 in	 the
interval	only	a	finite	number	of	turning-points,	as	an	infinite	sum	of	sines
or	cosines,	or	both.	(This	is	only	a	rough	description.)

Having	 mentioned	 sines	 and	 cosines	 we	 shall	 recall	 their	 most
important	property,	periodicity.	Let	the	radius	of	the	circle	in	the	figure	be
1	 unit	 in	 length.	 Through	 the	 center	 O	 draw	 rectangular	 axes	 as	 in
Cartesian	geometry,	and	mark	off	AB	equal	to	2π	units	of	length;	thus	AB	is
equal	 in	 length	to	 the	circumference	of	 the	circle	(since	 the	radius	 is	 l).
Let	the	point	P	start	from	A	and	trace	out	the	circle	in	the	direction	of	the
arrow.	 Drop	 PN	 perpendicular	 to	OA.	 Then,	 for	 any	 position	 of	 P,	 the
length	of	NP	is	called	the	sine	of	the	angle	AOP,	and	ON	the	cosine;	NP	and
ON	are	to	have	their	signs	as	 in	Cartesian	geometry	(NP	 is	positive	above
OA,	negative	below;	ON	is	positive	to	the	right	of	OC,	negative	to	the	left).

For	any	position	of	P,	the	angle	AOP	will	be	that	fraction	of	four	right
angles	(360°)	that	the	arc	AP	 is	of	the	whole	circumference	of	the	circle.
So	we	may	scale	off	these	angles	AOP	by	marking	along	AB	the	fractions	of
2π	which	 correspond	 to	 the	 arcs	AP.	Thus,	when	P	 is	 at	C,	¼	 the	whole



circumference	has	been	traversed;	hence,	corresponding	to	the	angle	AOC
we	have	the	point	K	at	¼	of	AB	from	A.

At	each	of	these	points	on	AB	we	erect	a	perpendicular	equal	in	length
to	the	sine	of	the	corresponding	angle,	and	above	or	below	A	B	according
as	the	sine	is	positive	or	negative.	The	ends	of	these	perpendiculars	not	on
AB	lie	on	the	continuous	curve	shown,	the	sine	curve.	When	P	returns	to	A
and	begins	retracing	the	circle	the	curve	is	repeated	beyond	B,	and	so	on
indefinitely.	If	P	revolves	in	the	opposite	direction,	the	curve	is	repeated	to
the	left.	After	an	interval	of	2π	the	curve	repeats:	the	sine	of	an	angle	(here
AOP)	 is	 aperiodic	 function,	 the	 period	 being	 2π	 The	 word	 “sine”	 is
abbreviated	to	“sin”;	and,	if	x	is	any	angle,	the	equation	expresses	the	fact
that	sin	x	is	a	function	of	x	having	the	period	2π

sin	(x	+	2π)	=	sin	x

It	is	easily	seen	that	if	the	whole	curve	in	the	figure	is	shifted	to	the	left
a	distance	equal	to	AK,	it	now	graphs	the	cosine	of	AOP.	As	before

cos	(x	+	2π)	=	COS	X,

“cos”	being	the	short	for	“cosine”
Inspection	of	the	figure	shows	that	sin	2x	will	go	through	its	complete

period	 “twice	 as	 fast”	 as	 sin	 x,	 and	hence	 that	 the	 graph	 for	 a	 complete
period	will	be	one	half	as	long	as	that	for	sin	x.	Similarly	sin	3x	will	require
only	2π/3	for	its	complete	period,	and	so	on.	The	same	holds	for	cos	x,	cos
2x,	cos	3x,	.	.	..

Fourier’s	 main	 mathematical	 result	 can	 now	 be	 described	 roughly.
Within	 the	 restrictions	 already	 mentioned	 in	 connection	 with	 “broken”



graphs,	any	function	having	a	well-determined	graph	can	be	represented
by	an	equation	of	the	type

y	=	a0	+	a1	cos	x	+	a2	cos	2x	+	a2	cos	3x	+	.	.	.
+	b1	sin	x	+	b2	sin	2x	+	b3	sin	3x	+	.	.	.

where	 the	 dots	 indicate	 that	 the	 two	 series	 are	 to	 continue	 indefinitely
according	 to	 the	 rule	 shown,	 and	 the	 coefficients	 a0,	 a1	 a2,	 .	 .	 .	 ,	 b1,	 b2,
b3,	 .	 .	 .	 are	 determinable	 when	 y,	 any	 given	 function	 of	 x,	 is	 known.	 In
other	words,	any	given	function	of	x,	say	f(x),	can	be	expanded	in	a	series
of	the	type	stated	above,	a	trigonometric	or	Fourier	series.	To	repeat,	all	this
holds	only	within	certain	restrictions	which,	fortunately,	are	not	of	much
importance	in	mathematical	physics;	the	exceptions	are	more	or	less	freak
cases	 of	 little	 or	 no	 physical	 significance.	Once	more,	 Fourier’s	 was	 the
first	 great	 attack	 on	 boundary	 value	 problems.	 The	 specimens	 of	 such
problems	given	in	the	chapter	on	Newton	are	solved	by	Fourier’s	method.
In	any	given	problem	it	is	required	to	find	the	coefficients	a0,	a1	 .	 .	 .	 ,	b0,
b1	.	.	.	in	a	form	adapted	to	computation.	Fourier’s	analysis	provides	this.

The	concept	of	periodicity	(simple	periodicity)	as	described	above	 is	of
obvious	 importance	 for	natural	phenomena;	 the	 tides,	 the	phases	of	 the
Moon,	the	seasons,	and	a	multitude	of	other	familiar	 things	are	periodic
in	character.	Sometimes	a	periodic	phenomenon,	such	for	example	as	the
recurrence	of	sunspots,	can	be	closely	approximated	by	superposition	of	a
certain	 number	 of	 graphs	 having	 simple	 periodicity.	 The	 study	 of	 such
situations	 can	 then	 be	 simplified	 by	 analysing	 the	 individual	 periodic
phenomena	of	which	the	original	is	the	resultant,

The	 process	 is	 the	 same	 mathematically	 as	 the	 analysis	 of	 a	 musical
sound	into	its	fundamental	and	successive	harmonics.	As	a	first	very	crude
approximation	 to	 the	 “quality”	 of	 the	 sound	 only	 the	 fundamental	 is
considered;	 the	 superposition	of	only	a	 few	harmonics	usually	 suffices	 to
produce	 a	 sound	 indistinguishable	 from	 the	 ideal	 (in	 which	 there	 is	 an
infinity	 of	 harmonics).	 The	 like	 holds	 for	 phenomena	 attacked	 by
“harmonic”	or	“Fourier”	analysis.	Attempts	have	even	been	made	to	detect
long	 periods	 (the	 fundamentals)	 in	 the	 recurrence	 of	 earthquakes	 and
annual	 rainfall.	The	notion	of	 simple	periodicity	 is	 as	 important	 in	pure
mathematics	 as	 it	 is	 in	 applied,	 and	we	 shall	 see	 it	 being	 generalized	 to
multiple	 periodicity	 (in	 connection	 with	 elliptic	 functions	 and	 others),
which	in	its	turn	reacts	on	applied	mathematics.



Fully	aware	that	he	had	done	something	of	the	first	magnitude	Fourier
paid	 no	 attention	 to	 his	 critics.	 They	 were	 right,	 he	 wrong,	 but	 he	 had
done	enough	in	his	own	way	to	entitle	him	to	independence.

When	 the	 work	 begun	 in	 1807	 was	 completed	 and	 collected	 in	 the
treatise	 on	 heat-conduction	 in	 1822,	 it	 was	 found	 that	 the	 obstinate
Fourier	had	not	changed	a	single	word	of	his	original	presentations,	thus
exemplifying	 the	 second	 part	 of	 Francis	 Galton’s	 advice	 to	 all	 authors:
“Never	 resent	 criticism,	 and	 never	 answer	 it.”	 Fourier’s	 resentment	 was
rationalized	 in	 attacks	 on	 pure	 mathematicians	 for	 minding	 their	 own
proper	business	and	not	blundering	about	in	mathematical	physics.

*		*		*

All	was	going	well	with	Fourier	and	France	in	general	when	Napoleon,
having	escaped	from	Elba,	landed	on	the	French	coast	on	March	1,	1815.
Veterans	and	all	were	 just	getting	comfortably	over	 their	headache	when
the	cause	of	it	popped	up	again	to	give	them	a	worse	one.	Fourier	was	at
Grenoble	at	the	time.	Fearing	that	the	populace	would	welcome	Napoleon
back	 for	 another	 spree,	 Fourier	 hastened	 to	 Lyons	 to	 tell	 the	 Bourbons
what	 was	 about	 to	 happen.	 With	 their	 usual	 stupidity	 they	 refused	 to
believe	 him.	 On	 his	 way	 back	 Fourier	 learned	 that	 Grenoble	 had
capitulated.	 Fourier	 himself	 was	 taken	 prisoner	 and	 brought	 before
Napoleon	at	Bourgoin.	He	was	confronted	by	the	same	old	commander	he
had	known	so	well	in	Egypt	and	had	learned	to	distrust	with	his	head	but
not	 with	 his	 viscera.	 Napoleon	 was	 bending	 over	 a	 map,	 a	 pair	 of
compasses	in	his	hand.	He	looked	up.

“Well,	Monsieur	Prefect!	You	too;	you	have	declared	war	against	me?”
“Sire,”	Fourier	stammered,	“my	oaths	made	it	a	duty.”
“A	duty,	do	you	say?	Don’t	you	see	that	nobody	in	the	country	is	of	your

opinion?	 And	 don’t	 let	 yourself	 imagine	 that	 your	 plan	 of	 campaign
frightens	 me	 much.	 I	 suffer	 only	 at	 seeing	 amongst	 my	 adversaries	 an
Egyptian,	a	man	who	has	eaten	the	bread	of	 the	bivouac	with	me,	an	old
friend!	How,	moreover,	Monsieur	 Fourier,	 have	 you	 been	 able	 to	 forget
that	I	made	you	what	you	are?”

That	Fourier,	remembering	Napoleon’s	callous	abandonment	of	him	in
Egypt,	 could	 swallow	 such	 tripe	 and	 like	 it	 says	 a	 great	 deal	 for	 the



goodness	of	his	heart	and	the	toughness	of	his	stomach	but	precious	little
for	the	soundness	of	his	head.

Some	days	later	Napoleon	asked	the	now	loyal	Fourier:
“What	do	you	think	of	my	plan?”
“Sire,	 I	believe	you	will	 fail.	You	will	meet	a	 fanatic	on	your	road,	and

everything	will	be	over.”
“Bah!	Nobody	is	for	the	Bourbons—not	even	a	fanatic.	As	for	that,	you

have	read	in	the	papers	that	they	have	put	me	outside	the	law.	I	myself	will
be	more	 indulgent:	 I	 shall	 content	myself	with	putting	 them	outside	 the
Tuileries!”

The	 leopard’s	 spots	 and	 Napoleon’s	 swellhead	 should	 be	 wedded	 in
one	proverb	instead	of	pining	apart	in	two.

The	 second	 restoration	 found	 Fourier	 in	 Paris	 pawning	 his	 effects	 to
keep	 alive.	But	 before	he	 could	 starve	 to	 death	 old	 friends	 took	pity	 on
him	 and	 got	 him	 appointed	 director	 of	 the	 Bureau	 of	 Statistics	 for	 the
Seine.	The	Academy	 tried	 to	 elect	 him	 to	membership	 in	 1816,	 but	 the
Bourbon	government	ordered	that	no	friend	of	their	late	kicker	was	to	be
honored	 in	any	way.	The	Academy	 stuck	 to	 its	 guns	and	elected	Fourier
the	following	year.	This	action	of	the	Bourbons	against	Fourier	may	seem
petty,	but	beside	what	they	did	to	poor	old	Monge	it	was	princely.	Noblesse
oblige!

Fourier’s	last	years	evaporated	in	clouds	of	talk.	As	Permanent	Secretary
of	the	Academy	he	was	always	able	to	find	listeners.	To	say	that	he	bragged
of	his	achievements	under	Napoleon	is	putting	it	altogether	too	mildly.	He
became	an	insufferable,	shouting	bore.	And	instead	of	continuing	with	his
scientific	work	he	entertained	his	audience	with	boastful	accounts	of	what
he	was	going	to	do.	However,	he	had	done	far	more	than	his	share	for	the
advancement	 of	 science,	 and	 if	 any	 human	 work	 merits	 immortality,
Fourier’s	does.	He	did	not	need	to	boast	or	bluff.

Fourier’s	 experiences	 in	 Egypt	 were	 responsible	 for	 a	 curious	 habit
which	may	have	hastened	his	death.	Desert	heat,	he	believed,	was	the	ideal
condition	 for	 health.	 In	 addition	 to	 swathing	 himself	 like	 a	mummy	 he
lived	in	rooms	which	his	uncooked	friends	said	were	hotter	than	hell	and
the	 Sahara	 desert	 combined.	 He	 died	 of	 heart	 disease	 (some	 say	 an
aneurism)	 on	 May	 16,	 1830,	 in	 the	 sixty	 third	 year	 of	 his	 life.	 Fourier
belongs	 to	 that	 select	 company	 of	 mathematicians	 whose	 work	 is	 so



fundamental	 that	 their	 names	 have	 become	 adjectives	 in	 every	 civilized
language.

*		*		*

Monge’s	 decline	 was	 slower	 and	 more	 distressing.	 After	 the	 first
restoration	Napoleon	felt	embittered	and	vindictive	toward	the	snobocracy
of	 his	 own	 creation	which,	 naturally,	 had	 let	 him	down	 the	moment	his
power	waned.	Once	more	in	the	saddle	Napoleon	was	inclined	to	use	the
butt	 end	 of	 his	 crop	 on	 the	 skulls	 of	 the	 ungrateful.	 Monge,	 good	 old
plebeian	 that	 he	 was,	 counselled	 mercy	 and	 common	 sense:	 Napoleon
might	some	day	find	himself	with	his	back	to	the	wall	(after	an	earthquake
had	 cut	 off	 all	means	 of	 flight),	 and	 be	 grateful	 for	 the	 support	 of	 the
ingrates.	Cooling	off,	Napoleon	wisely	tempered	injustice	with	mercy.	For
this	gracious	dispensation	Monge	alone	was	responsible.

After	Napoleon	had	run	away	from	Waterloo,	leaving	his	troops	to	get
out	of	the	mess	as	best	they	could,	he	returned	to	Paris.	Fourier’s	devotion
cooled	then;	Monge’s	boiled.

The	school	histories	often	tell	of	Napoleon’s	last	dream—the	conquest
of	America.	The	Mongian	version	differs	and	is	on	a	much	higher—in	fact,
incredibly	 high—plane.	 Hemmed	 in	 by	 enemies	 and	 appalled	 at	 the
thought	 of	 enforced	 idleness	 for	 lack	 of	 further	 European	 conquest,
Napoleon	turned	his	eagle	eye	West,	and	in	one	flashing	glance	surveyed
America	 from	 Alaska	 to	 Cape	 Horn.	 But,	 like	 the	 sick	 devil	 he	 was,
Bonaparte	 longed	 to	 become	 a	 monk.	 The	 sciences	 alone	 could	 satisfy
him,	 he	 declared;	 he	 would	 become	 a	 second	 and	 infinitely	 greater
Alexander	von	Humboldt.

“I	 wish,”	 he	 confessed	 to	 Monge,	 “in	 this	 new	 career	 to	 leave	 works,
discoveries,	worthy	of	me.”

What,	precisely,	 are	 the	works	which	 could	be	worthy	of	 a	Napoleon?
Continuing,	the	fallen	eagle	outlined	his	dream.

“I	 need	 a	 companion,”	 he	 admitted,	 “to	 first	 put	 me	 abreast	 of	 the
present	 state	 of	 the	 sciences.	 Then	 you	 [Monge]	 and	 I	 will	 traverse	 the
whole	continent,	from	Canada	to	Cape	Horn;	and	in	this	immense	journey
we	 shall	 study	 all	 those	 prodigious	 phenomena	 of	 terrestrial	 physics	 on
which	the	scientific	world	has	not	pronounced	its	verdict.”	Paranoia?



“Sire,”	 Monge	 exclaimed—he	 was	 nearly	 sixty	 seven—“your
collaborator	is	already	found;	I	will	go	with	you!”

His	old	 self	once	more,	Napoleon	curtly	dismissed	 the	 thought	of	 the
willing	 veteran	 hampering	 his	 lightning	 marches	 from	 Baffin	 Bay	 to
Patagonia.

“You	are	too	old,	Monge.	I	need	a	younger	man.”
Monge	tottered	off	 to	find	“a	younger	man.”	He	approached	the	fiery

Arago	 as	 the	 ideal	 travelling	 companion	 for	 his	 energetic	 master.	 But
Arago,	 in	 spite	 of	 all	 his	 eloquent	 rhetoric	 on	 the	 gloriousness	 of	 glory,
had	learned	his	lesson.	A	general	who	could	desert	his	troops	as	Napoleon
had	 done	 at	 Waterloo,	 Arago	 pointed	 out,	 was	 no	 leader	 to	 follow
anywhere,	even	in	easy	America.

Further	negotiations	were	rudely	halted	by	the	British.	By	the	middle	of
October	Napoleon	was	exploring	St.	Helena.	The	hoard	of	money	which
had	been	put	aside	for	the	conquest	of	America	found	its	way	into	deeper
pockets	 than	those	of	 the	scientists,	and	no	“American	Institute”	rose	on
the	 banks	 of	 the	 Mississippi	 or	 the	 Amazon	 to	 match	 its	 fantastic	 twin
overlooking	the	Nile.

Having	 enjoyed	 the	 bread	 of	 imperialism	Monge	 now	 tasted	 the	 salt.
His	record	as	a	revolutionist	and	favorite	of	the	upstart	Corsican	made	his
head	an	extremely	desirable	object	to	the	Bourbons,	and	Monge	dodged
from	 one	 slum	 to	 another	 in	 an	 endeavor	 to	 keep	 his	 head	 on	 his
shoulders.	For	 sheer	human	pettiness	 the	 treatment	accorded	Monge	by
the	 sanctified	 Bourbons	 would	 take	 a	 lot	 of	 beating.	 Small	 enough	 for
anything	they	stripped	the	old	man	of	his	last	honor—one	with	which	the
generosity	 of	 Napoleon	 had	 had	 nothing	 whatever	 to	 do.	 In	 1816	 they
commanded	 that	 Monge	 be	 expelled	 from	 the	 Academy.	 The
academicians,	tame	as	rabbits	now,	obeyed.

The	 final	 touch	 of	 Bourbon	 pettiness	 graced	 the	 day	 of	 Monge’s
funeral.	As	he	had	foreseen	he	died	after	a	prolonged	stupor	following	a
stroke.	 The	 young	 men	 at	 the	 Polytechnique,	 whom	 he	 had	 protected
from	 Napoleon’s	 domineering	 interference,	 were	 the	 pride	 of	 Monge’s
heart,	 and	 he	 was	 their	 idol.	 When	 Monge	 died	 on	 July	 28,	 1818,	 the
Polytechnicians	asked	permission	to	attend	the	funeral.	The	King	denied
the	request.

Well	disciplined,	 the	Polytechnicians	observed	 the	ban.	But	 they	were
more	resourceful	or	more	courageous	 than	 the	 timid	academicians.	The



King’s	order	covered	only	the	funeral.	The	following	day	they	marched	in
a	body	to	the	cemetery	and	laid	a	wreath	on	the	grave	of	their	master	and
friend,	Gaspard	Monge.

I.	F.	J.	D.	Arago,	1786-1853,	astronomer,	physicist,	and	scientific	biographer.



CHAPTER	THIRTEEN

The	Day	of	Glory

PONCELET

Projective	 geometry	 has	 opened	 up	 for	 us	 with	 the	 greatest	 facility	 new	 territories	 in	 our	 science,	 and	 has
rightly	been	called	a	royal	road	to	its	own	particular	field	of	knowledge.	—FELIX	KLEIN

MORE	THAN	ONCE	during	the	World	War	when	the	French	troops	were	hard
pressed	and	reinforcements	nonexistent,	the	high	command	saved	the	day
by	 routing	 some	 prima	 donna	 out	 of	 her	 boudoir,	 rushing	 her	 to	 the
front,	draping	her	from	neck	to	heels	in	the	tricolor,	and	ordering	her	to
sing	the	Marseillaise	to	the	exhausted	men.	Having	sung	her	piece	the	lady
rolled	back	to	Paris	in	her	limousine;	the	heartened	troops	advanced,	and
the	following	morning	a	cynically	censored	press	once	more	unanimously
assured	 a	 gullible	 public	 that	 “the	 day	 of	 glory	 has	 arrived”—with
unmentioned	casualties.

In	 1812	 the	 day	 of	 glory	 was	 still	 on	 its	 way.	 Prima	 donnas	 did	 not
accompany	Napoleon	Bonaparte’s	half-million	 troops	on	their	 triumphal
march	 into	 Russia.	 The	 men	 did	 their	 own	 singing	 as	 the	 Russians
retreated	before	the	invincible	Grand	Army,	and	the	endless	plains	rang	to
the	stirring	chant	which	had	swept	tyrants	from	their	thrones	and	elevated
Napoleon	to	their	place.

All	was	 going	 as	 gloriously	 as	 the	most	 enthusiastic	 singer	 could	have
wished:	 six	 days	 before	 Napoleon	 crossed	 the	 Niemen	 his	 brilliant
diplomatic	 strategy	 had	 indirectly	 exasperated	 President	 Madison	 into
hurling	the	United	States	into	a	distracting	war	on	England;	the	Russians
were	 running	 harder	 than	 ever	 on	 their	 race	 back	 to	Moscow,	 and	 the
Grand	 Army	 was	 doing	 its	 valiant	 best	 to	 keep	 up	 with	 the	 reluctant
enemy.	At	Borodino	the	Russians	turned,	 fought,	and,	retired.	Napoleon
continued	 without	 opposition—except	 from	 the	 erratic	 weather—to
Moscow,	 whence	 he	 notified	 the	 Czar	 of	 his	 willingness	 to	 consider	 an
unconditional	 surrender	 of	 all	 the	 Russian	 forces.	 The	 competent



inhabitants	of	Moscow,	 led	by	the	Governor,	 took	matters	 into	their	own
hands,	 fired	 their	 city,	 burned	 it	 to	 the	 ground,	 and	 smoked	Napoleon
and	 all	 his	 men	 out	 into	 the	 void.	 Chagrined	 but	 still	 master	 of	 the
situation,	Napoleon	disregarded	 this	broad	hint—the	 second	or	 third	 so
far	vouchsafed	to	his	military	obstinacy—that	“who	killeth	with	the	sword
must	perish	by	the	sword,”	presently	ordered	his	driver	to	give	the	horses
the	lash,	and	dashed	back	post-haste	over	the	now	frozen	plains	to	prepare
for	 his	 rendezvous	 with	 Blücher	 at	 Leipzig,	 leaving	 the	 Grand	 Army	 to
walk	home	or	freeze	as	it	should	see	fit.

With	the	deserted	French	army	was	a	young	officer	of	engineers,	Jean-
Victor	Poncelet	(July	1,	1788-December	23,	1867)	who,	as	a	student	at	the
École	 Polytechnique	 in	 Paris,	 later	 at	 the	military	 academy	 at	Metz,	 had
been	inspired	by	the	new	descriptive	geometry	of	Monge	(1746-1818)	and
the	Géométrie	de	position	 (published	 in	1803)	of	 the	elder	Carnot	 (Lazare-
Nicolas-Marguerite	 Carnot,	 May	 13,	 1753-August	 2,	 1823),	 whose
revolutionary	 if	 somewhat	 reactionary	 program	 was	 devised	 “to	 free
geometry	from	the	hieroglyphics	of	analysis.”

In	the	preface	to	his	classic	Applications	d’analyse	 et	de	géométrie	(second
edition	1862,	of	 the	work	 first	published	 in	1822),	Poncelet	 recounts	his
experiences	 in	 the	 disastrous	 retreat	 from	 Moscow.	 On	 November	 18,
1812,	the	exhausted	remnant	of	the	French	army	under	Marshal	Ney	was
overwhelmed	 at	 Krasnoï.	 Among	 those	 left	 for	 dead	 on	 the	 frozen
battlefield	 was	 young	 Poncelet.	 His	 uniform	 as	 an	 officer	 of	 engineers
saved	 his	 life.	 A	 searching	 party,	 discovering	 that	 he	 still	 breathed,	 took
him	before	the	Russian	staff	for	questioning.

As	a	prisoner	of	war	 the	young	officer	was	 forced	 to	march	 for	nearly
five	 months	 across	 the	 frozen	 plains	 in	 the	 tatters	 of	 his	 uniform,
subsisting	on	a	meagre	ration	of	black	bread.	In	a	cold	so	intense	that	the
mercury	 of	 the	 thermometer	 frequently	 froze,	 many	 of	 Poncelet’s
companions	 in	 misery	 died	 in	 their	 tracks,	 but	 his	 ruggeder	 strength
pulled	him	through,	and	in	March,	1813	he	entered	his	prison	at	Saratoff
on	the	banks	of	the	Volga.	At	first	he	was	too	exhausted	to	think.	But	when
“the	splendid	April	sun”	restored	his	vitality,	he	remembered	that	he	had
received	 a	 good	mathematical	 education,	 and	 to	 soften	 the	 rigors	 of	his
exile	 he	 resolved	 to	 reproduce	 as	 much	 as	 he	 could	 of	 what	 he	 had
learned.	It	was	thus	that	he	created	projective	geometry.



Without	books	and	with	only	the	scantiest	writing	materials	at	 first,	he
retraced	all	that	he	had	known	of	mathematics	from	arithmetic	to	higher
geometry	and	the	calculus.	These	first	labors	were	enlivened	by	Poncelet’s
efforts	 to	 coach	 his	 fellow	 officers	 for	 the	 examinations	 they	 must	 take
should	they	ever	see	France	again.	One	legend	states	that	at	first	Poncelet
had	only	scraps	of	charcoal,	salvaged	from	the	meager	brazier	which	kept
him	 from	 freezing	 to	death,	 for	drawing	his	diagrams	on	 the	wall	 of	his
cell.	He	makes	 the	 interesting	observation	 that	practically	 all	details	 and
complicated	 developments	 of	 the	mathematics	 he	 had	 been	 taught	 had
evaporated,	while	 the	general,	 fundamental	principles	 remained	as	 clear
as	ever	in	his	memory.	The	same	was	true	of	physics	and	mechanics.

In	 September,	 1814,	 Poncelet	 returned	 to	 France,	 carrying	 with	 him
“the	 material	 of	 seven	 manuscript	 notebooks	 written	 at	 Saratoff	 in	 the
prisons	of	Russia	(1813	to	1814),	 together	with	divers	other	writings,	old
and	new,”	in	which	he,	as	a	young	man	of	twenty	four,	had	given	projective
geometry	 its	 strongest	 impulse	 since	 Desargues	 and	 Pascal	 initiated	 the
subject	 in	 the	 seventeenth	 century.	 The	 first	 edition	 of	 his	 classic,	 as
already	mentioned,	was	published	in	1822.	It	lacked	the	intimate	“apology
for	 his	 life”	 which	 has	 been	 used	 above,	 but	 it	 started	 a	 tremendous
nineteenth	 century	 surge	 forward	 in	 projective	 geometry,	 modern
synthetic	 geometry	 generally,	 and	 the	 geometric	 interpretation	 of	 the
“imaginary”	numbers	that	present	themselves	 in	algebraic	manipulations,
giving	 to	 such	 “imaginaries”	 geometrical	 interpretations	 as	 “ideal”
elements	 of	 space.	 It	 also	 proposed	 the	 powerful	 and	 (for	 a	 time)
controversial	 “doctrine	 of	 continuity,”	 to	 be	 described	 presently,	 which
greatly	 simplified	 the	 study	 of	 geometric	 configurations	 by	 unifying
apparently	 unrelated	 properties	 of	 figures	 into	 uniform,	 self-contained
complete	wholes.	Exceptions	 and	 awkward	 special	 cases	 appeared	under
Poncelet’s	 broader	 point	 of	 view	 as	 merely	 different	 aspects	 of	 things
already	 familiar.	 The	 classic	 treatise	 also	 made	 full	 use	 of	 the	 creative
“principle	 of	 duality”	 and	 introduced	 the	 method	 of	 “reciprocation”
devised	by	Poncelet	himself.	In	short,	a	whole	arsenal	of	new	weapons	was
added	to	geometry	by	the	young	military	engineer	who	had	been	left	for
dead	 on	 the	 field	 of	 Krasnoï,	 and	 who	 might	 indeed	 have	 died	 before
morning	 had	 not	 his	 officer’s	 uniform	 distinguished	 him	 as	 a	 likely
candidate	for	questioning	by	the	Russian	staff.



For	the	next	decade	(1815–25)	Poncelet’s	duties	as	a	military	engineer
left	him	only	odd	moments	for	his	real	ambition—the	exploitation	of	his
new	methods	in	geometry.	Relief	was	not	to	come	for	many	years.	His	high
sense	of	duty	and	his	fatal	efficiency	made	Poncelet	an	easy	prey	for	short-
sighted	superiors.	Some	of	the	tasks	he	was	set	could	have	been	done	only
by	a	man	of	his	calibre,	for	example	the	creation	of	the	school	of	practical
mechanics	 at	 Metz	 and	 the	 reform	 of	 mathematical	 education	 at	 the
Polytechnique.	 But	 the	 reports	 on	 fortifications,	 his	 work	 on	 the
Committee	of	Defense,	 and	his	presidency	of	 the	mechanical	 sections	at
the	international	expositions	of	London	and	Paris	(1851-58),	to	mention
only	a	few	of	his	numerous	routine	jobs,	could	all	have	been	done	by	lesser
men.	 His	 high	 scientific	 merits,	 however,	 were	 not	 unappreciated.	 The
Academy	 of	 Sciences	 elected	 him	 (1831)	 as	 successor	 to	 Laplace.	 For
political	reasons	Poncelet	declined	the	honor	till	three	years	later.

Poncelet’s	 whole	 mature	 life	 was	 one	 long	 internal	 conflict	 between
that	 half	 of	 him	 which	 was	 born	 to	 do	 lasting	 work	 and	 the	 other	 half
which	 accepted	 all	 the	 odd	 or	 dirty	 jobs	 shortsighted	 politicians	 and
obtuse	militarists	shoved	in	its	way.	Poncelet	himself	longed	to	escape,	but
a	mistaken	sense	of	duty,	drilled	into	his	very	bones	in	Napoleon’s	armies,
impelled	 him	 to	 serve	 the	 shadow	 and	 turn	 his	 back	 on	 the	 substance.
That	 he	 did	 not	 suffer	 an	 early	 and	 permanent	 nervous	 breakdown	 is	 a
remarkable	 testimonial	 to	 the	 ruggedness	 of	 his	 physique.	 And	 that	 he
retained	his	creative	abilities	almost	to	his	death	at	the	age	of	seventy	nine
is	a	shining	proof	of	his	unquenchable	genius.	When	they	could	think	of
nothing	better	 for	 this	splendidly	endowed	man	to	do	with	his	 time	they
sent	 him	 traipsing	 about	 France	 to	 inspect	 cotton	 mills,	 silk	 mills,	 and
linen	mills.	They	did	not	need	a	Poncelet	to	do	that	sort	of	thing,	and	he
knew	 it.	 He	 would	 have	 been	 the	 last	 man	 in	 France	 to	 object	 had	 his
unique	talents	been	indispensable	in	such	affairs,	for	he	was	anything	but
the	 sort	of	 intellectual	prude	who	holds	 that	 science	 loses	her	perennial
virginity	every	time	she	shakes	hands	with	industry.	But	he	was	not	the	only
man	 available	 for	 the	 work,	 as	 possibly	 Pasteur	 was	 in	 the	 equally
important	 matters	 of	 the	 respective	 diseases	 of	 beer,	 silkworms,	 and
human	beings.

*		*		*



We	 now	 glance	 at	 one	 or	 two	 of	 the	 weapons	 either	 devised	 or
remodelled	 by	 Poncelet	 for	 the	 conquest	 of	 projective	 geometry.	 First
there	 is	his	 “principle	of	 continuity,”	which	 refers	 to	 the	permanence	of
geometrical	 properties	 as	 one	 figure	 shades,	 by	 projection	 or	 otherwise,
into	another.	This	no	doubt	is	rather	vague,	but	Poncelet’s	own	statement
of	 the	principle	was	never	 very	exact	 and,	 as	 a	matter	of	 fact,	 embroiled
him	in	endless	controversies	with	more	conservative	geometers	whom	he
politely	designated	as	old	 fossils—always	 in	 the	dignified	diction	 suitable
to	 an	 officer	 and	 a	 gentleman,	 of	 course.	 With	 the	 caution	 that	 the
principle	 is	 of	 great	 heuristic	 value	 but	 does	 not	 always	 of	 itself	 provide
proofs	of	the	theorems	which	it	suggests,	we	may	see	something	of	its	spirit
from	a	few	simple	examples.

Imagine	two	intersecting	circles.	Say	they	intersect	in	the	points	A	and	B.
Join	A	and	B	by	a	straight	line.	The	figure	presents	ocular	evidence	of	two
real	points	A,	B	and	the	common	chord	AB	of	the	two	circles.	Now	imagine
the	 two	 circles	 pulled	 gradually	 apart.	 The	 common	 chord	 presently
becomes	a	common	tangent	to	the	two	circles	at	their	point	of	contact.	At
any	stage	so	far	the	following	theorem	(usually	set	as	an	exercise	in	school
geometry)	 is	 true:	 if	 any	 point	 P	 be	 taken	 on	 the	 common	 chord,	 four
tangent	lines	may	be	drawn	from	it	to	the	two	circles,	and	if	the	points	in
which	 these	 tangent	 lines	 touch	 the	 circles	 are	T1	 T2,	 T3,	 T4,	 then	 the
segments	PT1,	 PT2,	 PT3,	 PT4,	 are	 all	 equal	 in	 length.	 Conversely,	 if	 it	 is
asked	where	do	all	the	points	P	lie	such	that	the	four	tangent-segments	to
the	two	circles	shall	all	be	equal,	the	answer	is	on	the	common	chord.	Stating
all	 this	briefly	 in	 the	usual	 language,	we	 say	 that	 the	 locus	(which	merely
means	place)	of	a	point	P	which	moves	so	that	the	lengths	of	the	tangent-
segments	from	it	to	two	intersecting	circles	are	equal,	is	the	common	chord
of	 the	 two	 circles.I	 All	 this	 is	 familiar	 and	 straightforward;	 there	 is	 no



element	of	mystery	or	incomprehensibility	as	some	may	say	there	is	in	the
next	where	the	“principle	of	continuity”	enters.

Pull	the	circles	completely	apart.	Their	two	intersections	(or	in	the	last
moment	 their	 one	 point	 of	 contact)	 are	 no	 longer	 visible	 on	 the	 paper
and	 the	 “common	 chord”	 is	 left	 suspended	 between	 the	 two	 circles,
cutting	 neither	 visibly.	 But	 it	 is	 known	 that	 there	 is	 still	 a	 locus	 of	 equal
tangent-segments,	 and	 it	 is	 easily	 proved	 that	 this	 locus	 is	 a	 straight	 line
perpendicular	to	the	line	joining	the	centres	of	the	two	circles,	just	as	the
original	locus	(the	common	chord)	was.	Merely	as	a	manner	of	speaking,
if	 we	 object	 to	 “imaginaries,”	 we	 continue	 to	 say	 that	 the	 two	 circles
intersect	 in	 two	points	 in	 the	 infinite	 part	 of	 the	plane,	 even	when	 they
have	been	pulled	apart,	and	we	say	also	that	the	new	straight-line	locus	is
still	 the	 common	 chord	 of	 the	 circles:	 the	 points	 of	 intersection	 are
“imaginary”	 or	 “ideal,”	 but	 the	 straight	 line	 joining	 them	 (the	 new
“common	chord”)	is	“real”—we	actually	draw	it	on	the	paper.

If	 we	 write	 the	 equations	 of	 the	 circles	 and	 lines	 algebraically	 in	 the
manner	of	Descartes,	all	that	we	do	in	the	algebra	of	solving	the	equations
for	 the	 intersections	 has	 its	 unique	 correlate	 in	 the	 enlarged	 geometry,
whereas	 if	 we	 do	not	 first	 expand	our	 geometry—or	 at	 least	 increase	 its
vocabulary,	to	take	account	of	“ideal”	elements—much	of	the	meaningful
algebra	is	geometrically	meaningless.

All	 this	 of	 course	 requires	 logical	 justification.	 Such	 justification	 has
been	given	so	far	as	is	necessary,	that	is,	up	to	the	stage	which	includes	the
applications	of	the	“principle	of	continuity”	useful	in	geometry.

A	 more	 important	 instance	 of	 the	 principle	 is	 furnished	 by	 parallel
straight	lines.	Before	describing	this	we	may	repeat	the	remark	a	venerable
and	 distinguished	 judge	 relieved	 himself	 of	 a	 few	 days	 ago	 when	 the
matter	was	 revealed	 to	him.	The	 judge	had	been	under	 the	weather;	 an
amateur	 mathematician,	 thinking	 to	 cheer	 the	 old	 fellow	 up,	 told	 him
something	 of	 the	 geometrical	 concept	 of	 infinity.	 They	 were	 strolling
through	the	judge’s	garden	at	the	time.	On	being	informed	that	“parallel
lines	meet	at	 infinity,”	 the	 judge	stopped	dead.	“Mr.	Blank,”	he	said	with
great	 emphasis,	 “any	 man	 who	 says	 parallel	 lines	 meet	 at	 infinity,	 or
anywhere	else,	simply	hasn’t	got	good	sense.”	To	obviate	an	argument	we
may	 say	 as	 before	 that	 it	 is	 all	 a	 way	 of	 speaking	 to	 avoid	 irritating
exceptions	and	separations	 into	exasperating	distinct	cases.	But	once	the
language	 has	 been	 agreed	 upon,	 logical	 consistency	 demands	 that	 it	 be



followed	 to	 the	 end	without	 traversing	 the	 rules	of	 logical	 grammar	 and
syntax,	and	this	is	what	is	done.

To	see	the	reasonableness	of	the	language,	imagine	a	fixed	straight	line
l	 and	 fixed	 point	 P	 not	 on	 l.	 Through	 P	 draw	 any	 straight	 line	 l’
intersecting	 l	 in	P’9	 and	 imagine	 l’	 to	 rotate	 about	P,	 so	 that	Pf	 recedes
along	 l.	When	does	P’	 stop	 receding?	We	 say	 it	 stops	 when	 l,	 l’	 become
parallel	or,	if	we	prefer,	when	the	point	of	intersection	P’	is	at	infinity.	For
reasons	already	indicated	this	language	is	convenient	and	suggestive—not
of	 a	 lunatic	 asylum,	 as	 the	 judge	 might	 think,	 but	 of	 interesting	 and
sometimes	highly	practical	things	to	do	in	geometry.

In	 a	 similar	 manner	 the	 visualizable	 finite	 parts	 of	 lines,	 planes	 and
three-dimensional	 space	 (also	 of	 higher	 space)	 are	 enriched	 by	 the
adjunction	 of	 “ideal”	 points,	 lines,	 planes,	 or	 “regions”	 at	 infinity.	 If	 the
judge	happens	to	see	this	he	may	enjoy	the	following	shocking	example	of
the	behavior	of	the	infinite	in	geometry:	any	two	circles	in	a	plane	intersect	in
four	 points,	 two	 of	 which	 are	 imaginary	 and	 at	 infinity.	 If	 the	 circles	 are
concentric,	 they	 touch	 one	 another	 in	 two	 points	 lying	 on	 the	 line	 at
infinity.	Further,	all	 circles	 in	 a	 plane	 go	 through	 the	 same	 two	 points	 at
infinity—they	 are	 usually	 denoted	 by	 I	 and	 J,	 and	 are	 sometimes	 called
Isaac	and	Jacob	by	irreverent	students.

In	 the	 chapter	 on	 Pascal	 we	 described	 what	 is	 meant	 by	 projective
properties	in	distinction	to	metrical	properties	in	geometry.	At	this	point
we	 may	 glance	 back	 at	 Hadamard’s	 remarks	 on	 Descartes’	 analytic
geometry.	Hadamard	observed	among	other	things	that	modern	synthetic
geometry	repaid	the	debt	of	geometry	in	general	to	algebra	by	suggesting



important	 researches	 in	 algebra	 and	 analysis.	 This	 modern	 synthetic
geometry	 was	 the	 object	 of	 Poncelet’s	 researches.	 Although	 all	 this	may
seem	rather	involved	at	the	moment,	we	shall	close	the	chain	by	taking	a
link	 from	 the	 1840’s,	 as	 the	matter	 really	 is	 important,	 not	 only	 for	 the
history	of	pure	mathematics	but	for	that	of	recent	mathematical	physics	as
well.

The	link	from	the	1840’s	is	the	creation	by	Boole,	Cayley,	Sylvester	and
others,	of	the	algebraic	theory	of	invariance	which	(as	will	be	explained	in
a	 later	 chapter)	 is	 of	 fundamental	 importance	 in	 current	 theoretical
physics.	The	projective	geometry	of	Poncelet	and	his	school	played	a	very
important	 part	 in	 the	 development	 of	 the	 theory	 of	 invariance:	 the
geometers	 had	 discovered	 a	 whole	 continent	 of	 properties	 of	 figures
invariant	 under	 projection;	 the	 algebraists	 of	 the	 1840’s,	 notably	 Cayley,
translated	 the	geometrical	 operations	 of	 projection	 into	 analytical	 language,
applied	 this	 translation	 to	 the	 algebraic,	 Cartesian	 mode	 of	 expressing
geometric	 relationships,	 and	 were	 thus	 enabled	 to	 make	 phenomenally
rapid	progress	 in	 the	elaboration	of	 the	 theory	of	algebraic	 invariants.	 If
Desargues,	 the	 daring	 pioneer	 of	 the	 seventeenth	 century,	 could	 have
foreseen	what	his	ingenious	method	of	projection	was	to	lead	to,	he	might
well	 have	been	 astonished.	He	knew	 that	he	had	done	 something	 good,
but	he	probably	had	no	conception	of	just	how	good	it	was	to	prove.

Isaac	Newton	was	a	young	man	of	twenty	when	Desargues	died.	There	is
no	evidence	that	Newton	ever	heard	the	name	of	Desargues.	If	he	had,	he
also	might	have	been	astonished	could	he	have	foreseen	that	the	humble
link	 forged	 by	 his	 elderly	 contemporary	 was	 to	 form	 part	 of	 the	 strong
chain	 which,	 in	 the	 twentieth	 century,	 was	 to	 pull	 his	 law	 of	 universal
gravitation	 from	 its	 supposedly	 immortal	 pedestal.	 For	 without	 the
mathematical	machinery	of	the	tensor	calculus	which	developed	naturally
(as	 we	 shall	 see)	 from	 the	 algebraic	 work	 of	 Cayley	 and	 Sylvester,	 it	 is
improbable	 that	 Einstein	 or	 anyone	 else	 could	 ever	 have	 budged	 the
Newtonian	theory	of	gravitation.

*		*		*

One	 of	 the	 useful	 ideas	 in	 projective	 geometry	 is	 that	 of	 cross-ratio	 or
anharmonic	ratio.	Through	a	point	O	draw	any	four	straight	lines	l,	m,	n,	p.
Across	these	four	draw	any	straight	line	x,	and	label	the	points	in	which	x



cuts	 the	 others	 L,	 M,	 N,	 P	 respectively.	 We	 thus	 have	 on	 x	 the	 line
segments	LM,	MN,	LP,	PN.	From	these	form	the	ratios	 	and	 	Finally

we	take	 the	ratio	of	 these	 two	ratios,	and	get	 the	cross-ratio	 	 The
remarkable	 thing	about	 this	 cross-ratio	 is	 that	 it	has	 the	 same	numerical
magnitude	for	all	positions	of	the	line	x.

Later	we	shall	 refer	 to	Felix	Klein’s	unification	of	Euclidean	geometry
and	 the	 common	 non-Euclidean	 geometries	 into	 one	 comprehensive
geometry.	This	 unification	was	made	possible	 by	Cayley’s	 revision	of	 the
usual	notions	of	distance	and	angle	on	which	metrical	geometry	is	founded.
In	this	revision,	cross-ratio	played	the	leading	part,	and	through	it,	by	the
introduction	of	“ideal”	elements	of	his	own	devising,	Cayley	was	enabled	to
reduce	metrical	geometry	to	a	species	of	projective	geometry.

To	 close	 this	 inadequate	 description	 of	 the	 kind	 of	 weapons	 that
Poncelet	 used	 we	 shall	 mention	 the	 extremely	 fruitful	 “principle	 of
duality.”	 For	 simplicity	 we	 consider	 only	 how	 the	 principle	 operates	 in
plane	geometry.

Note	 first	 that	any	continuous	curve	may	be	regarded	 in	either	of	 two
ways:	either	as	being	generated	by	the	motion	of	a	point,	or	as	being	swept
out	by	the	turning	motion	of	a	straight	line.	To	see	the	latter,	imagine	the
tangent	 line	 drawn	 at	 each	 point	 of	 the	 curve.	 Thus	 points	 and	 lines	 are



intimately	 and	 reciprocally	 associated	 with	 respect	 to	 the	 curve:	 through
every	 point	 of	 the	 curve	 there	 is	 a	 line	 of	 the	 curve;	 on	 every	 line	 of	 the
curve	there	is	a	point	of	the	curve.	Instead	of	“through”	in	the	preceding
sentence,	write	“on.”	Then	the	two	assertions	separated	by	“;”	after	the	“:”
are	identical	except	that	the	words	“point”	and	“line”	are	interchanged.

As	a	matter	of	terminology	we	say	that	a	line	(straight	or	curved)	is	on	a
point	if	the	line	passes	through	the	point,	and	we	note	that	if	a	line	is	on	a
point,	 then	 the	 point	 is	 on	 the	 line,	 and	 conversely.	 To	 make	 this
correspondence	 universal	 we	 “adjoin”	 to	 the	 usual	 plane	 in	 which
Euclidean	geometry	(common	school	geometry)	is	valid,	a	so-called	metric
plane,	 “ideal	 elements”	 of	 the	 kind	 already	 described.	 The	 result	 of	 this
adjunction	is	a	projective	plane:	a	projective	plane	consists	of	all	the	ordinary
points	and	straight	lines	of	a	metric	plane	and,	in	addition,	of	a	set	of	ideal
points	all	of	which	are	assumed	to	lie	on	one	ideal	line	and	such	that	one
such	ideal	point	lies	on	every	ordinary	line.II

In	 Euclidean	 language	 we	 would	 say	 that	 two	 parallel	 lines	 have	 the
same	direction;	in	projective	phraseology	this	becomes	“two	parallel	lines
have	the	same	ideal	point.”	Again,	in	the	old,	if	two	or	more	lines	have	the
same	direction,	they	are	parallel;	in	the	new,	if	two	or	more	lines	have	the
same	 ideal	 point	 they	 are	 parallel.	 Every	 straight	 line	 in	 the	 projective



plane	 is	conceived	of	as	having	on	 it	one	 ideal	point	 (“at	 infinity”);	all	 the
ideal	points	are	thought	of	as	making	up	one	ideal	line,	“the	line	at	infinity.”

The	purpose	of	these	conceptions	is	to	avoid	the	exceptional	statements
of	 Euclidean	 geometry	 necessitated	 by	 the	 postulated	 existence	 of
parallels.	 This	 has	 already	 been	 commented	 on	 in	 connection	 with
Poncelet’s	formulation	of	the	principle	of	continuity.

With	 these	preliminaries	 the	principle	 of	 duality	 in	 plane	 geometry	 can
now	be	stated:	All	the	propositions	of	plane	projective	geometry	occur	in
dual	pairs	which	are	such	that,	from	either	proposition	of	a	particular	pair
another	can	be	immediately	inferred	by	interchanging	the	parts	played	by
the	words	point	and	line.

In	his	projective	geometry	Poncelet	exploited	this	principle	to	the	limit.
Opening	 almost	 any	 book	 on	 projective	 geometry	 at	 random	 we	 note
pages	of	propositions	printed	in	double	columns,	a	device	introduced	by
Poncelet.	Corresponding	propositions	in	the	two	columns	are	duals	of	one
another;	if	either	has	been	proved,	a	proof	of	the	other	is	superfluous,	as
implied	 by	 the	 principle	 of	 duality.	 Thus	 geometry	 at	 one	 stroke	 is
doubled	 in	 extent	with	no	expenditure	of	 extra	 labor.	As	 a	 specimen	of
dual	propositions	we	give	the	following	pair.

Two	distinct	points	are	on	one,	and	only	one,	line.

Two	distinct	lines	are	on	one,	and	only	one,	point.
It	may	be	granted	that	this	is	not	very	exciting.	The	mountain	has	labored
and	brought	forth	a	mouse.	Can	it	do	any	better?



The	 proposition	 in	 the	 left-hand	 column	 (page	 217)	 is	 Pascal’s
concerning	his	Hexagrammum	Mysticum	 which	we	 have	 already	 seen;	 that
on	the	right	is	Brianchon’s	theorem,	which	was	discovered	by	means	of	the
principle	of	duality.	Brianchon	(1785-1864)	discovered	his	theorem	while
he	was	a	student	at	the	École	Polytechnique;	it	was	printed	in	the	Journal
of	that	school	in	1806.	The	figures	for	the	two	propositions	look	nothing
alike.	This	may	indicate	the	power	of	the	methods	used	by	Poncelet.

Brianchon’s	discovery	was	the	one	which	put	the	principle	of	duality	on
the	map	of	geometry.	Far	more	spectacular	examples	of	the	power	of	the
principle	 will	 be	 found	 in	 any	 textbook	 on	 projective	 geometry,
particularly	 in	 the	 extension	 of	 the	 principle	 to	 ordinary	 three-
dimensional	 space.	 In	 this	 extension	 the	parts	 played	by	 the	words	point
and	plane	are	interchangeable;	straight	line	stays	as	it	was.

If	 A,	 B,	 C,	 D,	 E,	 F	 are	 any	 points	 on	 a	 conic	 section,	 the	 points	 of
intersection	of	the	pairs	of	lines	AB	and	DE,	BC	and	EF,	CD	and	FA	are	on
a	straight	line;	and	conversely.



If	A,	B,	C,	D,	E,	F	are	tangent	straight	lines	on	a	conic	section,	the	lines
joining	the	pairs	of	intersections	of	A	with	B	and	D	with	E,	B	with	C	and	E
with	F,	C	with	D	and	F	with	A,	meet	in	one	point;	and	conversely.

*		*		*

The	 conspicuous	 beauty	 of	 projective	 geometry	 and	 the	 supple
elegance	of	its	demonstrations	made	it	a	favorite	study	with	the	geometers
of	the	nineteenth	century.	Able	men	swarmed	into	the	new	goldfield	and
quickly	 stripped	 it	of	 its	more	accessible	 treasures.	Today	 the	majority	of
experts	 seem	 to	 agree	 that	 the	 subject	 is	 worked	 out	 so	 far	 as	 it	 is	 of
interest	 to	 professional	 mathematicians.	 However,	 it	 is	 conceivable	 that
there	 may	 yet	 be	 something	 in	 it	 as	 obvious	 as	 the	 principle	 of	 duality
which	has	been	overlooked.	 In	 any	 event	 it	 is	 an	 easy	 subject	 to	 acquire
and	 one	 of	 fascinating	 delight	 to	 amateurs	 and	 even	 to	 professionals	 at
some	 stage	 of	 their	 careers.	 Unlike	 some	 other	 fields	 of	 mathematics,
projective	geometry	has	been	blessed	with	many	excellent	 textbooks	and
treatises,	some	of	them	by	master	geometers,	including	Poncelet	himself.

I.	In	what	precedes	the	tangents	are	real	(visible)	if	the	point	P	lies	outside	the	circles;	if	P	is	inside,
the	tangents	are.	“imaginary.”



II.	 This	 definition,	 and	 others	 of	 a	 similar	 character	 given	 presently,	 is	 taken	 from	 Projective
Geometry	 (Chicago,	 19S0)	 by	 the	 late	 John	Wesley	 Young.	 This	 little	 book	 is	 comprehensible	 to
anyone	who	has	had	an	ordinary	school	course	in	common	geometry.



CHAPTER	FOURTEEN

The	Prince	of	Mathematicians

GAUSS

The	 further	 elaboration	 and	 development	 of	 systematic	 arithmetic,	 like	 nearly	 everything	 else	 which	 the
mathematics	of	our	[nineteenth]	century	has	produced	in	the	way	of	original	scientific	ideas,	is	knit	to	Gauss.—
LEOPOLD	KRONECKER

ARCHIMEDES,	 NEWTON,	 AND	GAUSS,	 these	 three,	 are	 in	 a	 class	by	 themselves
among	 the	 great	 mathematicians,	 and	 it	 is	 not	 for	 ordinary	 mortals	 to
attempt	 to	 range	 them	 in	order	of	merit.	All	 three	 started	 tidal	waves	 in
both	 pure	 and	 applied	 mathematics:	 Archimedes	 esteemed	 his	 pure
mathematics	more	 highly	 than	 its	 applications;	 Newton	 appears	 to	 have
found	 the	 chief	 justification	 for	 his	 mathematical	 inventions	 in	 the
scientific	uses	 to	which	he	put	 them,	while	Gauss	declared	 that	 it	was	all
one	 to	 him	 whether	 he	 worked	 on	 the	 pure	 or	 the	 applied	 side.
Nevertheless	 Gauss	 crowned	 the	 higher	 arithmetic,	 in	 his	 day	 the	 least
practical	of	mathematical	studies,	the	Queen	of	all.

The	lineage	of	Gauss,	Prince	of	Mathematicians,	was	anything	but	royal.
The	son	of	poor	parents,	he	was	born	in	a	miserable	cottage	at	Brunswick
(Braunschweig),	 Germany,	 on	 April	 30,	 1777.	 His	 paternal	 grandfather
was	a	poor	peasant.	 In	1740	this	grandfather	settled	 in	Brunswick,	where
he	drudged	out	a	meager	existence	as	a	gardener.	The	second	of	his	three
sons,	 Gerhard	 Diederich,	 born	 in	 1744,	 became	 the	 father	 of	 Gauss.
Beyond	 that	 unique	 honor	 Gerhard’s	 life	 of	 hard	 labor	 as	 a	 gardener,
canal	tender,	and	bricklayer	was	without	distinction	of	any	kind.

The	picture	we	get	of	Gauss’	 father	 is	 that	of	an	upright,	 scrupulously
honest,	uncouth	man	whose	harshness	to	his	sons	sometimes	bordered	on
brutality.	 His	 speech	 was	 rough	 and	 his	 hand	 heavy.	 Honesty	 and
persistence	 gradually	 won	 him	 some	 measure	 of	 comfort,	 but	 his
circumstances	 were	 never	 easy.	 It	 is	 not	 surprising	 that	 such	 a	man	 did
everything	 in	 his	 power	 to	 thwart	 his	 young	 son	 and	 prevent	 him	 from



acquiring	an	education	suited	to	his	abilities.	Had	the	father	prevailed,	the
gifted	boy	would	have	followed	one	of	the	family	trades,	and	it	was	only	by
a	 series	 of	 happy	 accidents	 that	 Gauss	 was	 saved	 from	 becoming	 a
gardener	or	a	bricklayer.	As	a	child	he	was	 respectful	and	obedient,	and
although	he	never	criticized	his	poor	father	in	later	life,	he	made	it	plain
that	he	had	never	felt	any	real	affection	for	him.	Gerhard	died	in	1806.	By
that	 time	 the	 son	he	had	done	his	best	 to	discourage	had	accomplished
immortal	work.

On	 his	 mother’s	 side	 Gauss	 was	 indeed	 fortunate.	 Dorothea	 Benz’s
father	was	a	stonecutter	who	died	at	the	age	of	thirty	of	tuberculosis,	the
result	of	unsanitary	working	conditions	in	his	trade,	leaving	two	children,
Dorothea	and	her	younger	brother	Friederich.

Here	 the	 line	 of	 descent	 of	 Gauss’	 genius	 becomes	 evident.
Condemned	by	 economic	disabilities	 to	 the	 trade	of	weaving,	 Friederich
was	a	highly	intelligent,	genial	man	whose	keen	and	restless	mind	foraged
for	 itself	 in	 fields	 far	 from	his	 livelihood.	 In	his	 trade	Friederich	quickly
made	 a	 reputation	 as	 a	 weaver	 of	 the	 finest	 damasks,	 an	 art	 which	 he
mastered	wholly	by	himself.	Finding	a	kindred	mind	 in	his	 sister’s	 child,
the	 clever	 uncle	 Friederich	 sharpened	 his	 wits	 on	 those	 of	 the	 young
genius	 and	did	what	he	 could	 to	 rouse	 the	boy’s	 quick	 logic	 by	his	 own
quizzical	observations	and	somewhat	mocking	philosophy	of	life.

Friederich	knew	what	he	was	doing;	Gauss	at	the	time	probably	did	not.
But	Gauss	had	a	photographic	memory	which	retained	the	impressions	of
his	 infancy	and	childhood	unblurred	to	his	dying	day.	Looking	back	as	a
grown	man	on	what	Friederich	had	done	for	him,	and	remembering	the
prolific	 mind	 which	 a	 premature	 death	 had	 robbed	 of	 its	 chance	 of
fruition,	Gauss	lamented	that	“a	born	genius	was	lost	in	him.”

Dorothea	moved	to	Brunswick	in	1769.	At	the	age	of	thirty	four	(in	1776)
she	married	Gauss’	 father.	The	 following	year	her	 son	was	born.	His	 full
baptismal	name	was	Johann	Friederich	Carl	Gauss.	In	later	life	he	signed
his	masterpieces	simply	Carl	Friedrich	Gauss.	If	a	great	genius	was	lost	in
Friederich	Benz	his	name	survives	in	that	of	his	grateful	nephew.

Gauss’	 mother	 was	 a	 forthright	 woman	 of	 strong	 character,	 sharp
intellect,	and	humorous	good	sense.	Her	son	was	her	pride	from	the	day
of	his	birth	to	her	own	death	at	the	age	of	ninety	seven.	When	the	“wonder
child”	 of	 two,	 whose	 astounding	 intelligence	 impressed	 all	 who	watched
his	phenomenal	development	as	something	not	of	this	earth,	maintained



and	 even	 surpassed	 the	 promise	 of	 his	 infancy	 as	 he	 grew	 to	 boyhood,
Dorothea	Gauss	 took	her	boy’s	part	and	defeated	her	obstinate	husband
in	his	campaign	to	keep	his	son	as	ignorant	as	himself.

Dorothea	hoped	 and	expected	great	 things	 of	her	 son.	That	 she	may
sometimes	have	doubted	whether	her	dreams	were	to	be	realized	is	shown
by	 her	 hesitant	 questioning	 of	 those	 in	 a	 position	 to	 judge	 her	 son’s
abilities.	 Thus,	 when	 Gauss	 was	 nineteen,	 she	 asked	 his	 mathematical
friend	Wolfgang	 Bolyai	 whether	 Gauss	 would	 ever	 amount	 to	 anything.
When	 Bolyai	 exclaimed	 “The	 greatest	 mathematician	 in	 Europe!”	 she
burst	into	tears.

The	last	twenty	two	years	of	her	life	were	spent	in	her	son’s	house,	and
for	the	last	four	she	was	totally	blind.	Gauss	himself	cared	little	if	anything
for	 fame;	 his	 triumphs	 were	 his	 mother’s	 life.I	 There	 was	 always	 the
completest	 understanding	 between	 them,	 and	 Gauss	 repaid	 her
courageous	 protection	 of	 his	 early	 years	 by	 giving	 her	 a	 serene	 old	 age.
When	she	went	blind	he	would	allow	no	one	but	himself	 to	wait	on	her,
and	he	nursed	her	in	her	long	last	illness.	She	died	on	April	19,	1839.

Of	 the	 many	 accidents	 which	 might	 have	 robbed	 Archimedes	 and
Newton	of	 their	mathematical	peer,	Gauss	himself	 recalled	one	 from	his
earliest	childhood.	A	spring	freshet	had	filled	the	canal	which	ran	by	the
family	cottage	 to	overflowing.	Playing	near	 the	water,	Gauss	was	 swept	 in
and	nearly	drowned.	But	for	the	lucky	chance	that	a	laborer	happened	to
be	about	his	life	would	have	ended	then	and	there.

In	 all	 the	 history	 of	 mathematics	 there	 is	 nothing	 approaching	 the
precocity	of	Gauss	as	a	child.	It	is	not	known	when	Archimedes	first	gave
evidence	 of	 genius.	 Newton’s	 earliest	 manifestations	 of	 the	 highest
mathematical	 talent	may	 well	 have	 passed	 unnoticed.	 Although	 it	 seems
incredible,	Gauss	showed	his	caliber	before	he	was	three	years	old.

One	Saturday	Gerhard	Gauss	was	making	out	the	weekly	payroll	for	the
laborers	under	his	charge,	unaware	 that	his	young	son	was	 following	 the
proceedings	 with	 critical	 attention.	 Coming	 to	 the	 end	 of	 his	 long
computations,	Gerhard	was	startled	to	hear	the	little	boy	pipe	up,	“Father,
the	reckoning	is	wrong,	it	should	be	.	.	.	.”	A	check	of	the	account	showed
that	the	figure	named	by	Gauss	was	correct.

Before	this	the	boy	had	teased	the	pronunciations	of	the	letters	of	the
alphabet	 out	 of	 his	 parents	 and	 their	 friends	 and	had	 taught	 himself	 to
read.	 Nobody	 had	 shown	 him	 anything	 about	 arithmetic,	 although



presumably	he	had	picked	up	 the	meanings	of	 the	digits	1,	2,	 .	 .	 .	 along
with	the	alphabet.	In	later	life	he	loved	to	joke	that	he	knew	how	to	reckon
before	he	could	talk.	A	prodigious	power	for	involved	mental	calculations
remained	with	him	all	his	life.

Shortly	 after	 his	 seventh	 birthday	 Gauss	 entered	 his	 first	 school,	 a
squalid	relic	of	the	Middle	Ages	run	by	a	virile	brute,	one	Büttner,	whose
idea	of	teaching	the	hundred	or	so	boys	in	his	charge	was	to	thrash	them
into	 such	 a	 state	 of	 terrified	 stupidity	 that	 they	 forgot	 their	 own	names.
More	of	the	good	old	days	for	which	sentimental	reactionaries	long.	It	was
in	this	hell-hole	that	Gauss	found	his	fortune.

Nothing	 extraordinary	 happened	 during	 the	 first	 two	 years.	 Then,	 in
his	tenth	year,	Gauss	was	admitted	to	the	class	in	arithmetic.	As	it	was	the
beginning	 class	 none	 of	 the	 boys	 had	 ever	 heard	 of	 an	 arithmetical
progression.	 It	 was	 easy	 then	 for	 the	 heroic	 Büttner	 to	 give	 out	 a	 long
problem	 in	 addition	 whose	 answer	 he	 could	 find	 by	 a	 formula	 in	 a	 few
seconds.	The	problem	was	 of	 the	 following	 sort,	 81297	 +	 81495	 +	 81693
+	.	.	.	+	100899,	where	the	step	from	one	number	to	the	next	is	the	same	all
along	 (here	 198),	 and	 a	 given	 number	 of	 terms	 (here	 100)	 are	 to	 be
added.

It	was	the	custom	of	the	school	for	the	boy	who	first	got	the	answer	to
lay	his	slate	on	the	table;	the	next	laid	his	slate	on	top	of	the	first,	and	so
on.	Büttner	had	barely	finished	stating	the	problem	when	Gauss	flung	his
slate	 on	 the	 table:	 “There	 it	 lies,”	 he	 said—“Ligget	 se’	 ”	 in	 his	 peasant
dialect.	 Then,	 for	 the	 ensuing	 hour,	 while	 the	 other	 boys	 toiled,	 he	 sat
with	 his	 hands	 folded,	 favored	 now	 and	 then	 by	 a	 sarcastic	 glance	 from
Büttner,	 who	 imagined	 the	 youngest	 pupil	 in	 the	 class	 was	 just	 another
blockhead.	At	 the	 end	of	 the	period	Büttner	 looked	over	 the	 slates.	On
Gauss’	 slate	 there	appeared	but	a	 single	number.	To	 the	end	of	his	days
Gauss	 loved	 to	 tell	 how	 the	one	number	he	had	written	was	 the	 correct
answer	and	how	all	the	others	were	wrong.	Gauss	had	not	been	shown	the
trick	for	doing	such	problems	rapidly.	It	is	very	ordinary	once	it	is	known,
but	for	a	boy	of	ten	to	find	it	instantaneously	by	himself	is	not	so	ordinary.

This	opened	the	door	 through	which	Gauss	passed	on	to	 immortality.
Büttner	 was	 so	 astonished	 at	 what	 the	 boy	 of	 ten	 had	 done	 without
instruction	that	he	promptly	redeemed	himself	and	to	at	 least	one	of	his
pupils	became	a	humane	teacher.	Out	of	his	own	pocket	he	paid	for	the
best	textbook	on	arithmetic	obtainable	and	presented	it	to	Gauss.	The	boy



flashed	through	the	book.	“He	 is	beyond	me,”	Büttner	said;	“I	can	teach
him	nothing	more.”

By	himself	Büttner	could	probably	not	have	done	much	for	the	young
genius.	But	by	a	 lucky	chance	 the	 schoolmaster	had	an	assistant,	 Johann
Martin	Bartels	(1769-1836),	a	young	man	with	a	passion	for	mathematics,
whose	duty	it	was	to	help	the	beginners	in	writing	and	cut	their	quill	pens
for	 them.	Between	 the	 assistant	 of	 seventeen	 and	 the	pupil	 of	 ten	 there
sprang	up	a	warm	 friendship	which	 lasted	out	Bartels’	 life.	They	 studied
together,	helping	one	another	over	difficulties	and	amplifying	the	proofs
in	their	common	textbook	on	algebra	and	the	rudiments	of	analysis.

*		*		*

Out	 of	 this	 early	 work	 developed	 one	 of	 the	 dominating	 interests	 of
Gauss’	career.	He	quickly	mastered	the	binomial	theorem,

in	which	n	is	not	necessarily	a	positive	integer,	but	may	be	any	number.	If
n	 is	 not	 a	 positive	 integer,	 the	 series	 on	 the	 right	 is	 infinite
(nonterminating),	and	in	order	to	state	when	this	series	 is	actually	equal
to	(1	+	x)n,	it	is	mandatory	to	investigate	what	restrictions	must	be	imposed
upon	 x	 and	n	 in	 order	 that	 the	 infinite	 series	 shall	 converge	 to	 a	 definite,
finite	limit.	Thus,	if	x	=	−2,	and	n	=	−1,	we	get	 the	absurdity	 that	(1	−2)–1,
which	is	(	−1)–1	or	1/(–1),	or	finally	–1,	is	equal	to	1	+	2	+	22	+	23	+	.	.	.	and
so	on	ad	infinitum;	that	is,	−1	is	equal	to	the	“infinite	number”	1	+	2	+	4	+	8
+	.	.	.,	which	is	nonsense.

Before	 young	Gauss	 asked	himself	whether	 infinite	 series	 converge	 and
really	do	enable	us	to	calculate	the	mathematical	expressions	(functions)
they	 are	used	 to	 represent,	 the	older	 analysts	had	not	 seriously	 troubled
themselves	 to	 explain	 the	 mysteries	 (and	 nonsense)	 arising	 from	 an
uncritical	 use	 of	 infinite	 processes.	 Gauss’	 early	 encounter	 with	 the
binomial	 theorem	 inspired	 him	 to	 some	 of	 his	 greatest	 work	 and	 he
became	the	first	of	the	“rigorists.”	A	proof	of	the	binomial	theorem	when	n
is	not	an	 integer	greater	 than	zero	 is	even	today	beyond	the	range	of	an
elementary	textbook.	Dissatisfied	with	what	he	and	Bartels	found	in	their



book,	 Gauss	made	 a	 proof.	 This	 initiated	 him	 to	mathematical	 analysis.
The	very	essence	of	analysis	is	the	correct	use	of	infinite	processes.

The	 work	 thus	 well	 begun	 was	 to	 change	 the	 whole	 aspect	 of
mathematics.	 Newton,	 Leibniz,	 Euler,	 Lagrange,	 Laplace—all	 great
analysts	 for	 their	 times—had	 practically	 no	 conception	 of	 what	 is	 now
acceptable	as	a	proof	 involving	 infinite	processes.	The	 first	 to	 see	clearly
that	a	“proof”	which	may	lead	to	absurdities	like	“minus	1	equals	infinity”
is	no	proof	at	all,	was	Gauss.	Even	if	in	some	cases	a	formula	gives	consistent
results,	it	has	no	place	in	mathematics	until	the	precise	conditions	under
which	it	will	continue	to	yield	consistency	have	been	determined.

The	rigor	which	Gauss	imposed	on	analysis	gradually	overshadowed	the
whole	 of	 mathematics,	 both	 in	 his	 own	 habits	 and	 in	 those	 of	 his
contemporaries—Abel,	 Cauchy—and	 his	 successors—Weierstrass,
Dedekind,	 and	mathematics	 after	Gauss	 became	 a	 totally	 different	 thing
from	the	mathematics	of	Newton,	Euler,	and	Lagrange.

In	the	constructive	sense	Gauss	was	a	revolutionist.	Before	his	schooling
was	 over	 the	 same	 critical	 spirit	 which	 left	 him	 dissatisfied	 with	 the
binomial	 theorem	 had	 caused	 him	 to	 question	 the	 demonstrations	 of
elementary	geometry.	At	the	age	of	twelve	he	was	already	looking	askance
at	 the	 foundations	 of	Euclidean	 geometry;	 by	 sixteen	he	had	 caught	his
first	glimpse	of	a	geometry	other	than	Euclid’s.	A	year	later	he	had	begun
a	 searching	 criticism	 of	 the	 proofs	 in	 the	 theory	 of	 numbers	 which	 had
satisfied	his	predecessors	and	had	set	himself	the	extraordinarily	difficult
task	of	 filling	up	 the	 gaps	 and	 completing	 what	 had	been	only	 half	 done.
Arithmetic,	the	field	of	his	earliest	triumphs,	became	his	favorite	study	and
the	locus	of	his	masterpiece.	To	his	sure	feeling	for	what	constitutes	proof
Gauss	 added	 a	 prolific	 mathematical	 inventiveness	 that	 has	 never	 been
surpassed.	The	combination	was	unbeatable.

*		*		*

Bartels	 did	more	 for	 Gauss	 than	 to	 induct	 him	 into	 the	mysteries	 of
algebra.	The	 young	 teacher	was	 acquainted	with	 some	of	 the	 influential
men	of	Brunswick.	He	now	made	it	his	business	 to	 interest	 these	men	in
his	find.	They	in	turn,	favorably	impressed	by	the	obvious	genius	of	Gauss,
brought	 him	 to	 the	 attention	 of	 Carl	 Wilhelm	 Ferdinand,	 Duke	 of
Brunswick.



The	 Duke	 received	 Gauss	 for	 the	 first	 time	 in	 1791.	 Gauss	 was	 then
fourteen.	 The	 boy’s	modesty	 and	 awkward	 shyness	 won	 the	 heart	 of	 the
generous	Duke.	Gauss	left	with	the	assurance	that	his	education	would	be
continued.	The	following	year	(February,	1792)	Gauss	matriculated	at	the
Collegium	 Carolinum	 in	 Brunswick.	 The	 Duke	 paid	 the	 bills	 and	 he
continued	to	pay	them	till	Gauss’	education	was	finished.

Before	entering	 the	Caroline	College	at	 the	age	of	 fifteen,	Gauss	had
made	great	headway	 in	 the	 classical	 languages	by	private	 study	and	help
from	older	friends,	 thus	precipitating	a	crisis	 in	his	career.	To	his	crassly
practical	 father	 the	 study	 of	 ancient	 languages	 was	 the	 height	 of	 folly.
Dorothea	Gauss	put	up	a	fight	for	her	boy,	won,	and	the	Duke	subsidized	a
two-years’	course	at	the	Gymnasium.	There	Gauss’	lightning	mastery	of	the
classics	astonished	teachers	and	students	alike.

Gauss	 himself	 was	 strongly	 attracted	 to	 philological	 studies,	 but
fortunately	 for	 science	 he	 was	 presently	 to	 find	 a	 more	 compelling
attraction	 in	mathematics.	On	entering	college	Gauss	was	already	master
of	the	supple	Latin	in	which	many	of	his	greatest	works	are	written.	It	is	an
ever-to-be-regretted	calamity	that	even	the	example	of	Gauss	was	powerless
against	the	tides	of	bigoted	nationalism	which	swept	over	Europe	after	the
French	 Revolution	 and	 the	 downfall	 of	 Napoleon.	 Instead	 of	 the	 easy
Latin	 which	 sufficed	 for	 Euler	 and	 Gauss,	 and	 which	 any	 student	 can
master	 in	 a	 few	 weeks,	 scientific	 workers	 must	 now	 acquire	 a	 reading
knowledge	 of	 two	 or	 three	 languages	 in	 addition	 to	 their	 own.	 Gauss
resisted	 as	 long	 as	 he	 could,	 but	 even	 he	 had	 to	 submit	 when	 his
astronomical	 friends	 in	 Germany	 pressed	 him	 to	 write	 some	 of	 his
astronomical	works	in	German.

Gauss	studied	at	the	Caroline	College	for	three	years,	during	which	he
mastered	 the	 more	 important	 works	 of	 Euler,	 Lagrange	 and,	 above	 all,
Newton’s	 Principia.	 The	 highest	 praise	 one	 great	 man	 can	 get	 is	 from
another	in	his	own	class.	Gauss	never	lowered	the	estimate	which	as	a	boy
of	 seventeen	 he	 had	 formed	 of	 Newton.	 Others—Euler,	 Laplace,
Lagrange,	 Legendre—appear	 in	 the	 flowing	 Latin	 of	 Gauss	 with	 the
complimentary	clarissimus;	Newton	is	summus.

While	 still	 at	 the	 college	 Gauss	 had	 begun	 those	 researches	 in	 the
higher	 arithmetic	 which	 were	 to	 make	 him	 immortal.	 His	 prodigious
powers	of	calculation	now	came	into	play.	Going	directly	to	the	numbers
themselves	 he	 experimented	 with	 them,	 discovering	 by	 induction



recondite	general	theorems	whose	proofs	were	to	cost	even	him	an	effort.
In	 this	 way	 he	 rediscovered	 “the	 gem	 of	 arithmetic,”	 “theorema	 aureum,”
which	Euler	also	had	come	upon	inductively,	which	is	known	as	the	law	of
quadratic	 reciprocity,	 and	 which	 he	 was	 to	 be	 the	 first	 to	 prove.
(Legendre’s	attempted	proof	slurs	over	a	crux.)

The	 whole	 investigation	 originated	 in	 a	 simple	 question	 which	many
beginners	in	arithmetic	ask	themselves:	How	many	digits	are	there	in	the
period	of	a	 repeating	decimal?	To	get	 some	 light	on	 the	problem	Gauss
calculated	the	decimal	representations	of	all	the	fractions	1/n	for	n	=	1	to
1000.	He	did	not	find	the	treasure	he	was	seeking,	but	something	infinitely
greater—the	law	of	quadratic	reciprocity.	As	this	is	quite	simply	stated	we
shall	 describe	 it,	 introducing	 at	 the	 same	 time	 one	 of	 the	 revolutionary
improvements	 in	 arithmetical	 nomenclature	 and	 notation	 which	 Gauss
invented,	 that	 of	 congruence.	 All	 numbers	 in	 what	 follows	 are	 integers
(common	whole	numbers).

If	the	difference	(a	–	b	or	b	–	a)	of	two	numbers	a,	b	is	exactly	divisible	by
the	number	m,	we	say	that	a,	b	are	congruent	with	respect	to	the	modulus	m,
or	simply	congruent	modulo	my	and	we	symbolize	this	by	writing	a	≡	b	(mod
m).	Thus	100	≡	2	(mod	7),	35	≡	2	(mod	11).

The	advantage	of	this	scheme	is	that	it	recalls	the	way	we	write	algebraic
equations,	traps	the	somewhat	elusive	notion	of	arithmetical	divisibility	in
a	 compact	 notation,	 and	 suggests	 that	 we	 try	 to	 carry	 over	 to	 arithmetic
(which	is	much	harder	than	algebra)	some	of	the	manipulations	that	lead
to	interesting	results	in	algebra.	For	example	we	can	“add”	equations,	and
we	 find	 that	 congruences	 also	 can	 be	 “added,”	 provided	 the	modulus	 is
the	same	in	all,	to	give	other	congruences.

Let	x	denote	an	unknown	number,	r	and	m	given	numbers,	of	which	r	is
not	divisible	by	m.	Is	there	a	number	x	such	that

x2	≡	r	(mod	m)?

If	there	is,	r	is	called	a	quadratic	residue	of	m,	if	not,	a	quadratic	non-residue	of
m.

If	r	is	a	quadratic	residue	of	m,	then	it	must	be	possible	to	find	at	least
one	 x	 whose	 square	 when	 divided	 by	m	 leaves	 the	 remainder	 r;	 if	 r	 is	 a
quadratic	non-residue	of	m,	then	there	is	no	x	whose	square	when	divided



by	m	 leaves	 the	 remainder	 r.	 These	 are	 immediate	 consequences	 of	 the
preceding	definitions.

To	illustrate:	is	13	a	quadratic	residue	of	17?	If	so,	it	must	be	possible	to
solve	the	congruence

x2	≡	13	(mod	17)

Trying	1,	2,	3,	.	.	.	,	we	find	that	x	*	8,	25,	42,	59,	.	.	.	are	solutions	(82	=	64	=
3	×	17	+	13;	252	=	625	=	36	×	17	+	13;	etc.,)	so	that	IS	is	a	quadratic	residue
of	17.	But	there	is	no	solution	of	x2	≡	5	(mod	17),	so	5	is	a	quadratic	non-
residue	of	17.

It	 is	 now	 natural	 to	 ask	 what	 are	 the	 quadratic	 residues	 and	 non-
residues	of	a	given	m?	Namely,	given	m	in	x2	≡	r	(mod	m),	what	numbers	r
can	appear	and	what	numbers	r	cannot	appear	as	x	 runs	through	all	 the
numbers	1,	2,	3,	.	.	.?

Without	much	difficulty	 it	 can	be	 shown	 that	 it	 is	 sufficient	 to	answer
the	question	when	both	r	and	m	are	restricted	to	be	primes.	So	we	restate
the	problem:	If	p	is	a	given	prime,	what	primes	q	will	make	the	congruence
x2	m	q	(mod	p)	solvable?	This	is	asking	altogether	too	much	in	the	present
state	of	arithmetic.	However,	the	situation	is	not	utterly	hopeless.

There	is	a	beautiful	“reciprocity”	between	the	pair	of	congruences

x2	≡	q	(mod	p),	x2	≡	p	(mod	q),

in	which	both	 of	p,	q	 are	primes:	both	 congruences	 are	 solvable,	 or	both	 are
unsolvable,	unless	both	of	p,	q	 leave	 the	remainder	3	when	divided	by	4,	 in
which	case	one	of	the	congruences	is	solvable	and	the	other	is	not.	This	is	the
law	of	quadratic	reciprocity.

It	was	not	 easy	 to	prove.	 In	 fact	 it	 baffled	Euler	 and	Legendre.	Gauss
gave	 the	 first	 proof	 at	 the	 age	 of	 nineteen.	 As	 this	 reciprocity	 is	 of
fundamental	 importance	in	the	higher	arithmetic	and	in	many	advanced
parts	of	algebra,	Gauss	turned	it	over	and	over	in	his	mind	for	many	years,
seeking	to	find	its	taproot,	until	in	all	he	had	given	six	distinct	proofs,	one
of	 which	 depends	 upon	 the	 straightedge	 and	 compass	 construction	 of
regular	polygons.

A	numerical	 illustration	will	 illuminate	 the	 statement	of	 the	 law.	First,
take	p	=	5,	q	=	13.	Since	both	of	5,	13	leave	the	remainder	1	on	division	by
4,	both	of	x2	≡	13	(mod	5),	x2	≡	5	(mod	13)	must	be	solvable,	or	neither	 is



solvable.	 The	 latter	 is	 the	 case	 for	 this	 pair.	 For	 p	 =	 13,	 q	 =	 17,	 both	 of
which	leave	the	remainder	1	on	division	by	4,	we	get	x2	≡	17	(mod	13),	x2
≡	13	(mod	17),	and	both,	or	neither	again	must	be	solvable.	The	former	is
the	case	here:	the	first	congruence	has	the	solutions	x	=	2,	15,	28,	.	.	.;	the
second	has	the	solutions	x	=	8,	25,	42,	.	.	.	.	There	remains	to	be	tested	only
the	case	when	both	of	p,	q	leave	the	remainder	3	on	division	by	4.	Take	p	=
11,	q	=	19.	Then,	according	to	the	law,	precisely	one	of	x2	≡	19	(mod	11),	x2
≡	11	(mod	19)	must	be	solvable.	The	first	congruence	has	no	solution;	the
second	has	the	solutions	7,	26,	45,	.	.	..

The	mere	discovery	of	such	a	law	was	a	notable	achievement.	That	it	was
first	proved	by	a	boy	of	nineteen	will	suggest	to	anyone	who	tries	to	prove
it	that	Gauss	was	more	than	merely	competent	in	mathematics.

When	Gauss	 left	 the	Caroline	College	 in	October,	 1795	 at	 the	 age	 of
eighteen	 to	 enter	 the	 University	 of	 Göttingen	 he	 was	 still	 undecided
whether	 to	 follow	 mathematics	 or	 philology	 as	 his	 life	 work.	 He	 had
already	 invented	 (when	he	was	 eighteen)	 the	method	of	 “least	 squares,”
which	 today	 is	 indispensable	 in	 geodetic	 surveying,	 in	 the	 reduction	 of
observations	 and	 indeed	 in	 all	work	where	 the	 “most	probable”	 value	of
anything	 that	 is	 measured	 is	 to	 be	 inferred	 from	 a	 large	 number	 of
measurements.	(The	most	probable	value	is	furnished	by	making	the	sum
of	 the	 squares	 of	 the	 “residuals”—roughly,	 divergences	 from	 assumed
exactness—a	 minimum.)	 Gauss	 shares	 this	 honor	 with	 Legendre	 who
published	 the	 method	 independently	 in	 1806.	 This	 work	 was	 the
beginning	 of	Gauss’	 interest	 in	 the	 theory	 of	 errors	 of	 observation.	 The
Gaussian	 law	of	normal	distribution	of	errors	and	 its	accompanying	bell-
shaped	 curve	 is	 familiar	 today	 to	 all	 who	 handle	 statistics,	 from	 high-
minded	intelligence	testers	to	unscrupulous	market	manipulators.

*		*		*

March	30,	1796,	marks	the	turning	point	in	Gauss’	career.	On	that	day,
exactly	 a	 month	 before	 his	 twentieth	 year	 opened,	 Gauss	 definitely
decided	in	favor	of	mathematics.	The	study	of	languages	was	to	remain	a
lifelong	hobby,	but	philology	lost	Gauss	forever	on	that	memorable	day	in
March.

As	has	already	been	told	in	the	chapter	on	Fermat	the	regular	polygon
of	seventeen	sides	was	the	die	whose	lucky	fall	induced	Gauss	to	cross	his



Rubicon.	 The	 same	 day	 Gauss	 began	 to	 keep	 his	 scientific	 diary
(Notizenjournal).	It	is	one	of	the	most	precious	documents	in	the	history	of
mathematics.	The	first	entry	records	his	great	discovery.

The	diary	came	into	scientific	circulation	only	in	1898,	forty	three	years
after	the	death	of	Gauss,	when	the	Royal	Society	of	Göttingen	borrowed	it
from	a	grandson	of	Gauss	 for	 critical	 study.	 It	 consists	of	nineteen	 small
octavo	pages	and	contains	146	extremely	brief	statements	of	discoveries	or
results	of	calculations,	 the	 last	of	which	 is	dated	July	9,	1814.	A	 facsimile
reproduction	was	published	in	1917	in	the	tenth	volume	(part	l)	of	Gauss’
collected	 works,	 together	 with	 an	 exhaustive	 analysis	 of	 its	 contents	 by
several	expert	editors.	Not	all	of	Gauss’	discoveries	 in	 the	prolific	period
from	1796	 to	 1814	 by	 any	means	 are	noted.	But	many	 of	 those	 that	 are
jotted	down	suffice	to	establish	Gauss’	priority	in	fields—elliptic	functions,
for	instance—where	some	of	his	contemporaries	refused	to	believe	he	had
preceded	them.	(Recall	that	Gauss	was	born	in	1777.)

Things	were	buried	 for	 years	or	decades	 in	 this	diary	 that	would	have
made	half	 a	dozen	great	 reputations	had	 they	been	published	promptly.
Some	 were	 never	 made	 public	 during	 Gauss’	 lifetime,	 and	 he	 never
claimed	 in	 anything	he	himself	 printed	 to	have	 anticipated	others	when
they	caught	up	with	him.	But	 the	 record	 stands.	He	did	anticipate	 some
who	doubted	the	word	of	his	 friends.	These	anticipations	were	not	mere
trivialities.	 Some	 of	 them	 became	 major	 fields	 of	 nineteenth	 century
mathematics.

A	few	of	the	entries	indicate	that	the	diary	was	a	strictly	private	affair	of
its	author’s.	Thus	for	July	10,	1796,	there	is	the	entry

ETPHKA!	num	=	Δ	+	Δ	+	Δ.

Translated,	 this	 echoes	 Archimedes’	 exultant	 “Eureka!”	 and	 states	 that
every	 positive	 integer	 is	 the	 sum	 of	 three	 triangular	 numbers—such	 a
number	is	one	of	the	sequence	0,	1,	3,	6,	10,	15,	.	.	.	where	each	(after	0)	is
of	the	form	½n(n	+	l),	n	being	any	positive	integer.	Another	way	of	saying
the	same	thing	is	that	every	number	of	the	form	8n	+	3	is	a	sum	of	three
odd	squares:	3	=	12	+	12	+	12;	11	=	1	+	1	+	32;	19	=	12	+	32	+	32,	etc.	It	is	not
easy	to	prove	this	from	scratch.

Less	 intelligible	 is	 the	 cryptic	 entry	 for	 October	 11,	 1796,	 “Vicimus
GEGAN.”	What	dragon	had	Gauss	conquered	this	time?	Or	what	giant	had



he	overcome	on	April	8,	1799,	when	he	boxes	REV.	GALEN	up	in	a	neat
rectangle?	 Although	 the	meaning	 of	 these	 is	 lost	 forever	 the	 remaining
144	 are	 for	 the	most	 part	 clear	 enough.	One	 in	particular	 is	 of	 the	 first
importance,	as	we	 shall	 see	when	we	come	 to	Abel	and	 Jacobi:	 the	entry
for	March	19,	1797,	 shows	 that	Gauss	had	already	discovered	 the	double
periodicity	 of	 certain	 elliptic	 functions.	 He	 was	 then	 not	 quite	 twenty.
Again,	 a	 later	 entry	 shows	 that	 Gauss	 had	 recognized	 the	 double
periodicity	in	the	general	case.	This	discovery	of	itself,	had	he	published	it,
would	have	made	him	famous.	But	he	never	published	it.

Why	did	Gauss	hold	back	the	great	things	he	discovered?	This	is	easier
to	explain	than	his	genius—if	we	accept	his	own	simple	statements,	which
will	be	reported	presently.	A	more	romantic	version	is	the	story	told	by	W.
W.	 R.	 Ball	 in	 his	 well-known	 history	 of	 mathematics.	 According	 to	 this,
Gauss	submitted	his	first	masterpiece,	the	Disquisitiones	Arithmeticae,	to	the
French	 Academy	 of	 Sciences,	 only	 to	 have	 it	 rejected	 with	 a	 sneer.	 The
undeserved	humiliation	hurt	Gauss	so	deeply	that	he	resolved	thenceforth
to	 publish	 only	 what	 anyone	 would	 admit	 was	 above	 criticism	 in	 both
matter	 and	 form.	 There	 is	 nothing	 in	 this	 defamatory	 legend.	 It	 was
disproved	once	for	all	 in	1935,	when	the	officers	of	the	French	Academy
ascertained	 by	 an	 exhaustive	 search	 of	 the	 permanent	 records	 that	 the
Disquisitiones	 was	 never	 even	 submitted	 to	 the	 Academy,	 much	 less
rejected.

Speaking	for	himself	Gauss	said	that	he	undertook	his	scientific	works
only	 in	 response	 to	 the	 deepest	 promptings	 of	 his	 nature,	 and	 it	 was	 a
wholly	secondary	consideration	to	him	whether	they	were	ever	published
for	 the	 instruction	of	others.	Another	statement	which	Gauss	once	made
to	 a	 friend	 explains	 both	 his	 diary	 and	 his	 slowness	 in	 publication.	 He
declared	that	such	an	overwhelming	horde	of	new	ideas	stormed	his	mind
before	he	was	twenty	that	he	could	hardly	control	them	and	had	time	to
record	 but	 a	 small	 fraction.	 The	 diary	 contains	 only	 the	 final	 brief
statements	 of	 the	 outcome	 of	 elaborate	 investigations,	 some	 of	 which
occupied	him	for	weeks.	Contemplating	as	a	youth	the	close,	unbreakable
chains	 of	 synthetic	 proofs	 in	 which	Archimedes	 and	Newton	had	 tamed
their	 inspirations,	Gauss	resolved	to	follow	their	great	example	and	leave
after	 him	 only	 finished	 works	 of	 art,	 severely	 perfect,	 to	 which	 nothing
could	 be	 added	 and	 from	 which	 nothing	 could	 be	 taken	 away	 without
disfiguring	the	whole.	The	work	itself	must	stand	forth,	complete,	simple,



and	convincing,	with	no	trace	remaining	of	the	labor	by	which	it	had	been
achieved.	A	cathedral	is	not	a	cathedral,	he	said,	till	the	last	scaffolding	is
down	 and	 out	 of	 sight.	 Working	 with	 this	 ideal	 before	 him,	 Gauss
preferred	 to	polish	one	masterpiece	 several	 times	 rather	 than	 to	publish
the	broad	outlines	of	many	as	he	might	easily	have	done.	His	seal,	a	tree
with	but	few	fruits,	bore	the	motto	Pauca	sed	matura	(Few,	but	ripe).

The	 fruits	 of	 this	 striving	 after	 perfection	 were	 indeed	 ripe	 but	 not
always	easily	digestible.	All	traces	of	the	steps	by	which	the	goal	had	been
attained	having	been	obliterated,	it	was	not	easy	for	the	followers	of	Gauss
to	rediscover	 the	road	he	had	 travelled.	Consequently	 some	of	his	works
had	to	wait	for	highly	gifted	interpreters	before	mathematicians	in	general
could	understand	them,	see	their	significance	for	unsolved	problems,	and
go	 ahead.	 His	 own	 contemporaries	 begged	 him	 to	 relax	 his	 frigid
perfection	 so	 that	 mathematics	 might	 advance	 more	 rapidly,	 but	 Gauss
never	 relaxed.	 Not	 till	 long	 after	 his	 death	 was	 it	 known	 how	much	 of
nineteenth-century	 mathematics	 Gauss	 had	 foreseen	 and	 anticipated
before	the	year	1800.	Had	he	divulged	what	he	knew	it	is	quite	possible	that
mathematics	would	now	be	half	 a	 century	or	more	 ahead	of	where	 it	 is.
Abel	 and	 Jacobi	 could	 have	 begun	 where	 Gauss	 left	 off,	 instead	 of
expending	 much	 of	 their	 finest	 effort	 rediscovering	 things	 Gauss	 knew
before	they	were	born,	and	the	creators	of	non-Euclidean	geometry	could
have	turned	their	genius	to	other	things.

Of	himself	Gauss	said	that	he	was	“all	mathematician.”	This	does	him	an
injustice	unless	it	is	remembered	that	“mathematician”	in	his	day	included
also	 what	 would	 now	 be	 termed	 a	 mathematical	 physicist.	 Indeed	 his
second	mottoII

Thou,	nature,	art	my	goddess;	to	thy	laws
My	services	are	bound	.	.	.	,

truly	sums	up	his	life	of	devotion	to	mathematics	and	the	physical	sciences
of	 his	 time.	 The	 “all	mathematician”	 aspect	 of	 him	 is	 to	 be	 understood
only	 in	 the	 sense	 that	 he	 did	 not	 scatter	 his	 magnificent	 endowment
broadcast	 over	 all	 fields	 where	 he	might	 have	 reaped	 abundantly,	 as	 he
blamed	Leibniz	for	doing,	but	cultivated	his	greatest	gift	to	perfection.

The	 three	 years	 (October,	 1795-September,	 1798)	 at	 the	 University	 of
Göttingen	were	the	most	prolific	in	Gauss’	life.	Owing	to	the	generosity	of
the	Duke	Ferdinand	the	young	man	did	not	have	to	worry	about	finances.



He	 lost	 himself	 in	 his	 work,	 making	 but	 few	 friends.	 One	 of	 these,
Wolfgang	Bolyai,	 “the	 rarest	 spirit	 I	 ever	knew,”	as	Gauss	described	him,
was	 to	 become	 a	 friend	 for	 life.	 The	 course	 of	 this	 friendship	 and	 its
importance	in	the	history	of	non-Euclidean	geometry	is	too	long	to	be	told
here;	Wolfgang’s	son	Johann	was	to	retrace	practically	the	same	path	that
Gauss	had	followed	to	the	creation	of	a	non-Euclidean	geometry,	in	entire
ignorance	 that	 his	 father’s	 old	 friend	 had	 anticipated	 him.	 The	 ideas
which	had	overwhelmed	Gauss	since	his	seventeenth	year	were	now	caught
—partly—and	reduced	to	order.	Since	1795	he	had	been	meditating	a	great
work	on	the	theory	of	numbers.	This	now	took	definite	shape,	and	by	1798
the	 Disquisitiones	 Arithmeticae	 (Arithmetical	 Researches)	 was	 practically
completed.

To	 acquaint	 himself	 with	 what	 had	 already	 been	 done	 in	 the	 higher
arithmetic	and	to	make	sure	 that	he	gave	due	credit	 to	his	predecessors,
Gauss	 went	 to	 the	 University	 of	 Helmstedt,	 where	 there	 was	 a	 good
mathematical	 library,	 in	 September,	 1798.	 There	 he	 found	 that	 his	 fame
had	 preceded	 him.	He	 was	 cordially	 welcomed	 by	 the	 librarian	 and	 the
professor	 of	 mathematics,	 Johann	 Friedrich	 Pfaff	 (1765–1825),	 in	 whose
house	 he	 roomed.	 Gauss	 and	 Pfaff	 became	 warm	 friends,	 although	 the
Pfaff	family	saw	but	little	of	their	guest.	Pfaff	evidently	thought	it	his	duty
to	see	that	his	hard-working	young	friend	took	some	exercise,	for	he	and
Gauss	strolled	together	in	the	evenings,	talking	mathematics.	As	Gauss	was
not	only	modest	but	 reticent	about	his	own	work,	Pfaff	probably	did	not
learn	 as	 much	 as	 he	 might	 have.	 Gauss	 admired	 the	 professor
tremendously	 (he	was	 then	 the	best-known	mathematician	 in	Germany),
not	only	for	his	excellent	mathematics,	but	for	his	simple,	open	character.
All	his	life	there	was	but	one	type	of	man	for	whom	Gauss	felt	aversion	and
contempt,	 the	 pretender	 to	 knowledge	 who	 will	 not	 admit	 his	 mistakes
when	he	knows	he	is	wrong.

Gauss	spent	the	autumn	of	1798	(he	was	then	twenty	one)	in	Brunswick,
with	 occasional	 trips	 to	 Helmstedt,	 putting	 the	 finishing	 touches	 to	 the
Disquisitiones.	He	had	hoped	for	early	publication,	but	the	book	was	held
up	 in	 the	press	owing	 to	a	Leipzig	publisher’s	difficulties	 till	September,
1801.	 In	 gratitude	 for	 all	 that	 Ferdinand	 had	 done	 for	 him,	 Gauss
dedicated	 his	 book	 to	 the	 Duke—“Serenissimo	 Principi	 ac	 Domino	 Carolo
Guilielmo	Ferdinando.”



If	 ever	 a	 generous	 patron	 deserved	 the	 homage	 of	 his	 protégé,
Ferdinand	deserved	that	of	Gauss.	When	the	young	genius	was	worried	ill
about	 his	 future	 after	 leaving	 Göttingen—he	 tried	 unsuccessfully	 to	 get
pupils—the	Duke	came	to	his	rescue,	paid	for	the	printing	of	his	doctoral
dissertation	 (University	 of	Helmstedt,	 1799),	 and	 granted	 him	 a	modest
pension	 which	 would	 enable	 him	 to	 continue	 his	 scientific	 work
unhampered	 by	 poverty.	 “Your	 kindness,”	 Gauss	 says	 in	 his	 dedication,
“freed	me	 from	all	 other	 responsibilities	 and	enabled	me	 to	 assume	 this
exclusively.”

*		*		*

Before	 describing	 the	Disquisitiones	 we	 shall	 glance	 at	 the	 dissertation
for	 which	 Gauss	 was	 awarded	 his	 doctor’s	 degree	 in	 absentia	 by	 the
University	 of	 Helmstedt	 in	 1799:	 Demonstratio	 nova	 theorematis	 omnem
functionem	 algebraicam	 rationalem	 integram	 unius	 variabilis	 in	 factores	 reales
primi	 vel	 secundi	 gradus	 revolvi	 posse	 (A	 New	 Proof	 that	 Every	 Rational
Integral	Function	of	One	Variable	Can	Be	Resolved	 into	Real	Factors	of
the	First	or	Second	Degree).

There	is	only	one	thing	wrong	with	this	landmark	in	algebra.	The	first
two	 words	 in	 the	 title	 would	 imply	 that	 Gauss	 had	merely	 added	 a	 new
proof	 to	 others	 already	 known.	He	 should	have	 omitted	 “nova.”	His	was
the	 first	 proof.	 (This	 assertion	 will	 be	 qualified	 later.)	 Some	 before	 him
had	published	what	 they	 supposed	were	proofs	 of	 this	 theorem—usually
called	 the	 fundamental	 theorem	 of	 algebra—but	 none	 had	 attained	 a
proof.	 With	 his	 uncompromising	 demand	 for	 logical	 and	 mathematical
rigor	Gauss	insisted	upon	a	proof,	and	gave	the	first.	Another,	equivalent,
statement	 of	 the	 theorem	 says	 that	 every	 algebraic	 equation	 in	 one
unknown	has	a	root,	an	assertion	which	beginners	often	take	for	granted
as	being	true	without	having	the	remotest	conception	of	what	it	means.

If	 a	 lunatic	 scribbles	 a	 jumble	 of	 mathematical	 symbols	 it	 does	 not
follow	that	the	writing	means	anything	merely	because	to	the	inexpert	eye
it	 is	 indistinguishable	 from	 higher	 mathematics.	 It	 is	 just	 as	 doubtful
whether	 the	 assertion	 that	 every	 algebraic	 equation	 has	 a	 root	 means
anything	until	we	say	what	sort	of	a	root	the	equation	has.	Vaguely,	we	feel
that	a	number	will	“satisfy”	the	equation	but	that	half	a	pound	of	butter	will
not.



Gauss	 made	 this	 feeling	 precise	 by	 proving	 that	 all	 the	 roots	 of	 any
algebraic	equation	are	“numbers”	of	 the	 form	a	+	 bi,	where	a,	b	 are	 real
numbers	(the	numbers	that	correspond	to	the	distances,	positive,	zero,	or
negative,	measured	from	a	fixed	point	O	on	a	given	straight	line,	as	on	the
x-axis	in	Descartes’	geometry),	and	i	is	the	square	root	of	−1.	The	new	sort
of	“number”	a	+	bi	is	called	complex.

Incidentally,	Gauss	was	 one	 of	 the	 first	 to	 give	 a	 coherent	 account	 of
complex	numbers	and	to	interpret	them	as	labelling	the	points	of	a	plane,
as	is	done	today	in	elementary	textbooks	on	algebra.

The	Cartesian	coordinates	of	P	are	(a,	b);	the	point	P	is	also	labelled	a	+
bi.	 Thus	 to	 every	 point	 of	 the	 plane	 corresponds	 precisely	 one	 complex
number;	 the	 numbers	 corresponding	 to	 the	 points	 on	 XOX’	 are	 “real,”
those	on	YOY’	“pure	imaginary”	(they	are	all	of	the	type	ic,	where	c	is	a	real
number).

The	word	“imaginary”	is	the	great	algebraical	calamity,	but	it	is	too	well
established	 for	 mathematicians	 to	 eradicate.	 It	 should	 never	 have	 been
used.	 Books	 on	 elementary	 algebra	 give	 a	 simple	 interpretation	 of
imaginary	 numbers	 in	 terms	 of	 rotations.	 Thus	 if	 we	 interpret	 the
multiplication	i	×	c,	where	c	is	real,	as	a	rotation	about	O	of	the	segment	Oc
through	one	right	angle,	Oc	is	rotated	onto	0Y;	another	multiplication	by



z,	namely	i	×	i	X	c,	rotates	Oc	through	another	right	angle,	and	hence	the
total	effect	is	to	rotate	Oc	through	two	right	angles,	so	that	+Oc	becomes	—
Oc.	 As	 an	 operation,	 multiplication	 by	 i	 ×	 i	 has	 the	 same	 effect	 as
multiplication	by	−1;	multiplication	by	 i	has	 the	same	effect	as	a	rotation
through	a	right	angle,	and	these	interpretations	(as	we	have	just	seen)	are
consistent.	If	we	like	we	may	now	write	i	×	i	=	−1,	in	operations,	or	i2	=	−1;
so	 that	 the	operation	of	 rotation	 through	a	 right	angle	 is	 symbolized	by	

All	 this	 of	 course	 proves	 nothing.	 It	 is	 not	meant	 to	 prove	 anything.
There	 is	 nothing	 to	 be	 proved;	 we	 assign	 to	 the	 symbols	 and	 operations	 of
algebra	any	meanings	 whatever	 that	 will	 lead	 to	 consistency.	 Although	 the
interpretation	by	means	of	rotations	proves	nothing,	it	may	suggest	that	there
is	 no	 occasion	 for	 anyone	 to	 muddle	 himself	 into	 a	 state	 of	 mystic
wonderment	over	nothing	about	the	grossly	misnamed	“imaginaries.”	For
further	 details	 we	 must	 refer	 to	 almost	 any	 Schoolbook	 on	 elementary
algebra.

Gauss	thought	the	theorem	that	every	algebraic	equation	has	a	root	in
the	sense	just	explained	so	important	that	he	gave	four	distinct	proofs,	the
last	 when	 he	 was	 seventy	 years	 old.	 Today	 some	 would	 transfer	 the
theorem	 from	 algebra	 (which	 restricts	 itself	 to	 processes	 that	 can	 be
carried	 through	 in	 a	 finite	 number	 of	 steps)	 to	 analysis.	 Even	 Gauss
assumed	 that	 the	graph	of	a	polynomial	 is	a	continuous	curve	and	 that	 if
the	 polynomial	 is	 of	 odd	 degree	 the	 graph	 must	 cross	 the	 axis	 at	 least
once.	To	any	beginner	in	algebra	this	is	obvious.	But	today	it	is	not	obvious
without	 proof,	 and	 attempts	 to	 prove	 it	 again	 lead	 to	 the	 difficulties
connected	 with	 continuity	 and	 the	 infinite.	 The	 roots	 of	 so	 simple	 an
equation	as	x2	−2	=	0	cannot	be	computed	exactly	in	any	finite	number	of
steps.	 More	 will	 be	 said	 about	 this	 when	 we	 come	 to	 Kronecker.	 We
proceed	now	to	the	Disquisitiones	Arithmeticae.

The	 Disquisitiones	 was	 the	 first	 of	 Gauss’	 masterpieces	 and	 by	 some
considered	 his	 greatest.	 It	 was	 his	 farewell	 to	 pure	 mathematics	 as	 an
exclusive	 interest.	 After	 its	 publication	 in	 1801	 (Gauss	 was	 then	 twenty
four),	 he	 broadened	 his	 activity	 to	 include	 astronomy,	 geodesy,	 and
electromagnetism	 in	 both	 their	 mathematical	 and	 practical	 aspects.	 But
arithmetic	was	his	first	love,	and	he	regretted	in	later	life	that	he	had	never
found	 the	 time	 to	 write	 the	 second	 volume	 he	 had	 planned	 as	 a	 young



man.	The	book	is	 in	seven	“sections.”	There	was	to	have	been	an	eighth,
but	this	was	omitted	to	keep	down	the	cost	of	printing.

The	opening	sentence	of	the	preface	describes	the	general	scope	of	the
book.	 “The	 researches	 contained	 in	 this	 work	 appertain	 to	 that	 part	 of
mathematics	 which	 is	 concerned	 with	 integral	 numbers,	 also	 fractions,
surds	[irrationals]	being	always	excluded.”

The	 first	 three	 sections	 treat	 the	 theory	 of	 congruences	 and	 give	 in
particular	an	exhaustive	discussion	of	the	binomial	congruence	xn	m	A	(mod
p),	where	the	given	integers	n,	A	are	arbitrary	and	p	is	prime;	the	unknown
integer	 is	 x.	 This	 beautiful	 arithmetical	 theory	 has	many	 resemblances	 to
the	corresponding	algebraic	 theory	of	the	binomial	equation	xn	=	A,	but	 in
its	peculiarly	arithmetical	parts	 is	 incomparably	richer	and	more	difficult
than	the	algebra	which	offers	no	analogies	to	the	arithmetic.

In	 the	 fourth	section	Gauss	develops	 the	 theory	of	quadratic	 residues.
Here	is	found	the	first	published	proof	of	the	law	of	quadratic	reciprocity.
The	proof	is	by	an	amazing	application	of	mathematical	induction	and	is
as	tough	a	specimen	of	that	ingenious	logic	as	will	be	found	anywhere.

With	 the	 fifth	 section	 the	 theory	 of	 binary	 quadratic	 forms	 from	 the
arithmetical	 point	 of	 view	 enters,	 to	 be	 accompanied	 presently	 by	 a
discussion	of	ternary	quadratic	 forms	which	are	found	to	be	necessary	 for
the	completion	of	the	binary	theory.	The	law	of	quadratic	reciprocity	plays
a	fundamental	part	in	these	difficult	enterprises.	For	the	first	forms	named
the	 general	 problem	 is	 to	 discuss	 the	 solution	 in	 integers	 x,	 y	 of	 the
indeterminate	equation

ax2	+	2bxy	+	cy2	=	m,

where	a,	b,	c,	m	are	any	given	integers;	for	the	second,	the	integer	solutions
x,	y,	z	of

ax2	+	2bxy	+	cy2	+	2dxz	+	2eyz	+fz2	=	m,

where	 a,	 6,	 c,	 d,	 e,	 f,	 m,	 are	 any	 given	 integers,	 are	 the	 subject	 of
investigation.	An	easy-looking	but	hard	question	in	this	field	is	to	impose
necessary	and	sufficient	restrictions	upon	a,	 c,	 f,	m	which	will	ensure	 the
existence	of	a	solution	in	integers	x,	y,	z	of	the	indeterminate	equation

ax2	+	cy2	+	fz2	=	m.



The	sixth	section	applies	the	preceding	theory	to	various	special	cases,
for	example	the	integer	solutions	x,	y	of	mx2	+	ny2	=	A,	where	m,	n,	A	are
any	given	integers.

In	the	seventh	and	last	section,	which	many	consider	the	crown	of	the
work,	Gauss	applies	the	preceding	developments,	particularly	the	theory	of
binomial	congruences,	to	a	wonderful	discussion	of	the	algebraic	equation
xn	=	1,	where	n	is	any	given	integer,	weaving	together	arithmetic,	algebra,
and	geometry	into	one	perfect	pattern.	The	equation	xn	=	1	is	the	algebraic
formulation	of	the	geometric	problem	to	construct	a	regular	polygon	of	n
sides,	or	to	divide	the	circumference	of	a	circle	into	n	equal	parts	(consult
any	 secondary	 text	 book	 on	 algebra	 or	 trigonometry);	 the	 arithmetical
congruence	xM	≡	1	(mod	p),	where	m,	p	are	given	integers,	and	p	is	prime,	is
the	thread	which	runs	through	the	algebra	and	the	geometry	and	gives	the
pattern	 its	 simple	meaning.	This	 flawless	work	 of	 art	 is	 accessible	 to	 any
student	 who	 has	 had	 the	 usual	 algebra	 offered	 in	 school,	 but	 the
Disquisitiones	 is	 not	 recommended	 for	 beginners	 (Gauss’	 concise
presentation	 has	 been	 reworked	 by	 later	 writers	 into	 a	 more	 readily
assimilable	form).

Many	 parts	 of	 all	 this	 had	 been	 done	 otherwise	 before—by	 Fermat,
Euler,	Lagrange,	Legendre	and	others;	but	Gauss	treated	the	whole	from
his	 individual	 point	 of	 view,	 added	much	 of	 his	 own,	 and	 deduced	 the
isolated	 results	 of	 his	 predecessors	 from	 his	 general	 formulations	 and
solutions	of	the	relevant	problems.	For	example,	Fermat’s	beautiful	result
that	every	prime	of	the	form	4n	+	1	is	a	sum	of	two	squares,	and	is	such	a
sum	 in	 only	 one	 way,	 which	 Fermat	 proved	 by	 his	 difficult	 method	 of
“infinite	 descent,”	 falls	 out	 naturally	 from	 Gauss’	 general	 discussion	 of
binary	quadratic	forms.

“The	Disquisitiones	Arithmeticae	 have	 passed	 into	 history,”	Gauss	 said	 in
his	 old	 age,	 and	 he	 was	 right.	 A	 new	 direction	 was	 given	 to	 the	 higher
arithmetic	 with	 the	 publication	 of	 the	 Disquisitiones,	 and	 the	 theory	 of
numbers,	which	in	the	seventeenth	and	eighteenth	centuries	had	been	a
miscellaneous	 aggregation	 of	 disconnected	 special	 results,	 assumed
coherence	and	rose	to	the	dignity	of	a	mathematical	science	on	a	par	with
algebra,	analysis,	and	geometry.

The	 work	 itself	 has	 been	 called	 a	 “book	 of	 seven	 seals.”	 It	 is	 hard
reading,	 even	 for	 experts,	 but	 the	 treasures	 it	 contains	 and	 (partly
conceals)	 in	its	concise,	synthetic	demonstrations	are	now	available	to	all



who	wish	 to	 share	 them,	 largely	 the	 result	of	 the	 labors	of	Gauss’	 friend
and	disciple	Peter	Gustav	Lejeune	Dirichlet	 (18051859),	who	 first	 broke
the	seven	seals.

Competent	 judges	 recognized	 the	 masterpiece	 for	 what	 it	 was
immediately.	 LegendreIII	 at	 first	 may	 have	 been	 inclined	 to	 think	 that
Gauss	 had	done	him	but	 scant	 justice.	 But	 in	 the	preface	 to	 the	 second
edition	 of	 his	 own	 treatise	 on	 the	 theory	 of	 numbers	 (1808),	 which	 in
large	part	was	superseded	by	the	Disquisitiones,	he	is	enthusiastic.	Lagrange
also	praised	unstintedly.	Writing	to	Gauss	on	May	31,	1804	he	says	“Your
Disquisitiones	 have	 raised	 you	 at	 once	 to	 the	 rank	 of	 the	 first
mathematicians,	 and	 I	 regard	 the	 last	 section	 as	 containing	 the	 most
beautiful	 analytical	 discovery	 that	 has	 been	 made	 for	 a	 long	 time.	 .	 .	 .
Believe,	sir,	that	no	one	applauds	your	success	more	sincerely	than	I.”

Hampered	 by	 the	 classic	 perfection	 of	 its	 style	 the	 Disquisitiones	 was
somewhat	slow	of	assimilation,	and	when	finally	gifted	young	men	began
studying	 the	work	deeply	 they	were	unable	 to	purchase	 copies,	owing	 to
the	bankruptcy	of	 a	bookseller.	Even	Eisenstein,	Gauss’	 favorite	disciple,
never	owned	a	copy.	Dirichlet	was	more	fortunate.	His	copy	accompanied
him	on	all	his	travels,	and	he	slept	with	it	under	his	pillow.	Before	going	to
bed	 he	 would	 struggle	 with	 some	 tough	 paragraph	 in	 the	 hope—
frequently	fulfilled—that	he	would	wake	up	in	the	night	to	find	that	a	re-
reading	 made	 everything	 clear.	 To	 Dirichlet	 is	 due	 the	 marvellous
theorem,	mentioned	 in	 connection	 with	 Fermat,	 that	 every	 arithmetical
progression

a,	a	+	b,	a	+	2b,	a	+	3b,	a	+	4b,	.	.	.	,

in	which	a,	b	are	integers	with	no	common	divisor	greater	than	1,	contains
an	infinity	of	primes.	This	was	proved	by	analysis,	in	itself	a	miracle,	for	the
theorem	concerns	integers,	whereas	analysis	deals	with	the	continuous,	the
non-integral.

Dirichlet	did	much	more	in	mathematics	than	his	amplification	of	the
Disquisitiones,	but	we	shall	not	have	space	to	discuss	his	 life.	Neither	shall
we	have	 space	 (unfortunately)	 for	 Eisenstein,	 one	 of	 the	 brilliant	 young
men	of	the	early	nineteenth	century	who	died	before	their	time	and,	what
is	incomprehensible	to	most	mathematicians,	as	the	man	of	whom	Gauss	is
reported	 to	 have	 said,	 “There	 have	 been	 but	 three	 epoch-making



mathematicians,	Archimedes,	Newton,	 and	Eisenstein.”	 If	Gauss	ever	did
say	this	(it	is	impossible	to	check)	it	deserves	attention	merely	because	he
said	it,	and	he	was	a	man	who	did	not	speak	hastily.

Before	 leaving	 this	 field	 of	Gauss’	 activities	 we	may	 ask	 why	 he	 never
tackled	 Fermat’s	 Last	 Theorem.	He	 gives	 the	 answer	 himself.	 The	 Paris
Academy	in	1816	proposed	the	proof	(or	disproof)	of	 the	theorem	as	 its
prize	problem	for	the	period	1816-18.	Writing	from	Bremen	on	March	7,
1816,	Olbers	 tries	 to	entice	Gauss	 into	competing:	“It	 seems	right	 to	me,
dear	Gauss,	that	you	should	get	busy	about	this.”

But	 “dear	 Gauss”	 resisted	 the	 tempter.	 Replying	 two	 weeks	 later	 he
states	his	opinion	of	Fermat’s	Last	Theorem.	“I	am	very	much	obliged	for
your	news	concerning	the	Paris	prize.	But	I	confess	that	Fermat’s	Theorem
as	an	 isolated	proposition	has	 very	 little	 interest	 for	me,	because	 I	 could
easily	lay	down	a	multitude	of	such	propositions,	which	one	could	neither
prove	nor	dispose	of.”

Gauss	goes	on	to	say	that	the	question	has	induced	him	to	recall	some
of	 his	 old	 ideas	 for	 a	 great	 extension	 of	 the	 higher	 arithmetic.	 This
doubtless	 refers	 to	 the	 theory	 of	 algebraic	 numbers	 (described	 in	 later
chapters)	 which	 Kummer,	 Dedekind,	 and	 Kronecker	 were	 to	 develop
independently.	But	the	theory	Gauss	has	in	mind	is	one	of	those	things,	he
declares,	 where	 it	 is	 impossible	 to	 foresee	 what	 progress	 shall	 be	 made
toward	 a	 distant	 goal	 that	 is	 only	 dimly	 seen	 through	 the	 darkness.	 For
success	 in	 such	 a	 difficult	 search	 one’s	 lucky	 star	 must	 be	 in	 the
ascendency,	 and	 Gauss’	 circumstances	 are	 now	 such	 that,	 what	 with	 his
numerous	distracting	occupations,	he	is	unable	to	give	himself	up	to	such
meditations,	as	he	did	“in	the	fortunate	years	1796-1798	when	I	shaped	the
main	points	of	the	Disquisitiones	Arithmeticae.	Still	 I	am	convinced	that	 if	 I
am	as	lucky	as	I	dare	hope,	and	if	I	succeed	in	taking	some	of	the	principal
steps	in	that	theory,	then	Fermat’s	Theorem	will	appear	as	only	one	of	the
least	interesting	corollaries.”

Probably	all	mathematicians	today	regret	that	Gauss	was	deflected	from
his	march	through	the	darkness	by	“a	couple	of	clods	of	dirt	which	we	call
planets”—his	own	words—which	shone	out	unexpectedly	in	the	night	sky
and	 led	 him	 astray.	 Lesser	 mathematicians	 than	 Gauss—Laplace	 for
instance—might	have	done	all	 that	Gauss	did	 in	computing	the	orbits	of
Ceres	 and	 Pallas,	 even	 if	 the	 problem	 was	 of	 a	 sort	 which	 Newton	 said
belonged	 to	 the	 most	 difficult	 in	 mathematical	 astronomy.	 But	 the



brilliant	success	of	Gauss	in	these	matters	brought	him	instant	recognition
as	the	first	mathematician	in	Europe	and	thereby	won	him	a	comfortable
position	 where	 he	 could	 work	 in	 comparative	 peace;	 so	 perhaps	 those
wretched	lumps	of	dirt	were	after	all	his	lucky	stars.

*		*		*

The	 second	great	 stage	 in	Gauss’	 career	began	on	 the	 first	day	of	 the
nineteenth	century,	also	a	red-letter	day	in	the	histories	of	philosophy	and
astronomy.	Since	1781	when	Sir	William	Herschel	(17381822)	discovered
the	planet	Uranus,	thus	bringing	the	number	of	planets	then	known	up	to
the	 philosophically	 satisfying	 seven,	 astronomers	 had	 been	 diligently
searching	 the	 heavens	 for	 further	 members	 of	 the	 Sun’s	 family,	 whose
existence	was	to	be	expected,	according	to	Bode’s	law,	between	the	orbits
of	Mars	 and	 Jupiter.	 The	 search	 was	 fruitless	 till	 Giuseppe	 Piazzi	 (1746-
1826)	of	Palermo,	on	the	opening	day	of	the	nineteenth	century,	observed
what	he	at	first	mistook	for	a	small	comet	approaching	the	Sun,	but	which
was	presently	recognized	as	a	new	planet—later	named	Ceres,	the	first	of
the	swarm	of	minor	planets	known	today.

By	 one	 of	 the	 most	 ironic	 verdicts	 ever	 delivered	 in	 the	 agelong
litigation	of	fact	versus	speculation,	the	discovery	of	Ceres	coincided	with
the	 publication	 by	 the	 famous	 philosopher	 Georg	 Wilhelm	 Friedrich
Hegel	(1770–1831)	of	a	sarcastic	attack	on	astronomers	for	presuming	to
search	 for	 an	 eighth	 planet.	 Would	 they	 but	 pay	 some	 attention	 to
philosophy,	Hegel	asserted,	 they	must	 see	 immediately	 that	 there	can	be
precisely	 seven	 planets,	 no	 more,	 no	 less.	 Their	 search	 therefore	 was	 a
stupid	waste	of	time.	Doubtless	this	slight	lapse	on	Hegel’s	part	has	been
satisfactorily	explained	by	his	disciples,	but	 they	have	not	yet	 talked	away
the	hundreds	of	minor	planets	which	mock	his	Jovian	ban.

It	will	be	of	interest	here	to	quote	what	Gauss	thought	of	philosophers
who	busy	themselves	with	scientific	matters	they	have	not	understood.	This
holds	 in	 particular	 for	 philosophers	 who	 peck	 at	 the	 foundations	 of
mathematics	without	having	first	sharpened	their	dull	beaks	on	some	hard
mathematics.	Conversely,	 it	suggests	why	Bertrand	A.	W.	Russell	(1872-	),
Alfred	North	Whitehead	 (1861)	 and	David	Hilbert	 (1862-	 )	 in	 our	 own
times	 have	 made	 outstanding	 contributions	 to	 the	 philosophy	 of
mathematics:	these	men	are	mathematicians.



Writing	 to	 his	 friend	 Schumacher	 on	 November	 1,	 1844,	 Gauss	 says
“You	 see	 the	 same	 sort	 of	 thing	 [mathematical	 incompetence]	 in	 the
contemporary	 philosophers	 Schelling,	 Hegel,	 Nees	 von	 Essenbeck,	 and
their	 followers;	 don’t	 they	 make	 your	 hair	 stand	 on	 end	 with	 their
definitions?	Read	in	the	history	of	ancient	philosophy	what	the	big	men	of
that	 day—Plato	 and	 others	 (I	 except	 Aristotle)—gave	 in	 the	 way	 of
explanations.	But	even	with	Kant	himself	it	is	often	not	much	better;	in	my
opinion	his	distinction	between	analytic	and	synthetic	propositions	is	one
of	 those	 things	 that	 either	 run	 out	 in	 a	 triviality	 or	 are	 false.”	When	 he
wrote	this	(1844)	Gauss	had	long	been	in	full	possession	of	non-Euclidean
geometry,	 itself	 a	 sufficient	 refutation	 of	 some	 of	 the	 things	 Kant	 said
about	“space”	and	geometry,	and	he	may	have	been	unduly	scornful.

It	must	not	be	 inferred	 from	 this	 isolated	example	 concerning	purely
mathematical	technicalities	that	Gauss	had	no	appreciation	of	philosophy.
He	had.	All	philosophical	advances	had	a	great	charm	for	him,	although
he	 often	 disapproved	 of	 the	 means	 by	 which	 they	 had	 been	 attained.
“There	are	problems,”	he	said	once,	“to	whose	solution	I	would	attach	an
infinitely	 greater	 importance	 than	 to	 those	of	mathematics,	 for	 example
touching	ethics,	or	our	relation	to	God,	or	concerning	our	destiny	and	our
future;	but	their	solution	lies	wholly	beyond	us	and	completely	outside	the
province	of	science.”

Ceres	was	a	disaster	for	mathematics.	To	understand	why	she	was	taken
with	 such	 devastating	 seriousness	 by	 Gauss	 we	must	 remember	 that	 the
colossal	 figure	 of	 Newton—dead	 for	 more	 than	 seventy	 years—still
overshadowed	 mathematics	 in	 1801.	 The	 “great”	 mathematicians	 of	 the
time	 were	 those	 who,	 like	 Laplace,	 toiled	 to	 complete	 the	 Newtonian
edifice	 of	 celestial	 mechanics.	 Mathematics	 was	 still	 confused	 with
mathematical	physics—such	as	it	was	then—and	mathematical	astronomy.
The	 vision	of	mathematics	 as	 an	 autonomous	 science	which	Archimedes
saw	in	the	third	century	before	Christ	had	been	lost	sight	of	in	the	blaze	of
Newton’s	 splendor,	and	 it	was	not	until	 the	youthful	Gauss	again	caught
the	vision	that	mathematics	was	acknowledged	as	a	science	whose	first	duty
is	 to	 itself.	 But	 that	 insignificant	 clod	 of	 dirt,	 the	 minor	 planet	 Ceres,
seduced	his	unparalleled	 intellect	when	he	was	 twenty	 four	 years	of	 age,
just	as	he	was	getting	well	into	his	stride	in	those	untravelled	wildernesses
which	were	to	become	the	empire	of	modern	mathematics.



Ceres	 was	 not	 alone	 to	 blame.	 The	 magnificent	 gift	 for	 mental
arithmetic	 whose	 empirical	 discoveries	 had	 given	 mathematics	 the
Disquisitiones	Arithmeticae	also	played	a	fatal	part	in	the	tragedy.	His	friends
and	his	 father,	 too,	were	 impatient	with	 the	young	Gauss	 for	not	 finding
some	lucrative	position	now	that	the	Duke	had	educated	him	and,	having
no	 conception	 of	 the	 nature	 of	 the	work	which	made	 the	 young	man	 a
silent	 recluse,	 thought	him	deranged.	Here	now	at	 the	dawn	of	 the	new
century	the	opportunity	which	Gauss	had	lacked	was	thrust	at	him.

A	 new	 planet	 had	 been	 discovered	 in	 a	 position	 which	 made	 it
extraordinarily	 difficult	 of	 observation.	 To	 compute	 an	 orbit	 from	 the
meager	 data	 available	 was	 a	 task	 which	 might	 have	 exercised	 Laplace
himself.	 Newton	 had	 declared	 that	 such	 problems	 are	 among	 the	 most
difficult	 in	 mathematical	 astronomy.	 The	 mere	 arithmetic	 necessary	 to
establish	an	orbit	with	accuracy	sufficient	to	ensure	that	Ceres	on	her	whirl
round	 the	 sun	 should	 not	 be	 lost	 to	 telescopes	 might	 well	 deter	 an
electrically-driven	calculating	machine	even	today;	but	 to	 the	young	man
whose	 inhuman	 memory	 enabled	 him	 to	 dispense	 with	 a	 table	 of
logarithms	when	he	was	hard	pressed	or	too	lazy	to	reach	for	one,	all	this
endless	arithmetic—logistica,	not	arithmetica—was	the	sport	of	an	infant.

Why	 not	 indulge	 his	 dear	 vice,	 calculate	 as	 he	 had	 never	 calculated
before,	produce	the	difficult	orbit	to	the	sincere	delight	and	wonderment
of	the	dictators	of	mathematical	fashion	and	thus	make	it	possible,	a	year
hence,	for	patient	astronomers	to	rediscover	Ceres	in	the	place	where	the
Newtonian	 law	of	gravitation	decreed	 that	 she	must	 be	 found—if	 the	 law
were	 indeed	 a	 law	 of	 nature?	Why	 not	 do	 all	 this,	 turn	 his	 back	 on	 the
insubstantial	 vision	 of	 Archimedes	 and	 forget	 his	 own	 unsurpassed
discoveries	 which	 lay	 waiting	 for	 development	 in	 his	 diary?	Why	 not,	 in
short,	 be	 popular?	 The	 Duke’s	 generosity,	 always	 ungrudged,	 had
nevertheless	 wounded	 the	 young	 man’s	 pride	 in	 its	 most	 secret	 place;
honor,	recognition,	acceptance	as	a	“great”	mathematician	in	the	fashion
of	the	time	with	its	probable	sequel	of	financial	 independence—all	these
were	now	within	his	easy	reach.	Gauss,	 the	mathematical	god	of	all	 time,
stretched	forth	his	hand	and	plucked	the	Dead	Sea	fruits	of	a	cheap	fame
in	his	own	young	generation.

For	nearly	twenty	years	the	sublime	dreams	whose	fugitive	glimpses	the
boyish	Gauss	had	pictured	with	unrestrained	joy	in	his	diary	lay	cold	and
all	but	forgotten.	Ceres	was	rediscovered,	precisely	where	the	marvellously



ingenious	and	detailed	calculations	of	the	young	Gauss	had	predicted	she
must	be	 found.	Pallas,	Vesta,	and	 Juno,	 insignificant	 sister	planets	of	 the
diminutive	 Ceres	 were	 quickly	 picked	 up	 by	 prying	 telescopes	 defying
Hegel,	 and	 their	 orbits,	 too,	 were	 found	 to	 conform	 to	 the	 inspired
calculations	of	Gauss.	Computations	which	would	have	taken	Euler	three
days	to	perform—one	such	is	sometimes	said	to	have	blinded	him—were
now	 the	 simple	exercises	of	a	 few	 laborious	hours.	Gauss	had	prescribed
the	method,	the	routine.	The	major	part	of	his	own	time	for	nearly	twenty
years	was	devoted	to	astronomical	calculations.

But	 even	 such	 deadening	work	 as	 this	 could	 not	 sterilize	 the	 creative
genius	of	 a	Gauss.	 In	1809	he	published	his	 second	masterpiece,	Theoria
motus	 corporum	 coelestium	 in	 sectionibus	 conicis	 solem	 ambientium	 (Theory	 of
the	 Motion	 of	 the	 Heavenly	 Bodies	 Revolving	 round	 the	 Sun	 in	 Conic
Sections),	 in	 which	 an	 exhaustive	 discussion	 of	 the	 determination	 of
planetary	 and	 cometary	 orbits	 from	 observational	 data,	 including	 the
difficult	analysis	of	perturbations,	lays	down	the	law	which	for	many	years
is	to	dominate	computational	and	practical	astronomy.	It	was	great	work,
but	not	as	great	as	Gauss	was	easily	capable	of	had	he	developed	the	hints
lying	 neglected	 in	 his	 diary.	 No	 essentially	 new	 discovery	 was	 added	 to
mathematics	by	the	Theoria	motus.

Recognition	came	with	spectacular	promptness	after	the	rediscovery	of
Ceres.	Laplace	hailed	 the	young	mathematician	at	once	as	an	equal	and
presently	 as	 a	 superior.	 Some	 time	 later	when	 the	Baron	Alexander	 von
Humboldt	(1769-1859),	the	famous	traveller	and	amateur	of	the	sciences,
asked	Laplace	who	was	 the	greatest	mathematician	 in	Germany,	Laplace
replied	 “Pfaff.”	 “But	 what	 about	 Gauss?”	 the	 astonished	 Von	 Humboldt
asked,	 as	 he	 was	 backing	 Gauss	 for	 the	 position	 of	 director	 at	 the
Göttingen	 observatory.	 “Oh,”	 said	 Laplace,	 “Gauss	 is	 the	 greatest
mathematician	in	the	world.”

The	decade	following	the	Ceres	episode	was	rich	in	both	happiness	and
sorrow	for	Gauss.	He	was	not	without	detractors	even	at	that	early	stage	of
his	 career.	Eminent	men	who	had	 the	 ear	 of	 the	polite	public	 ridiculed
the	young	man	of	twenty	four	for	wasting	his	time	on	so	useless	a	pastime
as	the	computation	of	a	minor	planet’s	orbit.	Ceres	might	be	the	goddess
of	 the	 fields,	but	 it	was	obvious	 to	 the	merry	wits	 that	no	corn	grown	on
the	 new	 planet	 would	 ever	 find	 its	 way	 into	 the	 Brunswick	market	 of	 a
Saturday	afternoon.	No	doubt	they	were	right,	but	they	also	ridiculed	him



in	 the	 same	 way	 thirty	 years	 later	 when	 he	 laid	 the	 foundations	 of	 the
mathematical	 theory	 of	 electromagnetism	 and	 invented	 the	 electric
telegraph.	Gauss	let	them	enjoy	their	jests.	He	never	replied	publicly,	but
in	private	 expressed	his	 regret	 that	men	of	honor	 and	priests	of	 science
could	 stultify	 themselves	by	being	 so	petty.	 In	 the	meantime	he	went	on
with	 his	 work,	 grateful	 for	 the	 honors	 the	 learned	 societies	 of	 Europe
showered	on	him	but	not	going	out	of	his	way	to	invite	them.

The	Duke	of	Brunswick	increased	the	young	man’s	pension	and	made
it	possible	for	him	to	marry	(October	9,	1805)	at	the	age	of	twenty	eight.
The	 lady	was	 Johanne	Osthof	of	Brunswick.	Writing	 to	his	old	university
friend,	 Wolfgang	 Bolyai,	 three	 days	 after	 he	 became	 engaged,	 Gauss
expresses	his	unbelievable	happiness.	 “Life	 stands	 still	before	me	 like	an
eternal	spring	with	new	and	brilliant	colors.”

Three	children	were	born	of	this	marriage:	Joseph,	Minna,	and	Louis,
the	 first	 of	 whom	 is	 said	 to	 have	 inherited	 his	 father’s	 gift	 for	 mental
calculations.	Johanne	died	on	October	11,	1809,	after	the	birth	of	Louis,
leaving	her	young	husband	desolate.	His	eternal	spring	turned	to	winter.
Although	 he	married	 again	 the	 following	 year	 (August	 4,	 1810)	 for	 the
sake	of	his	 young	children	 it	was	 long	before	Gauss	 could	 speak	without
emotion	 of	 his	 first	 wife.	 By	 the	 second	 wife,	Minna	Waldeck,	 who	 had
been	a	close	friend	of	the	first,	he	had	two	sons	and	a	daughter.

According	 to	 gossip	 Gauss	 did	 not	 get	 on	 well	 with	 his	 sons,	 except
possibly	the	gifted	Joseph	who	never	gave	his	father	any	trouble.	Two	are
said	to	have	run	away	from	home	and	gone	to	the	United	States.	As	one	of
these	sons	is	said	to	have	left	numerous	descendants	still	living	in	America,
it	 is	 impossible	 to	 say	 anything	 further	 here,	 except	 that	 one	 of	 the
American	sons	became	a	prosperous	merchant	in	St.	Louis	in	the	days	of
the	 river	 boats;	 both	 first	 were	 farmers	 in	 Missouri.	 With	 his	 daughters
Gauss	 was	 always	 happy.	 An	 exactly	 contrary	 legend	 (vouched	 for	 forty
years	 ago	 by	 old	 people	 whose	memories	 of	 the	 Gauss	 family	 might	 be
considered	trustworthy)	to	that	about	the	sons	asserts	that	Gauss	was	never
anything	but	kind	to	his	boys,	some	of	whom	were	rather	wild	and	caused
their	distracted	father	endless	anxiety.	One	would	think	that	the	memory
of	his	own	father	would	have	made	Gauss	sympathetic	with	his	sons.

*		*		*



In	1808	Gauss	 lost	his	 father.	Two	years	previously	he	had	suffered	an
even	 severer	 loss	 in	 the	 death	 of	 his	 benefactor	 under	 tragic
circumstances.

The	Duke	Ferdinand	was	not	 only	 an	 enlightened	patron	of	 learning
and	a	kindly	 ruler	but	 a	 first-rate	 soldier	 as	well	who	had	won	 the	warm
praise	of	Frederick	the	Great	for	his	bravery	and	military	brilliance	in	the
Seven	Years’	War	(1756-1763).

At	 the	 age	of	 seventy	Ferdinand	was	put	 in	 command	of	 the	Prussian
forces	in	a	desperate	attempt	to	halt	the	French	under	Napoleon,	after	the
Duke’s	mission	to	St.	Petersburg	in	an	effort	to	enlist	the	aid	of	Russia	for
Germany	 had	 failed.	 The	 battle	 of	 Austerlitz	 (December	 2,	 1805)	 was
already	 history	 and	 Prussia	 found	 itself	 forsaken	 in	 the	 face	 of
overwhelming	odds.	 Ferdinand	 faced	 the	French	on	 their	march	 toward
the	 Saale	 at	 Auerstedt	 and	 Jena,	 was	 disastrously	 defeated	 and	 himself
mortally	wounded.	He	turned	homeward.

Napoleon	the	Great	here	steps	on	the	stage	in	person	at	his	potbellied
greatest.	 At	 the	 time	 of	 Ferdinand’s	 defeat	 Napoleon	 was	 quartered	 at
Halle.	A	deputation	from	Brunswick	waited	on	the	victorious	Emperor	of
all	 the	 French	 to	 implore	 his	 generosity	 for	 the	 brave	 old	man	 he	 had
defeated.	Would	the	mighty	Emperor	stretch	a	point	of	military	etiquette
and	let	his	broken	enemy	die	in	peace	by	his	own	fireside?	The	Duke,	they
assured	him,	was	no	longer	dangerous.	He	was	dying.

It	was	the	wrong	time	of	the	month	and	Napoleon	was	enjoying	one	of
his	womanish	tantrums.	He	not	only	refused	but	did	so	with	quite	vulgar
and	unnecessary	brutality.	Revealing	the	true	measure	of	himself	as	a	man,
Napoleon	 pointed	 his	 refusal	 with	 a	 superfluous	 vilification	 of	 his
honorable	opponent	and	a	hysterical	ridicule	of	the	dying	man’s	abilities
as	a	soldier.	There	was	nothing	for	the	humiliated	deputation	to	do	but	to
try	to	save	their	gentle	ruler	from	the	disgrace	of	a	death	in	prison.	It	does
not	seem	surprising	that	these	same	Germans	some	nine	years	later	fought
like	methodical	devils	 at	Waterloo	and	helped	 to	 topple	 the	Emperor	of
the	French	into	the	ditch.

Gauss	at	 the	 time	was	 living	 in	Brunswick.	His	house	was	on	 the	main
highway.	One	morning	in	late	autumn	he	saw	a	hospital	wagon	hastening
by.	In	it	 lay	the	dying	Duke	on	his	flight	to	Altona.	With	an	emotion	too
deep	 for	 words	 Gauss	 saw	 the	 man	 who	 had	 been	 more	 than	 his	 own
father	to	him	hurried	away	to	die	 in	hiding	like	a	hounded	criminal.	He



said	nothing	then	and	but	little	afterwards,	but	his	friends	noticed	that	his
reserve	deepened	and	his	always	serious	nature	became	more	serious.	Like
Descartes	in	his	earlier	years	Gauss	had	a	horror	of	death,	and	all	his	life
the	passing	 of	 a	 close	 friend	 chilled	him	with	 a	 quiet,	 oppressive	 dread.
Gauss	was	too	vital	to	die	or	to	witness	death.	The	Duke	died	in	his	father’s
house	in	Altona	on	November	10,	1806.

His	generous	patron	dead,	it	became	necessary	for	Gauss	to	find	some
reliable	livelihood	to	support	his	family.	There	was	no	difficulty	about	this
as	the	young	mathematician’s	fame	had	now	spread	to	the	farthest	corners
of	 Europe.	 St.	 Petersburg	 had	 been	 angling	 for	 him	 as	 the	 logical
successor	of	Euler	who	had	never	been	worthily	replaced	after	his	death	in
1783.	 In	 1807	 a	 definite	 and	 flattering	 offer	 was	 tendered	 Gauss.
Alexander	 von	Humboldt	 and	 other	 influential	 friends,	 reluctant	 to	 see
Germany	 lose	 the	 greatest	 mathematician	 in	 the	 world,	 bestirred
themselves,	 and	 Gauss	 was	 appointed	 director	 of	 the	 Göttingen
Observatory	 with	 the	 privilege—and	 duty,	 when	 necessary—of	 lecturing
on	mathematics	to	university	students.

Gauss	 no	 doubt	might	 have	 obtained	 a	 professorship	 of	mathematics
but	 he	 preferred	 the	 observatory	 as	 it	 offered	 better	 prospects	 for
uninterrupted	 research.	Although	 it	may	be	 too	 strong	 to	 say	 that	Gauss
hated	teaching,	the	instruction	of	ordinary	students	gave	him	no	pleasure,
and	 it	 was	 only	 when	 a	 real	 mathematician	 sought	 him	 out	 that	 Gauss,
sitting	at	a	table	with	his	students,	let	himself	go	and	disclosed	the	secrets
of	his	methods	in	his	perfectly	prepared	lessons.	But	such	incentives	were
regrettably	 rare	 and	 for	 the	most	 part	 the	 students	 who	 took	 up	Gauss’
priceless	 time	 had	 better	 have	 been	 doing	 something	 other	 than
mathematics.	Writing	 in	1810	 to	his	 intimate	 friend	 the	 astronomer	 and
mathematician	 Friedrich	 Wilhelm	 Bessel	 (1784-1846),	 Gauss	 says	 “This
winter	I	am	giving	two	courses	of	lectures	to	three	students,	of	whom	one
is	only	moderately	prepared,	the	other	less	than	moderately,	and	the	third
lacks	 both	 preparation	 and	 ability.	 Such	 are	 the	 burdens	 of	 a
mathematical	calling.”

The	salary	which	Göttingen	could	afford	to	pay	Gauss	at	the	time—the
French	 were	 then	 busy	 pillaging	 Germany	 in	 the	 interests	 of	 good
government	for	the	Germans	by	the	French—was	modest	but	sufficient	for
the	 simple	 needs	 of	 Gauss	 and	 his	 family.	 Luxury	 never	 attracted	 the
Prince	of	Mathematicians	whose	 life	had	been	unaffectedly	dedicated	 to



science	 long	 before	 he	 was	 twenty.	 As	 his	 friend	 Sartorius	 von
Waltershausen	writes,	“As	he	was	in	his	youth,	so	he	remained	through	his
old	age	 to	his	dying	day,	 the	unaffectedly	 simple	Gauss.	A	 small	 study,	 a
little	 work	 table	 with	 a	 green	 cover,	 a	 standing-desk	 painted	 white,	 a
narrow	sopha	and,	after	his	seventieth	year,	an	arm	chair,	a	shaded	lamp,
an	unheated	bedroom,	plain	food,	a	dressing	gown	and	a	velvet	cap,	these
were	so	becomingly	all	his	needs.”

If	Gauss	was	simple	and	thrifty	the	French	invaders	of	Germany	in	1807
were	 simpler	 and	 thriftier.	 To	 govern	Germany	 according	 to	 their	 ideas
the	victors	of	Auerstedt	and	Jena	fined	the	losers	for	more	than	the	traffic
would	bear.	As	professor	and	astronomer	at	Göttingen	Gauss	was	rated	by
the	extortionists	to	be	good	for	an	involuntary	contribution	of	2,000	francs
to	the	Napoleonic	war	chest.	This	exorbitant	sum	was	quite	beyond	Gauss’
ability	to	pay.

Presently	 Gauss	 got	 a	 letter	 from	 his	 astronomical	 friend	 Olbers
enclosing	 the	 amount	 of	 the	 fine	 and	 expressing	 indignation	 that	 a
scholar	 should	 be	 subjected	 to	 such	 petty	 extortion.	 Thanking	 his
generous	 friend	 for	his	 sympathy,	Gauss	declined	 the	money	 and	 sent	 it
back	at	once	to	the	donor.

Not	all	the	French	were	as	thrifty	as	Napoleon.	Shortly	after	returning
Olbers’	money	Gauss	 received	 a	 friendly	 little	 note	 from	Laplace	 telling
him	 that	 the	 famous	French	mathematician	had	paid	 the	 2,000-franc	 fine
for	 the	 greatest	 mathematician	 in	 the	 world	 and	 had	 considered	 it	 an
honor	to	be	able	to	lift	this	unmerited	burden	from	his	friend’s	shoulders.
As	Laplace	had	paid	the	fine	in	Paris,	Gauss	was	unable	to	return	him	the
money.	Nevertheless	he	declined	to	accept	Laplace’s	help.	An	unexpected
(and	unsolicited)	windfall	 was	 presently	 to	 enable	 him	 to	 repay	Laplace
with	 interest	 at	 the	 current	market	 rate.	Word	must	have	got	 about	 that
Gauss	 disdained	 charity.	 The	 next	 attempt	 to	 help	 him	 succeeded.	 An
admirer	in	Frankfurt	sent	1,000	guilders	anonymously.	As	Gauss	could	not
trace	the	sender	he	was	forced	to	accept	the	gift.

The	 death	 of	 his	 friend	 Ferdinand,	 the	 wretched	 state	 of	 Germany
under	French	looting,	financial	straits,	and	the	loss	of	his	first	wife	all	did
their	part	toward	upsetting	Gauss’	health	and	making	his	life	miserable	in
his	early	thirties.	Nor	did	a	constitutional	predisposition	to	hypochondria,
aggravated	 by	 incessant	 overwork,	 help	 matters.	 His	 unhappiness	 was
never	 shared	 with	 his	 friends,	 to	 whom	 he	 is	 always	 the	 serene



correspondent,	 but	 is	 confided—only	 once—to	 a	 private	 mathematical
manuscript.	After	his	appointment	to	the	directorship	at	Göttingen	in	1807
Gauss	 returned	 occasionally	 for	 three	 years	 to	 one	 of	 the	 great	 things
noted	 in	his	diary.	 In	a	manuscript	on	elliptic	 functions	purely	 scientific
matters	 are	 suddenly	 interrupted	 by	 the	 finely	 pencilled	 words	 “Death
were	dearer	to	me	than	such	a	life.”	His	work	became	his	drug.

The	years	1811-12	(Gauss	was	thirty	four	in	1811)	were	brighter.	With	a
wife	again	to	care	for	his	young	children	Gauss	began	to	have	some	peace.
Then,	almost	exactly	a	year	after	his	second	marriage,	the	great	comet	of
1811,	 first	 observed	by	Gauss	deep	 in	 the	 evening	 twilight	 of	August	 22,
blazed	up	unannounced.	Here	was	a	worthy	foe	to	test	the	weapons	Gauss
had	invented	to	subjugate	the	minor	planets.

His	 weapons	 proved	 adequate.	 While	 the	 superstitious	 peoples	 of
Europe,	 following	the	blazing	spectacle	with	awestruck	eyes	as	 the	comet
unlimbered	its	flaming	scimitar	in	its	approach	to	the	Sun,	saw	in	the	fiery
blade	a	sharp	warning	from	Heaven	that	the	King	of	Kings	was	wroth	with
Napoleon	and	weary	of	 the	 ruthless	 tyrant,	Gauss	had	 the	 satisfaction	of
seeing	the	comet	follow	the	path	he	had	quickly	calculated	for	it	to	the	last
decimal.	The	 following	 year	 the	credulous	also	 saw	 their	own	prediction
verified	 in	 the	 burning	 of	 Moscow	 and	 the	 destruction	 of	 Napoleon’s
Grand	Army	on	the	icy	plains	of	Russia.

This	 is	one	of	 those	 rare	 instances	where	 the	popular	explanation	 fits
the	 facts	 and	 leads	 to	more	 important	 consequences	 than	 the	 scientific.
Napoleon	himself	had	a	basely	credulous	mind—he	relied	on	“hunches,”
reconciled	his	wholesale	 slaughters	with	a	childlike	 faith	 in	a	beneficent,
inscrutable	 Providence,	 and	 believed	himself	 a	Man	of	Destiny.	 It	 is	 not
impossible	 that	 the	 celestial	 spectacle	 of	 a	 harmless	 comet	 flaunting	 its
gorgeous	tail	across	the	sky	left	its	impress	on	the	subconscious	mind	of	a
man	 like	Napoleon	 and	 fuddled	 his	 judgment.	 The	 almost	 superstitious
reverence	of	such	a	man	for	mathematics	and	mathematicians	is	no	great
credit	to	either,	although	it	has	been	frequently	cited	as	one	of	the	main
justifications	for	both.

Beyond	 a	 rather	 crass	 appreciation	 of	 the	 value	 of	 mathematics	 in
military	affairs,	where	its	utility	is	obvious	even	to	a	blind	idiot,	Napoleon
had	no	 conception	 of	what	mathematics	 as	 practised	 by	masters	 like	 his
contemporaries,	 Lagrange,	 Laplace,	 and	 Gauss,	 is	 all	 about.	 A	 quick
student	of	trivial,	elementary	mathematics	at	school,	Napoleon	turned	to



other	 things	 too	 early	 to	 certify	 his	 promise	 and,	mathematically,	 never
grew	 up.	 Although	 it	 seems	 incredible	 that	 a	 man	 of	 Napoleon’s
demonstrated	 capacity	 could	 so	 grossly	 underestimate	 the	 difficulties	 of
matters	beyond	his	comprehension	as	to	patronize	Laplace,	it	is	a	fact	that
he	had	the	ludicrous	audacity	to	assure	the	author	of	the	Mécanique	céleste
that	he	would	read	the	book	the	first	free	month	he	could	find.	Newton	and
Gauss	might	have	been	equal	to	the	task;	Napoleon	no	doubt	could	have
turned	the	pages	in	his	month	without	greatly	tiring	himself.

It	 is	 a	 satisfaction	 to	 record	 that	 Gauss	 was	 too	 proud	 to	 prostitute
mathematics	to	Napoleon	the	Great	by	appealing	to	the	Emperor’s	vanity
and	 begging	 him	 in	 the	 name	 of	 his	 notorious	 respect	 for	 all	 things
mathematical	 to	 remit	 the	 2,000-franc	 fine,	 as	 some	 of	 Gauss’	 mistaken
friends	urged	him	to	do.	Napoleon	would	probably	have	been	flattered	to
exercise	his	clemency.	But	Gauss	could	not	forget	Ferdinand’s	death,	and
he	 felt	 that	both	he	and	 the	mathematics	he	worshipped	were	better	off
without	the	condescension	of	a	Napoleon.

No	sharper	contrast	between	the	mathematician	and	the	military	genius
can	be	found	than	that	afforded	by	their	respective	attitudes	to	a	broken
enemy.	We	have	seen	how	Napoleon	treated	Ferdinand.	When	Napoleon
fell	 Gauss	 did	 not	 exult.	 Calmly	 and	 with	 a	 detached	 interest	 he	 read
everything	 he	 could	 find	 about	 Napoleon’s	 life	 and	 did	 his	 best	 to
understand	the	workings	of	a	mind	like	Napoleon’s.	The	effort	even	gave
him	considerable	amusement.	Gauss	had	a	keen	sense	of	humor,	and	the
blunt	 realism	 which	 he	 had	 inherited	 from	 his	 hardworking	 peasant
ancestors	also	made	it	easy	for	him	to	smile	at	heroics.

*		*		*

The	year	1811	might	have	been	a	landmark	in	mathematics	comparable
to	 1801—the	 year	 in	 which	 the	Disquisitiones	 Arithmeticae	 appeared—had
Gauss	made	public	a	discovery	he	confided	to	Bessel.	Having	thoroughly
understood	 complex	 numbers	 and	 their	 geometrical	 representation	 as
points	 on	 the	 plane	 of	 analytic	 geometry,	 Gauss	 proposed	 himself	 the
problem	 of	 investigating	 what	 are	 today	 called	 analytic	 functions	 of	 such
numbers.

The	complex	number	x	+	iy,	where	i	denotes	 	represents	the	point
(x,	 y).	 For	 brevity	 x	 +	 iy	 will	 be	 denoted	 by	 the	 single	 letter	 z.	 As	 x,	 y



independently	 take	on	real	values	 in	any	prescribed	continuous	manner,
the	point	z	wanders	about	over	the	plane,	obviously	not	at	random	but	in	a
manner	 determined	 by	 that	 in	 which	 x,	 y	 assume	 their	 values.	 Any
expression	 containing	 z,	 such	 as	 z2,	 or	 1/z,	 etc.,	 which	 takes	 on	 a	 single
definite	value	when	a	value	is	assigned	to	z,	is	called	a	uniform	function	of	z.
We	 shall	 denote	 such	 a	 function	 by	 f(z).	 Thus	 iff(z)	 is	 the	 particular
function	z2,	 so	 that	here	 f(z)	=	(x	+	 iy)2	=	x2	+	2ixy	 +	 i2y2,	 =	x2	 –	 y2	 +	2ixy
(because	i2	=	−1),	it	is	clear	that	when	any	value	is	assigned	to	z,	namely	to
x	+	iy,	for	example	x	=	2,	y	=	3,	so	that	z	=	2	+	3i,	precisely	one	value	of	this
f(z)	is	thereby	determined;	here,	for	z	=	2	+	3i	we	get	z2	=	−5	+	12i.

Not	all	uniform	functions	f(z)	are	studied	in	the	theory	of	functions	of	a
complex	 variable;	 the	monogenic	 functions	 are	 singled	 out	 for	 exhaustive
discussion.	The	reason	for	this	will	be	stated	after	we	have	described	what
“monogenic”	means.

Let	 z	 move	 to	 another	 position,	 say	 to	 z′.	 The	 function	 f(z)	 takes	 on
another	value,	f(z′),	obtained	by	substituting	z′	for	z.	The	difference	f(z′)—f(z)
of	the	new	and	old	values	of	the	function	is	now	divided	by	the	difference
of	 the	 new	 and	 old	 values	 of	 the	 variable,	 thus	 [f(z′)	 +(zy]/(z′	 –	 z),	 and,



precisely	 as	 is	 done	 in	 calculating	 the	 slope	 of	 a	 graph	 to	 find	 the
derivative	of	the	function	the	graph	represents,	we	here	let	z′	approach	z
indefinitely,	 so	 that	 f(z′)	 approaches	 f(z)	 simultaneously.	 But	 here	 a
remarkable	new	phenomenon	appears.

There	is	not	here	a	unique	way	in	which	z′	can	move	into	coincidence
with	z,	for	z′	may	wander	about	all	over	the	plane	of	complex	numbers	by
any	of	an	infinity	of	different	paths	before	coming	into	coincidence	with	z.
We	 should	 not	 expect	 the	 limiting	 value	 of	 [f(z′)—f(z)]/(z′—z)	 when	 z′
coincides	with	z	to	be	the	same	for	all	of	these	paths,	and	in	general	it	is	not.
But	 iff(z)	 is	 such	 that	 the	 limiting	 value	 just	described	 is	 the	 same	 for	all
paths	 by	 which	 z′	 moves	 into	 coincidence	 with	 z,	 then	 f(z)	 is	 said	 to	 be
monogenic	 at	 z	 (or	 at	 the	 point	 representing	 z).	 Uniformity	 (previously
described)	and	monogenicity	are	distinguishing	features	of	analytic	functions
of	a	complex	variable.

Some	idea	of	the	importance	of	analytic	functions	can	be	inferred	from
the	 fact	 that	 vast	 tracts	 of	 the	 theories	 of	 fluid	 motion	 (also	 of
mathematical	electricity	and	representation	by	maps	which	do	not	distort
angles)	 are	 naturally	 handled	 by	 the	 theory	 of	 analytic	 functions	 of	 a
complex	variable.	Suppose	such	a	function	 f(z)	 is	separated	into	its	“real”
part	 (that	 which	 does	 not	 contain	 the	 “imaginary	 unit”	 i)	 and	 its
“imaginary”	part,	 say	 f(z)	=	U	+	 iV.	For	 the	special	analytic	 function	z2	 we
have	U	=	x2—y2,	V	=	2xy.	Imagine	a	film	of	fluid	streaming	over	a	plane.	If
the	motion	of	the	fluid	is	without	vortices,	a	stream	line	of	the	motion	is
obtainable	from	some	analytic	function	f(z)	by	plotting	the	curve	U	=	a,	in
which	 a	 is	 any	 real	 number,	 and	 likewise	 the	 equipotential	 lines	 are
obtainable	from	V	=	b	(b	any	real	number).	Letting	a,	b	range,	we	thus	get	a
complete	picture	of	the	motion	for	as	large	an	area	as	we	wish.	For	a	given
situation,	say	that	of	a	fluid	streaming	round	an	obstacle,	the	hard	part	of
the	 problem	 is	 to	 find	 what	 analytic	 function	 to	 choose,	 and	 the	 whole
matter	has	been	gone	at	 largely	backwards:	 the	 simple	analytic	 functions
have	been	investigated	and	the	physical	problems	which	they	fit	have	been
sought.	 Curiously	 enough,	 many	 of	 these	 artificially	 prepared	 problems
have	 proven	 of	 the	 greatest	 service	 in	 aerodynamics	 and	 other	 practical
applications	of	the	theory	of	fluid	motion.

The	 theory	of	analytic	 functions	of	a	complex	variable	was	one	of	 the
greatest	fields	of	mathematical	triumphs	in	the	nineteenth	century.	Gauss
in	his	letter	to	Bessel	states	what	amounts	to	the	fundamental	theorem	in



this	vast	theory,	but	he	hid	it	away	to	be	rediscovered	by	Cauchy	and	later
Weierstrass.	As	 this	 is	 a	 landmark	 in	 the	history	of	mathematical	 analysis
we	 shall	 briefly	 describe	 it,	 omitting	 all	 refinements	 that	 would	 be
demanded	in	an	exact	formulation.

Imagine	 the	 complex	 variable	 z	 tracing	 out	 a	 closed	 curve	 of	 finite
length	 without	 loops	 or	 kinks.	 We	 have	 an	 intuitive	 notion	 of	 what	 we
mean	by	the	“length”	of	a	piece	of	this	curve.

Mark	n	points	P1	P2,	.	.	.	,	Pn	on	the	curve	so	that	each	of	the	pieces	P1P2,
P2P3,	P3P4,	.	.	.	,	PnP1	is	not	greater	than	some	preassigned	finite	length	l.
On	 each	of	 these	 pieces	 choose	 a	 point,	 not	 at	 either	 end	of	 the	piece;
form	 the	 value	 off(z)	 for	 the	 value	 of	 z	 corresponding	 to	 the	 point,	 and
multiply	 this	value	by	the	 length	of	 the	piece	 in	which	the	point	 lies.	Do
the	 like	 for	 all	 the	 pieces,	 and	 add	 the	 results.	 Finally	 take	 the	 limiting
value	of	 this	 sum	as	 the	number	of	 pieces	 is	 indefinitely	 increased.	This
gives	the	“line	integral”	off(z)	for	the	curve.

When	will	this	line	integral	be	zero?	In	order	that	the	line	integral	shall
be	 zero	 it	 is	 sufficient	 that	 f(z)	 be	 analytic	 (uniform	 and	monogenic)	 at
every	point	z	on	the	curve	and	inside	the	curve.

Such	is	the	great	theorem	which	Gauss	communicated	to	Bessel	in	1811
and	which,	with	another	theorem	of	a	similar	kind,	in	the	hands	of	Cauchy
who	 rediscovered	 it	 independently,	 was	 to	 yield	 many	 of	 the	 important
results	of	analysis	as	corollaries.

*		*		*



Astronomy	did	not	absorb	 the	whole	of	Gauss’	prodigious	energies	 in
his	 middle	 thirties.	 The	 year	 1812,	 which	 saw	 Napoleon’s	 Grand	 Army
fighting	a	desperate	rear-guard	action	across	 the	 frozen	plains,	witnessed
the	publication	of	another	great	work	by	Gauss,	 that	on	the	hyfergeometric
series

the	 dots	meaning	 that	 the	 series	 continues	 indefinitely	 according	 to	 the
law	indicated;	the	next	term	is

This	memoir	is	another	landmark.	As	has	already	been	noted	Gauss	was
the	 first	 of	 the	 modern	 rigorists.	 In	 this	 work	 he	 determined	 the
restrictions	that	must	be	imposed	on	the	numbers	a,	b,	 c,	x	 in	order	that
the	series	 shall	converge	(in	 the	sense	explained	earlier	 in	 this	chapter).
The	series	itself	was	no	mere	textbook	exercise	that	may	be	investigated	to
gain	skill	in	analytical	manipulations	and	then	be	forgotten.	It	includes	as
special	cases—obtained	by	assigning	specific	values	to	one	or	more	of	a,	b,
c,	x—many	of	the	most	important	series	in	analysis,	for	example	those	by
which	 logarithms,	 the	 trigonometric	 functions,	 and	 several	 of	 the
functions	 that	 turn	 up	 repeatedly	 in	 Newtonian	 astronomy	 and
mathematical	physics	 are	 calculated	 and	 tabulated;	 the	general	binomial
theorem	also	is	a	special	case.	By	disposing	of	this	series	in	its	general	form
Gauss	 slew	 a	 multitude	 at	 one	 smash.	 From	 this	 work	 developed	 many
applications	 to	 the	 differential	 equations	 of	 physics	 in	 the	 nineteenth
century.

The	choice	of	such	an	investigation	for	a	serious	effort	is	characteristic
of	Gauss.	He	never	published	trivialities.	When	he	put	out	anything	it	was
not	 only	 finished	 in	 itself	 but	 was	 also	 so	 crammed	 with	 ideas	 that	 his
successors	 were	 enabled	 to	 apply	 what	 Gauss	 had	 invented	 to	 new
problems.	 Although	 limitations	 of	 space	 forbid	 discussion	 of	 the	 many
instances	 of	 this	 fundamental	 character	 of	 Gauss’	 contributions	 to	 pure
mathematics,	one	 cannot	be	passed	over	 in	even	 the	briefest	 sketch:	 the



work	on	the	law	of	biquadratic	reciprocity.	The	importance	of	this	was	that
it	gave	a	new	and	totally	unforeseen	direction	to	the	higher	arithmetic.

*		*		*

Having	disposed	of	quadratic	(second	degree)	reciprocity,	it	was	natural
for	Gauss	to	consider	the	general	question	of	binomial	congruences	of	any
degree.	 If	m	 is	a	given	 integer	not	divisible	by	 the	prime	p,	 and	 if	n	 is	 a
given	positive	integer,	and	if	further	an	integer	x	can	be	found	such	that	xn
≡	m	(mod	p),	m	is	called	an	n-ic	residue	of	p;	when	n	=	4,	m	 is	a	biquadratic
residue	of	p.

The	case	of	quadratic	binomial	congruences	(n	=	2)	suggests	but	little	to
do	when	n	exceeds	2.	One	of	 the	matters	Gauss	was	 to	have	 included	in
the	discarded	eighth	 section	(or	possibly,	 as	he	 told	Sophie	Germain,	 in
the	 projected	 but	 unachieved	 second	 volume)	 of	 the	 Disquisitiones
Arithmeticae	was	a	discussion	of	these	higher	congruences	and	a	search	for
the	corresponding	laws	of	reciprocity,	namely	the	interconnections	(as	to
solvability	or	non-solvability)	of	the	pair	xn	≡	p	(mod	q),	xn	≡	q	(mod	p),
where	p,	q	are	rational	primes.	In	particular	the	cases	n	=	3,	n	=	4	were	to
have	been	investigated.

The	memoir	 of	 1825	 breaks	 new	 ground	with	 all	 the	 boldness	 of	 the
great	pioneers.	After	many	false	starts	which	led	to	intolerable	complexity
Gauss	 discovered	 the	 “natural”	 way	 to	 the	 heart	 of	 his	 problem.	 The
rational	 integers	1,	2,	3,	.	 .	 .	are	not	 those	appropriate	to	the	statement	of
the	 law	 of	 biquadratic	 reciprocity,	 as	 they	 are	 for	 quadratic;	 a	 totally	 new
species	of	integers	must	be	invented.	These	are	called	the	Gaussian	complex
integers	and	are	all	those	complex	numbers	of	the	form	a	+	bi	in	which	a,	b
are	rational	integers	and	i	denotes	

To	 state	 the	 law	 of	 biquadratic	 reciprocity	 an	 exhaustive	 preliminary
discussion	of	the	laws	of	arithmetical	divisibility	for	such	complex	integers	 is
necessary.	 Gauss	 gave	 this,	 thereby	 inaugurating	 the	 theory	 of	 algebraic
numbers—that	which	he	probably	had	in	mind	when	he	gave	his	estimate
of	Fermat’s	Last	Theorem.	For	cubic	reciprocity	(n	=	3)	he	also	found	the
right	 way	 in	 a	 similar	 manner.	 His	 work	 on	 this	 was	 found	 in	 his
posthumous	papers.

The	 significance	 of	 this	 great	 advance	 will	 become	 clearer	 when	 we
follow	 the	 careers	 of	 Kummer	 and	 Dedekind.	 For	 the	 moment	 it	 is



sufficient	to	say	that	Gauss’	favorite	disciple,	Eisenstein,	disposed	of	cubic
reciprocity.	He	further	discovered	an	astonishing	connection	between	the
law	 of	 biquadratic	 reciprocity	 and	 certain	 parts	 of	 the	 theory	 of	 elliptic
functions,	 in	 which	Gauss	 had	 travelled	 far	 but	 had	 refrained	 disclosing
what	he	found.

Gaussian	 complex	 integers	 are	 of	 course	 a	 subclass	 of	 all	 complex
numbers,	 and	 it	 might	 be	 thought	 that	 the	 algebraic	 theory	 of	 all	 the
numbers	 would	 yield	 the	 arithmetical	 theory	 of	 the	 included	 integers	 as	 a
trivial	detail.	Such	is	by	no	means	the	case.	Compared	to	the	arithmetical
theory	the	algebraic	is	childishly	easy.	Perhaps	a	reason	why	this	should	be
so	is	suggested	by	the	rational	numbers	(numbers	of	the	form	a/b,	where	a,	b
are	 rational	 integers).	 We	 can	 always	 divide	 one	 rational	 number	 by
another	 and	 get	 another	 rational	 number:	 a/b	 divided	 by	 c/d	 yields	 the
rational	number	ad/bc.	 But	 a	 rational	 integer	 divided	 by	 another	 rational
integer	 is	 not	 always	 another	 rational	 integer:	 7	 divided	 by	 8	 gives	⅞
Hence	if	we	must	restrict	ourselves	to	 integers,	 the	case	of	 interest	 for	 the
theory	of	numbers,	we	have	 tied	our	hands	and	hobbled	our	 feet	before
we	 start.	 This	 is	 one	 of	 the	 reasons	 why	 the	 higher	 arithmetic	 is	 harder
than	algebra,	higher	or	elementary.

*		*		*

Equally	 significant	 advances	 in	 geometry	 and	 the	 applications	 of
mathematics	 to	 geodesy,	 the	 Newtonian	 theory	 of	 attraction,	 and
electromagnetism	were	also	to	be	made	by	Gauss.	How	was	it	possible	for
one	man	 to	 accomplish	 this	 colossal	mass	 of	work	 of	 the	highest	 order?
With	 characteristic	 modesty	 Gauss	 declared	 that	 “If	 others	 would	 but
reflect	 on	mathematical	 truths	 as	 deeply	 and	 as	 continuously	 as	 I	 have,
they	 would	 make	 my	 discoveries.”	 Possibly.	 Gauss’	 explanation	 recalls
Newton’s.	 Asked	 how	 he	 had	made	 discoveries	 in	 astronomy	 surpassing
those	 of	 all	 his	 predecessors,	Newton	 replied,	 “By	 always	 thinking	 about
them.”	This	may	have	been	plain	to	Newton;	it	is	not	to	ordinary	mortals.

Part	of	the	riddle	of	Gauss	is	answered	by	his	involuntary	preoccupation
with	mathematical	ideas—which	itself	of	course	demands	explanation.	As
a	 young	man	Gauss	 would	 be	 “seized”	 by	mathematics.	 Conversing	 with
friends	he	would	suddenly	go	silent,	overwhelmed	by	thoughts	beyond	his
control,	 and	 stand	 staring	 rigidly	oblivious	of	his	 surroundings.	Later	he



controlled	 his	 thoughts—or	 they	 lost	 their	 control	 over	 him—and	 he
consciously	directed	 all	his	 energies	 to	 the	 solution	of	 a	difficulty	 till	 he
succeeded.	 A	 problem	 once	 grasped	 was	 never	 released	 till	 he	 had
conquered	it,	although	several	might	be	in	the	foreground	of	his	attention
simultaneously.

In	 one	 such	 instance	 (referring	 to	 the	 Disquisitiones,	 page	 636)	 he
relates	 how	 for	 four	 years	 scarcely	 a	 week	 passed	 that	 he	 did	 not	 spend
some	time	trying	to	settle	whether	a	certain	sign	should	be	plus	or	minus.
The	solution	finally	came	of	itself	in	a	flash.	But	to	imagine	that	it	would
have	blazed	out	of	 itself	 like	 a	new	 star	without	 the	 “wasted”	hours	 is	 to
miss	the	point	entirely.	Often	after	spending	days	or	weeks	fruitlessly	over
some	research	Gauss	would	find	on	resuming	work	after	a	sleepless	night
that	the	obscurity	had	vanished	and	the	whole	solution	shone	clear	in	his
mind.	The	capacity	 for	 intense	and	prolonged	concentration	was	part	of
his	secret.

In	this	ability	to	forget	himself	in	the	world	of	his	own	thoughts	Gauss
resembles	both	Archimedes	and	Newton.	 In	 two	 further	 respects	he	also
measures	 up	 to	 them,	 his	 gifts	 for	 precise	 observation	 and	 a	 scientific
inventiveness	which	enabled	him	 to	devise	 the	 instruments	necessary	 for
his	 scientific	 researches.	 To	 Gauss	 geodesy	 owes	 the	 invention	 of	 the
heliotrope,	 an	 ingenious	 device	 by	 which	 signals	 could	 be	 transmitted
practically	 instantaneously	 by	 means	 of	 reflected	 light.	 For	 its	 time	 the
heliotrope	was	a	long	step	forward.	The	astronomical	instruments	he	used
also	 received	 notable	 improvements	 at	 Gauss’	 hands.	 For	 use	 in	 his
fundamental	 researches	 in	 electromagnetism	 Gauss	 invented	 the	 bifilar
magnetometer.	And	as	a	final	example	of	his	mechanical	ingenuity	it	may
be	recalled	that	Gauss	in	1833	invented	the	electric	telegraph	and	that	he
and	his	 fellow	worker	Wilhelm	Weber	(1804-1891)	used	 it	as	a	matter	of
course	in	sending	messages.	The	combination	of	mathematical	genius	with
first-rate	experimental	ability	is	one	of	the	rarest	in	all	science.

Gauss	 himself	 cared	 but	 little	 for	 the	 possible	 practical	 uses	 of	 his
inventions.	 Like	 Archimedes	 he	 preferred	 mathematics	 to	 all	 the
kingdoms	 of	 the	 earth;	 others	 might	 gather	 the	 tangible	 fruits	 of	 his
labors.	 But	 Weber,	 his	 collaborator	 in	 electromagnetic	 researches,	 saw
clearly	what	 the	puny	 little	 telegraph	of	Göttingen	meant	for	civilization.
The	 railway,	 we	 recall,	 was	 just	 coming	 into	 its	 own	 in	 the	 early	 1830’s.
“When	 the	globe	 is	covered	with	a	net	of	 railroads	and	 telegraph	wires,”



Weber	 prophesied	 in	 1835,	 “this	 net	 will	 render	 services	 comparable	 to
those	 of	 the	 nervous	 system	 in	 the	 human	 body,	 partly	 as	 a	 means	 of
transport,	 partly	 as	 a	means	 for	 the	propagation	of	 ideas	 and	 sensations
with	the	speed	of	lightning.”

The	admiration	of	Gauss	for	Newton	has	already	been	noted.	Knowing
the	tremendous	efforts	some	of	his	own	masterpieces	had	cost	him,	Gauss
had	a	true	appreciation	of	the	long	preparation	and	incessant	meditation
that	went	into	Newton’s	greatest	work.	The	story	of	Newton	and	the	falling
apple	roused	Gauss’	indignation.	“Silly!”	he	exclaimed.	“Believe	the	story	if
you	like,	but	the	truth	of	the	matter	is	this.	A	stupid,	officious	man	asked
Newton	how	he	discovered	 the	 law	of	 gravitation.	 Seeing	 that	he	had	 to
deal	with	a	child	in	intellect,	and	wanting	to	get	rid	of	the	bore,	Newton
answered	that	an	apple	fell	and	hit	him	on	the	nose.	The	man	went	away
fully	satisfied	and	completely	enlightened.”

The	apple	story	has	its	echo	in	our	own	times.	When	teased	as	to	what
led	 him	 to	 his	 theory	 of	 the	 gravitational	 field	 Einstein	 replied	 that	 he
asked	a	workman	who	had	fallen	off	a	building,	to	land	unhurt	on	a	pile	of
straw,	 whether	 he	 noticed	 the	 tug	 of	 the	 “force”	 of	 gravity	 on	 the	 way
down.	On	being	told	that	no	force	had	tugged,	Einstein	immediately	saw
that	 “gravitation”	 in	 a	 sufficiently	 small	 region	 of	 space-time	 can	 be
replaced	 by	 an	 acceleration	 of	 the	 observer’s	 (the	 falling	 workman’s)
reference	 system.	 This	 story,	 if	 true,	 is	 also	 probably	 all	 rot.	 What	 gave
Einstein	 his	 idea	 was	 the	 hard	 labor	 he	 expended	 for	 several	 years
mastering	 the	 tensor	 calculus	 of	 two	 Italian	 mathematicians,	 Ricci	 and
Levi-Civita,	themselves	disciples	of	Riemann	and	Christoffel,	both	of	whom
in	their	turn	had	been	inspired	by	the	geometrical	work	of	Gauss.

Commenting	 on	 Archimedes,	 for	 whom	 he	 also	 had	 a	 boundless
admiration,	 Gauss	 remarked	 that	 he	 could	 not	 understand	 how
Archimedes	 failed	 to	 invent	 the	 decimal	 system	 of	 numeration	 or	 its
equivalent	(with	some	base	other	than	10).	The	thoroughly	un-Greek	work
of	Archimedes	in	devising	a	scheme	for	writing	and	dealing	with	numbers
far	beyond	the	capacity	of	the	Greek	symbolism	had—according	to	Gauss
—put	 the	decimal	notation	with	 its	all-important	principle	of	place-value
(325	=	3	×	102	+	2	×	10	+	5)	 in	Archimedes’	hands.	This	oversight	Gauss
regarded	 as	 the	 greatest	 calamity	 in	 the	 history	 of	 science.	 “To	 what
heights	 would	 science	 now	 be	 raised	 if	 Archimedes	 had	 made	 that
discovery!”	he	exclaimed,	 thinking	of	his	own	masses	of	arithmetical	and



astronomical	calculations	which	would	have	been	impossible,	even	to	him,
without	 the	 decimal	 notation.	 Having	 a	 full	 appreciation	 of	 the
significance	 for	 all	 science	 of	 improved	methods	 of	 computation,	 Gauss
slaved	over	his	own	calculations	till	pages	of	figures	were	reduced	to	a	few
lines	which	could	be	taken	in	almost	at	a	glance.	He	himself	did	much	of
his	 calculating	mentally;	 the	 improvements	 were	 intended	 for	 those	 less
gifted	than	himself.

Unlike	 Newton	 in	 his	 later	 years,	 Gauss	 was	 never	 attracted	 by	 the
rewards	 of	 public	 office,	 although	 his	 keen	 interest	 and	 sagacity	 in	 all
matters	 pertaining	 to	 the	 sciences	 of	 statistics,	 insurance,	 and	 “political
arithmetic”	would	have	made	him	a	good	minister	of	finance.	Till	his	last
illness	 he	 found	 complete	 satisfaction	 in	 his	 science	 and	 his	 simple
recreations.	Wide	reading	in	the	literatures	of	Europe	and	the	classics	of
antiquity,	 a	 critical	 interest	 in	 world	 politics,	 and	 the	mastery	 of	 foreign
languages	and	new	 sciences	 (including	botany	and	mineralogy)	were	his
hobbies.

English	literature	especially	attracted	him,	although	its	darker	aspect	as
in	 Shakespeare’s	 tragedies	 was	 too	 much	 for	 the	 great	 mathematician’s
acute	 sensitiveness	 to	all	 forms	of	 suffering,	and	he	 tried	 to	pick	his	way
through	the	happier	masterpieces.	The	novels	of	Sir	Walter	Scott	(who	was
a	 contemporary	 of	 Gauss)	 were	 read	 eagerly	 as	 they	 came	 out,	 but	 the
unhappy	 ending	 of	 Kenilworth	 made	 Gauss	 wretched	 for	 days	 and	 he
regretted	 having	 read	 the	 story.	 One	 slip	 of	 Sir	 Walter’s	 tickled	 the
mathematical	astronomer	into	delighted	laughter,	“the	moon	rises	broad
in	the	northwest,”	and	he	went	about	for	days	correcting	all	the	copies	he
could	 find.	Historical	 works	 in	English,	 particularly	Gibbon’s	Decline	and
Fall	of	the	Roman	Empire	and	Macaulay’s	History	of	England	gave	him	special
pleasure.

For	his	meteoric	young	contemporary	Lord	Byron,	Gauss	had	almost	an
aversion.	 Byron’s	 posturing,	 his	 reiterated	 world-weariness,	 his	 affected
misanthropy,	and	his	romantic	good	looks	had	captivated	the	sentimental
Germans	even	more	 completely	 than	 they	did	 the	 stolid	British	who—at
least	 the	 older	males—thought	Byron	 somewhat	 of	 a	 silly	 ass.	Gauss	 saw
through	Byron’s	histrionics	and	disliked	him.	No	man	who	guzzled	good
brandy	 and	 pretty	 women	 as	 assiduously	 as	 Byron	 did	 could	 be	 so	 very
weary	of	the	world	as	the	naughty	young	poet	with	the	flashing	eye	and	the
shaking	hand	pretended	to	be.



In	 the	 literature	 of	 his	 own	 country	 Gauss’	 tastes	 were	 somewhat
unusual	 for	 an	 intellectual	 German.	 Jean	 Paul	 was	 his	 favorite	 German
poet;	Goethe	and	Schiller,	whose	 lives	partly	overlapped	his	own,	he	did
not	esteem	very	highly.	Goethe,	he	said,	was	unsatisfying.	Being	completely
at	variance	with	Schiller’s	philosophical	 tenets,	Gauss	disliked	his	poetry.
He	 called	 Resignation	 a	 blasphemous,	 corrupt	 poem	 and	 wrote
“Mephistopheles!”	on	the	margin	of	his	copy.

The	facility	with	which	he	mastered	languages	in	his	youth	stayed	with
Gauss	 all	his	 life.	Languages	were	 rather	more	 to	him	 than	a	hobby.	To
test	 the	 plasticity	 of	 his	 mind	 as	 he	 grew	 older	 he	 would	 deliberately
acquire	 a	 new	 language.	 The	 exercise,	 he	 believed,	 helped	 to	 keep	 his
mind	young.	At	the	age	of	sixty	two	he	began	an	intensive	study	of	Russian
without	assistance	from	anyone.	Within	two	years	he	was	reading	Russian
prose	 and	 poetical	 works	 fluently,	 and	 carrying	 on	 his	 correspondence
with	scientific	friends	in	St.	Petersburg	wholly	in	Russian.	In	the	opinion	of
Russians	 who	 visited	 him	 in	 Göttingen	 he	 also	 spoke	 the	 language
perfectly.	Russian	literature	he	put	on	a	par	with	English	for	the	pleasure
it	gave	him.	He	also	tried	Sanskrit	but	disliked	it.

His	third	hobby,	world	politics,	absorbed	an	hour	or	so	of	his	time	every
day.	 Visiting	 the	 literary	museum	 regularly,	 he	 kept	 abreast	 of	 events	 by
reading	 all	 the	 newspapers	 to	 which	 the	 museum	 subscribed,	 from	 the
London	Times	to	the	Göttingen	local	news.

In	politics	the	intellectual	aristocrat	Gauss	was	conservative	through	and
through,	but	in	no	sense	reactionary.	His	times	were	turbulent,	both	in	his
own	country	and	abroad.	Mob	rule	and	acts	of	political	violence	roused	in
him—as	his	friend	Von	Waltershausen	reports—“an	indescribable	horror.”
The	Paris	revolt	of	1848	filled	him	with	dismay.

The	 son	 of	 poor	 parents	 himself,	 familiar	 from	 infancy	 with	 the
intelligence	and	morality	of	“the	masses,”	Gauss	remembered	what	he	had
observed,	 and	 his	 opinion	 of	 the	 intelligence,	 morality,	 and	 political
acumen	of	“the	people”—taken	in	the	mass,	as	demagogues	find	and	take
them—was	extremely	low.	“Mundus	vult	decepi”	he	believed	a	true	saying.

This	 disbelief	 in	 the	 innate	 morality,	 integrity,	 and	 intelligence	 of
Rousseau’s	“natural	man”	when	massed	into	a	mob	or	when	deliberating
in	 cabinets,	 parliaments,	 congresses,	 and	 senates,	 was	 no	 doubt	 partly
inspired	by	Gauss’	 intimate	knowledge,	as	a	man	of	science,	of	what	“the
natural	man”	did	to	the	scientists	of	France	in	the	early	days	of	the	French



Revolution.	It	may	be	true,	as	the	revolutionists	declared,	that	“the	people
have	 no	 need	 of	 science,”	 but	 such	 a	 declaration	 to	 a	 man	 of	 Gauss’
temperament	was	a	challenge.	Accepting	the	challenge,	Gauss	in	his	turn
expressed	his	acid	contempt	 for	all	 “leaders	of	 the	people”	who	 lead	the
people	 into	 turmoil	 for	 their	 own	 profit.	 As	 he	 aged	 he	 saw	 peace	 and
simple	contentment	as	 the	only	good	 things	 in	any	country.	Should	civil
war	 break	 out	 in	Germany,	 he	 said,	 he	would	 as	 soon	 be	 dead.	 Foreign
conquest	 in	 the	 grand	 Napoleonic	 manner	 he	 looked	 upon	 as	 an
incomprehensible	madness.

These	 conservative	 sentiments	were	not	 the	nostalgia	 of	 a	 reactionary
who	bids	 the	world	defy	 the	 laws	of	celestial	mechanics	and	stand	still	 in
the	heavens	of	a	dead	and	unchanging	past.	Gauss	believed	in	reforms—
when	 they	were	 intelligent.	And	 if	brains	are	not	 to	 judge	when	reforms
are	intelligent	and	when	they	are	not,	what	organ	of	the	human	body	is?
Gauss	had	brains	enough	to	see	where	the	ambitions	of	some	of	the	great
statesmen	 of	 his	 own	 reforming	 generation	 were	 taking	 Europe.	 The
spectacle	did	not	inspire	his	confidence.

His	 more	 progressive	 friends	 ascribed	 Gauss’	 conservatism	 to	 the
closeness	with	which	he	stuck	to	his	work.	This	may	have	had	something	to
do	with	it.	For	the	last	twenty	seven	years	of	his	life	Gauss	slept	away	from
his	observatory	only	once,	when	he	attended	a	scientific	meeting	in	Berlin
to	 please	 Alexander	 von	Humboldt	 who	 wished	 to	 show	 him	 off.	 But	 a
man	does	not	always	have	to	be	flying	about	all	over	the	map	to	see	what	is
going	on.	Brains	and	the	ability	to	read	newspapers	(even	when	they	lie)
and	government	 reports	 (especially	when	 they	 lie)	 are	 sometimes	better
than	 any	 amount	 of	 sightseeing	 and	 hotel	 lobby	 gossip.	 Gauss	 stayed	 at
home,	read,	disbelieved	most	of	what	he	read,	thought,	and	arrived	at	the
truth.

Another	 source	 of	 Gauss’	 strength	 was	 his	 scientific	 serenity	 and	 his
freedom	 from	 personal	 ambition.	 All	 his	 ambition	 was	 for	 the
advancement	 of	mathematics.	When	 rivals	 doubted	his	 assertion	 that	 he
had	anticipated	them—not	stated	boastfully,	but	as	a	fact	germane	to	the
matter	 in	hand—Gauss	did	not	exhibit	his	diary	 to	prove	his	priority	but
let	his	statement	stand	on	its	own	merits.

Legendre	was	 the	most	outspoken	of	 these	doubters.	One	experience
made	him	Gauss’	enemy	for	life.	In	the	Theoria	motus	Gauss	had	referred
to	his	early	discovery	of	the	method	of	least	squares.	Legendre	published



the	 method	 in	 1806,	 before	 Gauss.	 With	 great	 indignation	 he	 wrote	 to
Gauss	practically	accusing	him	of	dishonesty	and	complaining	that	Gauss,
so	rich	in	discoveries,	might	have	had	the	decency	not	to	appropriate	the
method	of	 least	 squares,	which	Legendre	regarded	as	his	own	ewe	 lamb.
Laplace	entered	the	quarrel.	Whether	he	believed	the	assurances	of	Gauss
that	Legendre	had	indeed	been	anticipated	by	ten	years	or	more,	he	does
not	 say,	 but	 he	 retains	 his	 usual	 suavity.	 Gauss	 apparently	 disdained	 to
argue	 the	 matter	 further.	 But	 in	 a	 letter	 to	 a	 friend	 he	 indicates	 the
evidence	which	might	have	ended	the	dispute	then	and	there	had	Gauss
not	 been	 “too	 proud	 to	 fight.”	 “I	 communicated	 the	 whole	 matter	 to
Olbers	in	1802,”	he	says,	and	if	Legendre	had	been	inclined	to	doubt	this
he	could	have	asked	Olbers,	who	had	the	manuscript.

The	dispute	was	most	unfortunate	 for	 the	subsequent	development	of
mathematics,	 as	 Legendre	 passed	 on	 his	 unjustified	 suspicions	 to	 Jacobi
and	 so	prevented	 that	dazzling	 young	developer	of	 the	 theory	of	 elliptic
functions	from	coming	to	cordial	terms	with	Gauss.	The	misunderstanding
was	all	 the	more	regrettable	because	Legendre	was	a	man	of	 the	highest
character	and	scrupulously	fair	himself.	It	was	his	fate	to	be	surpassed	by
more	imaginative	mathematicians	than	himself	in	the	fields	where	most	of
his	 long	and	 laborious	 life	was	 spent	 in	 toil	which	younger	men—Gauss,
Abel,	and	 Jacobi—showed	 to	have	been	superfluous.	At	every	 step	Gauss
strode	far	ahead	of	Legendre.	Yet	when	Legendre	accused	him	of	unfair
dealing	Gauss	 felt	 that	he	himself	had	been	 left	 in	 the	 lurch.	Writing	 to
Schumacher	(July	SO,	1806),	he	complains	that	“It	seems	to	be	my	fate	to
concur	 in	 nearly	 all	my	 theoretical	 works	 with	 Legendre.	 So	 it	 is	 in	 the
higher	 arithmetic,	 in	 the	 researches	 in	 transcendental	 functions
connected	with	the	rectification	[the	process	for	finding	the	length	of	an
arc	 of	 a	 curve]	 of	 the	 ellipse,	 in	 the	 foundations	 of	 geometry	 and	 now
again	 here	 [in	 the	method	 of	 least	 squares,	 which]	 .	 .	 .	 is	 also	 used	 in
Legendre’s	work	and	indeed	right	gallantly	carried	through.”

With	the	detailed	publication	of	Gauss’	posthumous	papers	and	much
of	 his	 correspondence	 in	 recent	 years	 all	 these	 old	 disputes	 have	 been
settled	 once	 for	 all	 in	 favor	 of	 Gauss.	 There	 remains	 another	 score	 on
which	he	has	been	criticized,	his	lack	of	cordiality	in	welcoming	the	great
work	 of	 others,	 particularly	 of	 younger	 men.	 When	 Cauchy	 began
publishing	his	brilliant	discoveries	in	the	theory	of	functions	of	a	complex
variable,	Gauss	ignored	them.	No	word	of	praise	or	encouragement	came



from	 the	 Prince	 of	Mathematicians	 to	 the	 young	 Frenchman.	Well,	 why
should	 it	 have	 come?	Gauss	 himself	 (as	 we	 have	 seen)	 had	 reached	 the
heart	of	the	matter	years	before	Cauchy	started.	A	memoir	on	the	theory
was	 to	 have	 been	 one	 of	 Gauss’	 masterpieces.	 Again,	 when	 Hamilton’s
work	 on	 quaternions	 (to	 be	 considered	 in	 a	 later	 chapter)	 came	 to	 his
attention	 in	 1852,	 three	 years	 before	 his	 death,	 Gauss	 said	 nothing.	Why
should	 he	 have	 said	 anything?	 The	 crux	 of	 the	matter	 lay	 buried	 in	 his
notes	of	more	 than	 thirty	 years	before.	He	held	his	peace	 and	made	no
claim	 for	 priority.	As	 in	his	 anticipations	 of	 the	 theory	 of	 functions	 of	 a
complex	 variable,	 elliptic	 functions,	 and	non-Euclidean	 geometry,	Gauss
was	content	to	have	done	the	work.

The	gist	of	quaternions	is	the	algebra	which	does	for	rotations	in	space
of	 three	 dimensions	 what	 the	 algebra	 of	 complex	 numbers	 does	 for
rotations	 in	 a	 plane.	 But	 in	 quaternions	 (Gauss	 called	 them	mutations)
one	of	the	fundamental	rules	of	algebra	breaks	down:	it	is	no	longer	true
that	a	×	b	=	b	×	a,	and	it	 is	 impossible	to	make	an	algebra	of	rotations	 in
three	 dimensions	 in	 which	 this	 rule	 is	 preserved.	 Hamilton,	 one	 of	 the
great	mathematical	geniuses	of	the	nineteenth	century,	records	with	Irish
exuberance	 how	 he	 struggled	 for	 fifteen	 years	 to	 invent	 a	 consistent
algebra	 to	 do	what	 was	 required	 until	 a	 happy	 inspiration	 gave	 him	 the
clue	that	a	×	b	 is	not	equal	 to	b	×	a	 in	 the	algebra	he	was	 seeking.	Gauss
does	not	state	how	long	it	took	him	to	reach	the	goal;	he	merely	records
his	 success	 in	 a	 few	 pages	 of	 algebra	 that	 leave	 no	 mathematics	 to	 the
imagination.

If	Gauss	was	somewhat	cool	 in	his	printed	expressions	of	appreciation
he	was	cordial	enough	in	his	correspondence	and	in	his	scientific	relations
with	those	who	sought	him	out	in	a	spirit	of	disinterested	inquiry.	One	of
his	scientific	friendships	is	of	more	than	mathematical	interest	as	it	shows
the	 liberality	 of	 Gauss’	 views	 regarding	 women	 scientific	 workers.	 His
broadmindedness	in	this	respect	would	have	been	remarkable	for	any	man
of	his	generation;	for	a	German	it	was	almost	without	precedent.

The	lady	in	question	was	Mademoiselle	Sophie	Germain	(1776–1831)—
just	a	year	older	 than	Gauss.	She	and	Gauss	never	met,	and	she	died	(in
Paris)	 before	 the	 University	 of	 Göttingen	 could	 confer	 the	 honorary
doctor’s	 degree	 which	Gauss	 recommended	 to	 the	 faculty.	 By	 a	 curious
coincidence	we	shall	see	the	most	celebrated	woman	mathematician	of	the
nineteenth	 century,	 another	 Sophie,	 getting	 her	 degree	 from	 the	 same



liberal	University	many	years	later	after	Berlin	had	refused	her	on	account
of	her	sex.	Sophie	appears	to	be	a	lucky	name	in	mathematics	for	women
—provided	they	affiliate	with	broadminded	teachers.	The	leading	woman
mathematician	of	our	own	 times,	Emmy	Noether	 (1882-1935)	 also	 came
from	Göttingen.IV

Sophie	 Germain’s	 scientific	 interests	 embraced	 acoustics,	 the
mathematical	theory	of	elasticity,	and	the	higher	arithmetic,	in	all	of	which
she	 did	 notable	 work.	 One	 contribution	 in	 particular	 to	 the	 study	 of
Fermat’s	 Last	 Theorem	 led	 in	 1908	 to	 a	 considerable	 advance	 in	 this
direction	by	the	American	mathematician	Leonard	Eugene	Dickson	(1874
←).

Entranced	by	the	Disquisitiones	Arithmeticae,	Sophie	wrote	to	Gauss	some
of	 her	 own	 arithmetical	 observations.	 Fearing	 that	 Gauss	 might	 be
prejudiced	against	a	woman	mathematician,	 she	assumed	a	man’s	name.
Gauss	 formed	 a	 high	 opinion	 of	 the	 talented	 correspondent	 whom	 he
addressed	in	excellent	French	as	“Mr.	Leblanc.”

Leblanc	dropped	her—or	his—disguise	when	she	was	forced	to	divulge
her	 true	name	to	Gauss	on	the	occasion	of	her	having	done	him	a	good
turn	with	the	French	infesting	Hanover.	Writing	on	April	30,	1807,	Gauss
thanks	 his	 correspondent	 for	 her	 intervention	 on	 his	 behalf	 with	 the
French	General	Pernety	and	deplores	the	war.	Continuing,	he	pays	her	a
high	compliment	and	expresses	something	of	his	own	love	for	the	theory
of	numbers.	As	the	latter	is	particularly	of	interest	we	shall	quote	from	this
letter	which	shows	Gauss	in	one	of	his	cordially	human	moods.

“But	how	describe	to	you	my	admiration	and	astonishment	at	seeing	my
esteemed	 correspondent	 Mr.	 Leblanc	 metamorphose	 himself	 into	 this
illustrious	personage	[Sophie	Germain]	who	gives	such	a	brilliant	example
of	what	I	would	find	it	difficult	to	believe.	A	taste	for	the	abstract	sciences
in	general	and	above	all	the	mysteries	of	numbers	is	excessively	rare:	one	is
not	astonished	at	it;	the	enchanting	charms	of	this	sublime	science	reveal
themselves	only	 to	 those	who	have	 the	 courage	 to	go	deeply	 into	 it.	But
when	a	person	of	the	sex	which,	according	to	our	customs	and	prejudices,
must	encounter	infinitely	more	difficulties	than	men	to	familiarize	herself
with	these	thorny	researches,	succeeds	nevertheless	in	surmounting	these
obstacles	 and	penetrating	 the	most	 obscure	 parts	 of	 them,	 then	without
doubt	she	must	have	the	noblest	courage,	quite	extraordinary	talents	and
a	superior	genius.	Indeed	nothing	could	prove	to	me	in	so	flattering	and



less	 equivocal	 manner	 that	 the	 attractions	 of	 this	 science,	 which	 has
enriched	my	life	with	so	many	joys,	are	not	chimerical,	as	the	predilection
with	which	you	have	honored	it.”	He	then	goes	on	to	discuss	mathematics
with	her.	A	delightful	touch	is	the	date	at	the	end	of	the	letter:	“Bronsvic
ce	30	Avril	1807	jour	de	ma	naissance—Brunswick,	this	30th	of	April,	1807,
my	birthday.”

That	Gauss	was	not	merely	being	polite	 to	a	 young	woman	admirer	 is
shown	by	a	 letter	of	 July	21,	1807	 to	his	 friend	Olbers.	 “.	 .	 .	Lagrange	 is
warmly	 interested	 in	 astronomy	 and	 the	 higher	 arithmetic;	 the	 two	 test-
theorems	(for	what	primes	2	is	a	cubic	or	a	biquadratic	residue),	which	I
also	communicated	to	him	some	time	ago,	he	considers	’among	the	most
beautiful	things	and	the	most	difficult	to	prove/	But	Sophie	Germain	has
sent	me	the	proofs	of	these;	I	have	not	yet	been	able	to	go	through	them,
but	I	believe	they	are	good;	at	least	she	had	attacked	the	matter	from	the
right	 side,	 only	 somewhat	more	 diffusely	 than	 would	 be	 necessary.	 .	 .	 .”
The	theorems	to	which	Gauss	refers	are	those	stating	for	what	odd	primes
p	each	of	the	congruences	x3	≡	2	(mod	p),	x4	≡	2	(mod	p)	is	solvable.

*		*		*

It	 would	 take	 a	 long	 book	 (possibly	 a	 longer	 one	 than	 would	 be
required	 for	 Newton)	 to	 describe	 all	 the	 outstanding	 contributions	 of
Gauss	to	mathematics,	both	pure	and	applied.	Here	we	can	only	refer	to
some	of	the	more	important	works	that	have	not	already	been	mentioned,
and	 we	 shall	 select	 those	 which	 have	 added	 new	 techniques	 to
mathematics	or	which	rounded	off	outstanding	problems.	As	a	rough	but
convenient	 table	 of	 dates	 (from	 that	 adopted	 by	 the	 editors	 of	 Gauss’
works)	we	summarize	the	principal	fields	of	Gauss’	interests	after	1800	as
follows:	 1800-1820,	 astronomy;	 1820-1830,	 geodesy,	 the	 theories	 of
surfaces,	 and	 conformal	 mapping;	 1830-1840,	 mathematical	 physics,
particularly	 electromagnetism,	 terrestrial	 magnetism,	 and	 the	 theory	 of
attraction	 according	 to	 the	Newtonian	 law;	 18411855,	 analysis	 situs,	 and
the	geometry	associated	with	functions	of	a	complex	variable.

During	 the	 period	 1821-1848	 Gauss	 was	 scientific	 adviser	 to	 the
Hanoverian	(Göttingen	was	then	under	the	government	of	Hanover)	and
Danish	governments	in	an	extensive	geodetic	survey.	Gauss	threw	himself
into	 the	 work.	 His	 method	 of	 least	 squares	 and	 his	 skill	 in	 devising



schemes	for	handling	masses	of	numerical	data	had	full	scope	but,	more
importantly,	the	problems	arising	in	the	precise	survey	of	a	portion	of	the
earth’s	surface	undoubtedly	suggested	deeper	and	more	general	problems
connected	 with	 all	 curved	 surfaces.	 These	 researches	 were	 to	 beget	 the
mathematics	 of	 relativity.	 The	 subject	 was	 not	 new:	 several	 of	 Gauss’
predecessors,	 notably	 Euler,	 Lagrange,	 and	 Monge,	 had	 investigated
geometry	on	certain	types	of	curved	surfaces,	but	it	remained	for	Gauss	to
attack	the	problem	in	all	its	generality,	and	from	his	investigations	the	first
great	period	of	differential	geometry	developed.

Differential	 geometry	 may	 be	 roughly	 described	 as	 the	 study	 of
properties	 of	 curves,	 surfaces,	 etc.,	 in	 the	 immediate	neighborhood	of	 a
point,	 so	 that	 higher	 powers	 than	 the	 second	 of	 distances	 can	 be
neglected.	 Inspired	 by	 this	 work,	 Riemann	 in	 1854	 produced	 his	 classic
dissertation	on	 the	hypotheses	which	 lie	at	 the	 foundations	of	geometry,
which,	in	its	turn,	began	the	second	great	period	in	differential	geometry,
that	 which	 is	 today	 of	 use	 in	 mathematical	 physics,	 particularly	 in	 the
theory	of	general	relativity.

Three	of	the	problems	which	Gauss	considered	in	his	work	on	surfaces
suggested	general	theories	of	mathematical	and	scientific	importance:	the
measurement	 of	 curvature,	 the	 theory	 of	 conformal	 representation	 (or
mapping),	and	the	applicability	of	surfaces.

The	unnecessarily	mystical	motion	of	a	“curved”	space-time,	which	is	a
purely	 mathematical	 extension	 of	 familiar,	 visualizable	 curvature	 to	 a
“space”	 described	 by	 four	 coordinates	 instead	 of	 two,	 was	 a	 natural
development	of	Gauss’	work	on	curved	surfaces.	One	of	his	definitions	will
illustrate	the	reasonableness	of	all.	The	problem	is	to	devise	some	precise
means	for	describing	how	the	“curvature”	of	a	surface	varies	from	point	to
point	of	 the	 surface;	 the	description	must	 satisfy	our	 intuitive	 feeling	 for
what	“more	curved”	and	“less	curved”	signify.



The	 total	 curvature	of	any	part	of	a	 surface	bounded	by	an	unlooped
closed	 curve	C	 is	 defined	 as	 follows.	 The	 normal	 to	 a	 surface	 at	 a	 given
point	is	that	straight	line	passing	through	the	point	which	is	perpendicular
to	the	plane	which	touches	the	surface	at	the	given	point.	At	each	point	of
C	there	is	a	normal	to	the	surface.	Imagine	all	these	normals	drawn.	Now,
from	the	center	of	a	sphere	(which	may	be	anywhere	with	reference	to	the
surface	 being	 considered),	 whose	 radius	 is	 equal	 to	 the	 unit	 length,
imagine	all	the	radii	drawn	which	are	parallel	to	the	normals	to	C.	These
radii	will	cut	out	a	curve,	say	C,	on	the	sphere	of	unit	radius.	The	area	of
that	part	of	the	spherical	surface	which	is	enclosed	by	C′	 is	defined	to	be
the	total	curvature	of	the	part	of	the	given	surface	which	is	enclosed	by	C.	A
little	 visualization	 will	 show	 that	 this	 definition	 accords	 with	 common
notions	as	required.

Another	 fundamental	 idea	exploited	by	Gauss	 in	his	 study	of	 surfaces
was	that	of	parametric	representation.

It	 requires	 two	 coordinates	 to	 specify	 a	 particular	 point	 on	 a	 plane.
Likewise	on	the	surface	of	a	sphere,	or	on	a	spheroid	like	the	Earth:	 the
coordinates	in	this	case	may	be	thought	of	as	latitude	and	longitude.	This
illustrates	what	is	meant	by	a	two-dimensional	manifold.	Generally:	if	precisely
n	numbers	are	both	necessary	and	sufficient	to	specify	(individualize)	each
particular	member	of	a	class	of	things	(points,	sounds,	colors,	lines,	etc.,)
the	class	is	said	to	be	an	n-dimensional	manifold.	In	such	specifications	it	is
agreed	that	only	certain	characteristics	of	the	members	of	the	class	shall	be
assigned	numbers.	Thus	if	we	consider	only	the	pitch	of	sounds,	we	have	a



one-dimensional	 manifold,	 because	 one	 number,	 the	 frequency	 of	 the
vibration	corresponding	 to	 the	 sound,	 suffices	 to	determine	 the	pitch;	 if
we	add	loudness—measured	on	some	convenient	scale—sounds	are	now	a
two-dimensional	manifold,	and	so	on.	If	now	we	regard	a	surface	as	being
made	up	of	points,	we	 see	 that	 it	 is	a	 two-dimensional	manifold	 (of	points).
Using	the	language	of	geometry	we	find	it	convenient	to	speak	of	any	two-
dimensional	 manifold	 as	 a	 “surface,”	 and	 to	 apply	 to	 the	 manifold	 the
reasoning	of	geometry—in	the	hope	of	finding	something	interesting.

The	foregoing	considerations	lead	to	the	parametric	representation	of
surfaces.	 In	 Descartes’	 geometry	 one	 equation	 between	 three	 coordinates
represents	a	surface.	Say	the	coordinates	(Cartesian)	are	x,	y,	z.	Instead	of
using	a	single	equation	connecting	x,	y,	z	to	represent	the	surface,	we	now
seek	three:

x	=	f(u,	v),	y	=	g(u,	v),	z	=	h(u,	v),

where	 f(u,	v),	g(u,	v),	h(u,	v)	are	such	functions	(expressions)	of	 the	new
variables	u,	v	 that	 when	 these	 variables	 are	 eliminated	 (got	 rid	 of—“put
over	the	threshold,”	literally)	there	results	between	x,	y,	z	the	equation	of
the	surface.	The	elimination	is	possible,	because	two	of	the	equations	can
be	 used	 to	 solve	 for	 the	 two	 unknowns	 u,	 v;	 the	 results	 can	 then	 be
substituted	in	the	third.	For	example,	if

x	=	u	+	v,	y	=	u—v,	z	=	uv,

we	get	u	=	½(x	+	y),	v	=	½(x—y)	from	the	first	two,	and	hence	4z	=	x2—y2
from	the	third.	Now	as	the	variables	u,	v	 independently	run	through	any
prescribed	 set	 of	 numbers,	 the	 functions	 f,	 g,	 h	 will	 take	 on	 numerical
values	and	x,	y,	z	will	move	on	the	surface	whose	equations	are	the	three
written	above.	The	variables	u,	v	are	called	the	parameters	 for	 the	surface,
and	the	three	equations	x	=	f(u,	v),	y	=	g(u,	v),	z	=	h(u,	v)	their	parametric
equations.	This	method	of	representing	surfaces	has	great	advantages	over
the	Cartesian	when	applied	to	the	study	of	curvature	and	other	properties
of	surfaces	which	vary	rapidly	from	point	to	point.

Notice	 that	 the	 parametric	 representation	 is	 intrinsic;	 it	 refers	 to	 the
surface	itself	for	its	coordinates,	and	not	to	an	extrinsic,	or	extraneous,	set
of	 axes,	 not	 connected	 with	 the	 surface,	 as	 is	 the	 case	 in	 Descartes’
method.	Observe	also	 that	 the	 two	parameters	u,	v	 immediately	 show	up



the	two-dimensionality	of	the	surface.	Latitude	and	longitude	on	the	earth
are	 instances	 of	 these	 intrinsic,	 “natural”	 coordinates;	 it	 would	 be	most
awkward	to	have	to	do	all	our	navigation	with	reference	to	three	mutually
perpendicular	 axes	 drawn	 through	 the	 center	 of	 the	Earth,	 as	would	be
required	for	Cartesian	sailing.

Another	advantage	of	the	method	is	its	easy	generalization	to	a	space	of
any	 number	 of	 dimensions.	 It	 suffices	 to	 increase	 the	 number	 of
parameters	 and	proceed	as	before.	When	we	 come	 to	Riemann	we	 shall
see	how	these	simple	ideas	led	naturally	to	a	generalization	of	the	metric
geometry	of	Pythagoras	and	Euclid.	The	foundations	of	this	generalization
were	 laid	 down	 by	 Gauss,	 but	 their	 importance	 for	 mathematics	 and
physical	science	was	not	fully	appreciated	till	our	own	century.

Geodetic	 researches	 also	 suggested	 to	 Gauss	 the	 development	 of
another	powerful	method	in	geometry,	that	of	conformal	mapping.	Before
a	map	can	be	drawn,	say	of	Greenland,	it	is	necessary	to	determine	what	is
to	be	preserved.	Are	distances	 to	be	distorted,	 as	 they	are	on	Mercator’s
projection,	 till	 Greenland	 assumes	 an	 exaggerated	 importance	 in
comparison	with	North	America?	Or	are	distances	to	be	preserved,	so	that
one	 inch	on	the	map,	measured	anywhere	along	the	reference	 lines	(say
those	 for	 latitude	 and	 longitude)	 shall	 always	 correspond	 to	 the	 same
distance	measured	on	the	surface	of	the	earth?	If	so,	one	kind	of	mapping
is	demanded,	and	 this	kind	will	not	preserve	 some	other	 feature	 that	we
may	wish	to	preserve;	for	example,	if	two	roads	on	the	earth	intersect	at	a
certain	angle,	the	lines	representing	these	roads	on	the	map	will	intersect
at	a	different	angle.	That	kind	of	mapping	which	preserves	angles	 is	called
conformal.	In	such	mapping	the	theory	of	analytic	functions	of	a	complex
variable,	described	earlier,	is	the	most	useful	tool.

The	 whole	 subject	 of	 conformal	 mapping	 is	 of	 constant	 use	 in
mathematical	 physics	 and	 its	 applications,	 for	 example	 in	 electrostatics,
hydrodynamics	and	its	offspring	aerodynamics,	in	the	last	of	which	it	plays
a	part	in	the	theory	of	the	airfoil.

Another	 field	 of	 geometry	 which	 Gauss	 cultivated	 with	 his	 usual
thoroughness	and	success	was	that	of	the	applicability	of	surfaces,	in	which
it	is	required	to	determine	what	surfaces	can	be	bent	onto	a	given	surface
without	 stretching	 or	 tearing.	 Here	 again	 the	 methods	 Gauss	 invented
were	general	and	of	wide	utility.



To	 other	 departments	 of	 science	 Gauss	 contributed	 fundamental
researches,	 for	 example	 in	 the	 mathematical	 theories	 of
electromagnetism,	 including	 terrestrial	 magnetism,	 capillarity,	 the
attraction	of	ellipsoids	(the	planets	are	 special	kinds	of	ellipsoids)	where
the	law	of	attraction	is	the	Newtonian,	and	dioptrics,	especially	concerning
systems	of	 lenses.	The	last	gave	him	an	opportunity	 to	apply	some	of	 the
purely	 abstract	 technique	 (continued	 fractions)	 he	 had	 developed	 as	 a
young	man	to	satisfy	his	curiosity	in	the	theory	of	numbers.

Gauss	 not	 only	 mathematicized	 sublimely	 about	 all	 these	 things;	 he
used	his	hands	and	his	eyes,	and	was	an	extremely	accurate	observer.	Many
of	 the	 specific	 theorems	he	 discovered,	 particularly	 in	 his	 researches	 on
electromagnetism	and	 the	 theory	of	 attraction,	have	become	part	 of	 the
indispensable	stock	in	trade	of	all	who	work	seriously	in	physical	science.
For	many	years	Gauss,	aided	by	his	friend	Weber,	sought	a	satisfying	theory
for	all	electromagnetic	phenomena.	Failing	to	find	one	that	he	considered
satisfactory	 he	 abandoned	 his	 attempt.	 Had	 he	 found	 Clerk	 Maxwell’s
(1831–1879)	 equations	 of	 the	 electromagnetic	 field	he	might	have	been
satisfied.

To	conclude	this	long	but	still	far	from	complete	list	of	the	great	things
that	 earned	 Gauss	 the	 undisputed	 title	 of	 Prince	 of	 Mathematicians	 we
must	allude	to	a	subject	on	which	he	published	nothing	beyond	a	passing
mention	in	his	dissertation	of	1799,	but	which	he	predicted	would	become
one	 of	 the	 chief	 concerns	 of	 mathematics—analysis	 situs.	 A	 technical
definition	of	what	this	means	is	impossible	here	(it	requires	the	notion	of
a	continuous	group),	but	 some	hint	of	 the	type	of	problem	with	which	the
subject	deals	can	be	gathered	from	a	simple	instance.	Any	sort	of	a	knot	is
tied	 in	 a	 string,	 and	 the	 ends	 of	 the	 string	 are	 then	 tied	 together.	 A
“simple”	 knot	 is	 easily	 distinguishable	 by	 eye	 from	 a	 “complicated”	 one,
but	 how	 are	 we	 to	 give	 an	 exact,	 mathematical	 specification	 of	 the
difference	 between	 the	 two?	 And	 how	 are	 we	 to	 classify	 knots
mathematically?	Although	he	published	nothing	on	this,	Gauss	had	made
a	beginning,	as	was	discovered	in	his	posthumous	papers.	Another	type	of
problem	in	this	subject	is	to	determine	the	least	number	of	cuts	on	a	given
surface	which	will	 enable	us	 to	 flatten	 the	 surface	out	on	 a	plane.	 For	 a
conical	surface	one	cut	suffices;	for	an	anchor	ring,	two;	for	a	sphere,	no
finite	number	of	cuts	suffices	if	no	stretching	is	permitted.



These	 examples	may	 suggest	 that	 the	whole	 subject	 is	 trivial.	 But	 if	 it
had	been,	Gauss	would	not	have	attached	the	extraordinary	importance	to
it	 that	 he	 did.	 His	 prediction	 of	 its	 fundamental	 character	 has	 been
fulfilled	in	our	own	generation.	Today	a	vigorous	school	(including	many
Americans—J.	W.	 Alexander,	 S.	 Lefschetz,	 O.	 Veblen,	 among	 others)	 is
finding	 that	 analysis	 situs,	 or	 the	 “geometry	 of	 position”	 as	 it	 used
sometimes	 to	 be	 called,	 has	 far-reaching	 ramifications	 in	 both	 geometry
and	 analysis.	What	 a	 pity	 it	 seems	 to	 us	 now	 that	 Gauss	 could	 not	 have
stolen	a	year	or	two	from	Ceres	to	organize	his	thoughts	on	this	vast	theory
which	was	 to	become	 the	dream	of	his	old	age	and	a	 reality	of	our	own
young	age.

*		*		*

His	 last	 years	 were	 full	 of	 honor,	 but	 he	 was	 not	 as	 happy	 as	 he	 had
earned	the	right	to	be.	As	powerful	of	mind	and	as	prolifically	inventive	as
he	had	ever	been,	Gauss	was	not	eager	for	rest	when	the	first	symptoms	of
his	last	illness	appeared	some	months	before	his	death.

A	 narrow	 escape	 from	 a	 violent	 death	 had	made	 him	more	 reserved
than	ever,	and	he	could	not	bring	himself	to	speak	of	the	sudden	passing
of	 a	 friend.	 For	 the	 first	 time	 in	 more	 than	 twenty	 years	 he	 had	 left
Göttingen	 on	 June	 16,	 1854,	 to	 see	 the	 railway	 under	 construction
between	his	town	and	Cassel.	Gauss	had	always	taken	a	keen	interest	in	the
construction	 and	 operation	 of	 railroads;	 now	 he	 would	 see	 one	 being
built.	 The	 horses	 bolted;	 he	 was	 thrown	 from	 his	 carriage,	 unhurt,	 but
badly	 shocked.	 He	 recovered,	 and	 had	 the	 pleasure	 of	 witnessing	 the
opening	ceremonies	when	the	railway	reached	Göttingen	on	July	31,	1854.	It
was	his	last	day	of	comfort.

With	 the	opening	of	 the	new	 year	he	began	 to	 suffer	greatly	 from	an
enlarged	 heart	 and	 shortness	 of	 breath,	 and	 symptoms	 of	 dropsy
appeared.	 Nevertheless	 he	 worked	 when	 he	 could,	 although	 his	 hand
cramped	and	his	beautifully	clear	writing	broke	at	 last.	The	last	 letter	he
wrote	was	to	Sir	David	Brewster	on	the	discovery	of	the	electric	telegraph.

Fully	 conscious	 almost	 to	 the	 end	 he	 died	 peacefully,	 after	 a	 severe
struggle	to	live,	early	on	the	morning	of	February	23,	1855,	in	his	seventy
eighth	year.	He	lives	everywhere	in	mathematics.



I.	The	legend	of	Gauss’	relations	to	his	parents	has	still	to	be	authenticated.	Although,	as	will	be
seen	later,	the	mother	stood	by	her	son,	the	father	opposed	him;	and,	as	was	customary	then	(usually,
also,	now),	 in	 a	German	household,	 the	 father	 had	 the	 last	word.—I	 allude	 later	 to	 legends	 from
living	 persons	 who	 had	 known	 members	 of	 the	 Gauss	 family,	 particularly	 in	 respect	 to	 Gauss’
treatment	of	his	sons.	These	allusions	refer	to	first-hand	evidence;	but	I	do	not	vouch	for	them,	as
the	people	were	very	old.

II.	Shakespeare’s	King	Lear,	Act	I,	Scene	II,	1-2,	with	the	essential	change	of	“laws”	for	“law.”

III.	Adrien-Marie	Legendre	(1752-1833).	Considerations	of	space	preclude	an	account	of	his	life;
much	of	his	best	work	was	absorbed	or	circumvented	by	younger	mathematicians.

IV.	 “Came	 from”	 is	 right.	When	 the	 sagacious	Nazis	expelled	Fräulein	Noether	 from	Germany
because	she	was	a	Jewess,	Bryn	Mawr	College,	Pennsylvania,	took	her	in.	She	was	the	most	creative
abstract	algebraist	in	the	world.	In	less	than	a	week	of	the	new	German	enlightenment,	Göttingen
lost	the	liberality	which	Gauss	cherished	and	which	he	strove	all	his	life	to	maintain.



CHAPTER	FIFTEEN

Mathematics	and	Windmills

CAUCHY

A	man	may	say	even	his	pater	noster	out	of	turn.—SPANISH	PROVERB

IN	 THE	 FIRST	 THREE	 DECADES	 of	 the	 nineteenth	 century	mathematics	 quite
suddenly	became	something	noticeably	different	from	what	it	had	been	in
the	heroic	post-Newtonian	age	of	 the	eighteenth.	The	change	was	 in	 the
direction	 of	 greater	 rigor	 in	 demonstration	 following	 an	unprecedented
generality	 and	 freedom	 of	 inventiveness.	 Something	 of	 the	 same	 sort	 is
plainly	 visible	 again	 today,	 and	 he	 would	 be	 a	 rash	 prophet	 who	 would
venture	 to	 forecast	 what	 mathematics	 will	 be	 like	 three-quarters	 of	 a
century	hence.

At	the	beginning	of	the	nineteenth	century	only	Gauss	had	any	inkling
of	 what	 was	 so	 soon	 to	 come,	 but	 his	Newtonian	 reserve	 held	 him	back
from	telling	Lagrange,	Laplace,	and	Legendre	what	he	foresaw.	Although
the	 great	 French	 mathematicians	 lived	 well	 into	 the	 first	 third	 of	 the
nineteenth	 century	 much	 of	 their	 work	 now	 appears	 to	 have	 been
preparatory.	 Lagrange	 in	 the	 theory	 of	 equations	 prepared	 the	 way	 for
Abel	 and	Galois;	 Laplace,	 with	his	 work	 on	 the	 differential	 equations	 of
Newtonian	astronomy—including	the	theory	of	gravitation—hinted	at	the
phenomenal	 development	 of	 mathematical	 physics	 in	 the	 nineteenth
century;	while	Legendre’s	researches	in	the	integral	calculus	suggested	to
Abel	and	Jacobi	one	of	the	most	fertile	fields	of	investigation	analysis	has
ever	acquired.	Lagrange’s	analytical	mechanics	is	still	modern;	but	even	it
was	to	receive	magnificent	additions	at	the	hands	of	Hamilton	and	Jacobi
and,	later,	Poincaré.	Lagrange’s	work	in	the	calculus	of	variations	was	also
to	 remain	 classic	 and	useful,	 but	 again	 the	work	of	Weierstrass	 gave	 it	 a
new	direction	under	the	rigorous,	inventive	spirit	of	the	latter	half	of	the
nineteenth	century,	and	this	in	its	turn	has	been	amplified	and	renovated



in	our	own	times	(American	and	Italian	mathematicians	taking	a	leading
part	in	the	development).

*		*		*

Augustin-Louis	 Cauchy,	 the	 first	 of	 the	 great	 French	 mathematcians
whose	thought	belongs	definitely	to	the	modern	age,	was	born	in	Paris	on
August	21,	1789—a	little	less	than	six	weeks	after	the	fall	of	the	Bastille.	A
child	of	the	Revolution,	he	paid	his	tax	to	liberty	and	equality	by	growing
up	with	an	undernourished	body.	It	was	only	by	the	diplomacy	and	good
sense	 of	 his	 father	 that	 Cauchy	 survived	 at	 all	 in	 the	 midst	 of	 semi-
starvation.	 Having	 outlived	 the	 Terror,	 he	 graduated	 from	 the
Polytechnique	 into	 the	 service	 of	 Napoleon.	 After	 the	 downfall	 of	 the
Napoleonic	 order	 Cauchy	 got	 his	 full	 share	 of	 deprivations	 from
revolutions	 and	 counter-revolutions,	 and	 in	 a	 measure	 his	 work	 was
affected	 by	 the	 social	 unrest	 of	 his	 times.	 If	 revolutions	 and	 the	 like	 do
affect	 a	 scientific	 man’s	 work,	 Cauchy	 should	 be	 the	 prize	 laboratory
specimen	 for	 proving	 the	 fact.	 He	 had	 an	 extraordinary	 fertility	 in
mathematical	 inventiveness	and	a	 fecundity	 that	has	been	surpassed	only
twice—by	Euler	and	Cayley.	His	work,	like	his	times,	was	revolutionary.

Modern	 mathematics	 is	 indebted	 to	 Cauchy	 for	 two	 of	 its	 major
interests,	each	of	which	marks	a	sharp	break	with	the	mathematics	of	the
eighteenth	 century.	 The	 first	 was	 the	 introduction	 of	 rigor	 into
mathematical	 analysis.	 It	 is	 difficult	 to	 find	 an	 adequate	 simile	 for	 the
magnitude	of	this	advance;	perhaps	the	following	will	do.	Suppose	that	for
centuries	 an	 entire	 people	 has	 been	 worshipping	 false	 gods	 and	 that
suddenly	their	error	is	revealed	to	them.	Before	the	introduction	of	rigor
mathematical	analysis	was	a	whole	pantheon	of	false	gods.	In	this	Cauchy
was	 one	 of	 the	 great	 pioneers	 with	 Gauss	 and	 Abel.	 Gauss	 might	 have
taken	 the	 lead	 long	before	Cauchy	entered	 the	 field,	but	did	not,	and	 it
was	Cauchy’s	habit	of	rapid	publication	and	his	gift	for	effective	teaching
which	really	got	rigor	in	mathematical	analysis	accepted.

The	second	thing	of	 fundamental	 importance	which	Cauchy	added	to
mathematics	was	on	the	opposite	side—the	combinatorial.	Seizing	on	the
heart	 of	Lagrange’s	method	 in	 the	 theory	 of	 equations,	Cauchy	made	 it
abstract	 and	began	 the	 systematic	 creation	of	 the	 theory	 of	 groups.	The



nature	 of	 this	 will	 be	 described	 later;	 for	 the	moment	 we	 note	 only	 the
modernity	of	Cauchy’s	outlook.

Without	enquiring	whether	the	thing	he	invented	had	any	application
or	not,	even	to	other	branches	of	mathematics,	Cauchy	developed	it	on	its
own	merits	as	an	abstract	system.	His	predecessors,	with	the	exception	of
the	universal	Euler	who	was	 as	willing	 to	write	 a	memoir	on	 a	puzzle	 in
numbers	 as	 on	hydraulics	 or	 the	 “system	of	 the	world.”	 had	 found	 their
inspiration	growing	out	of	the	applications	of	mathematics.	This	statement
of	course	has	numerous	exceptions,	notably	in	arithmetic;	but	before	the
time	 of	 Cauchy	 few	 if	 any	 sought	 profitable	 discoveries	 in	 the	 mere
manipulations	 of	 algebra.	 Cauchy	 looked	 deeper,	 saw	 the	 operations	 and
their	 laws	 of	 combination	 beneath	 the	 symmetries	 of	 algebraic	 formulas,
isolated	them,	and	was	led	to	the	theory	of	groups.	Today	this	elementary
yet	 intricate	 theory	 is	of	 fundamental	 importance	 in	many	 fields	of	pure
and	 applied	 mathematics,	 from	 the	 theory	 of	 algebraic	 equations	 to
geometry	 and	 the	 theory	 of	 atomic	 structure.	 It	 is	 at	 the	 bottom	 of	 the
geometry	 of	 crystals,	 to	 mention	 but	 one	 of	 its	 applications.	 Its	 later
developments	 (on	 the	 analytical	 side)	 extend	 far	 into	 higher	mechanics
and	the	modern	theory	of	differential	equations.

*		*		*

Cauchy’s	 life	 and	 character	 affect	 us	 like	 poor	 Don	 Quixote’s—we
sometimes	do	not	know	whether	 to	 laugh	or	 to	 cry,	 and	compromise	by
swearing.	 His	 father,	 Louis-François,	 was	 a	 paragon	 of	 virtue	 and	 piety,
both	excellent	things	in	their	way,	but	easily	overdone.	Heaven	only	knows
how	 Cauchy	 senior	 escaped	 the	 guillotine;	 for	 he	 was	 a	 parliamentary
lawyer,	 a	 cultured	 gentleman,	 an	 accomplished	 classical	 and	 biblical
scholar,	a	bigoted	Catholic,	and	a	 lieutenant	of	police	 in	Paris	when	 the
Bastille	fell.	Two	years	before	the	Revolution	broke	he	had	married	Marie-
Madeleine	 Desestre,	 an	 excellent,	 not	 very	 intelligent	 woman	 who,	 like
himself,	was	also	a	bigoted	Catholic.

Augustin	was	the	eldest	of	six	children	(two	sons,	four	daughters).	From
his	 parents	 Cauchy	 inherited	 and	 acquired	 all	 the	 estimable	 qualities
which	make	their	lives	read	like	one	of	those	charming	love	stories,	insipid
as	 stewed	cucumbers,	concocted	 for	French	schoolgirls	under	 sixteen,	 in
which	the	hero	and	heroine	are	as	pure	and	sexless	as	God’s	holy	angels.



With	parents	 such	as	his	 it	was	perhaps	natural	 that	Cauchy	 should	have
grown	up	to	be	the	obstinate	Quixote	of	French	Catholicism	in	the	18S0’s
and	 1840’s	 when	 the	 Church	 was	 on	 the	 defensive.	 He	 suffered	 for	 his
religion,	and	for	that	he	deserves	respect	(possibly	even	if	he	was	the	smug
hypocrite	his	colleagues	accused	him	of	being),	but	he	also	richly	deserved
to	suffer	on	more	than	one	occasion.	His	everlasting	preaching	about	the
beauty	of	holiness	put	peoples’	backs	up	and	engendered	an	opposition	to
his	pious	schemes	which	they	did	not	always	deserve.	Abel,	himself	the	son
of	 a	 minister	 and	 a	 decent	 enough	 Christian,	 expressed	 the	 general
disgust	 which	 some	 of	 Cauchy’s	 antics	 inspired	 when	 he	 wrote	 home,
“Cauchy	is	a	bigoted	Catholic—a	strange	thing	for	a	man	of	science.”	The
emphasis	of	course	is	on	“bigoted,”	not	on	the	word	it	qualifies.	Two	of	the
finest	 characters	 and	 greatest	mathematicians	 we	 shall	meet,	Weierstrass
and	Hermite,	were	Catholics.	They	were	devout	but	not	bigoted.

Cauchy’s	childhood	fell	in	the	bloodiest	period	of	the	Revolution.	The
schools	were	closed.	Having	no	need	of	science	or	culture	at	the	moment,
the	 Commune	 either	 left	 the	 cultured	 and	men	 of	 science	 to	 starve	 or
carted	 them	off	 to	 the	 guillotine.	To	 escape	 the	 obvious	 danger	Cauchy
senior	 moved	 his	 family	 to	 his	 country	 place	 in	 the	 village	 of	 Arcueil.
There	he	sat	out	the	Terror,	half	starved	himself	and	feeding	his	wife	and
infant	son	largely	from	what	scanty	fruits	and	vegetables	he	could	raise.	As
a	 consequence	Cauchy	 grew	 up	 delicate	 and	 underdeveloped	 physically.
He	 was	 nearly	 twenty	 before	 he	 began	 to	 recover	 from	 this	 early
malnutrition,	and	all	his	life	had	to	watch	his	health.

This	 retreat,	 gradually	 becoming	 less	 strict,	 lasted	nearly	 eleven	 years,
during	which	Cauchy	senior	undertook	the	education	of	his	children.	He
wrote	his	own	 textbooks,	 several	of	 them	in	 the	 fluent	verse	of	which	he
was	 master.	 Verse,	 he	 believed,	 made	 grammar,	 history	 and,	 above	 all,
morals	less	repulsive	to	the	juvenile	mind.	Young	Cauchy	thus	acquired	his
own	 uncontrolled	 fluency	 in	 both	 French	 and	 Latin	 verse	 which	 he
indulged	 all	 his	 life.	 His	 verse	 abounds	 in	 noble	 sentiments	 loftily
expressed	 and	 admirably	 reflects	 the	 piety	 of	 his	 blameless	 life	 but	 is
otherwise	 undistinguished.	 A	 large	 share	 of	 the	 lessons	 was	 devoted	 to
narrow	religious	instruction,	in	which	the	mother	assisted	ably.

Arcueil	 adjoined	 the	 imposing	 estates	 of	 the	 Marquis	 Laplace	 and
Count	 Claude-Louis	 Berthollet	 (1748-1822),	 the	 distinguished	 and
eccentric	 chemist	 who	 kept	 his	 head	 in	 the	Terror	 because	 he	 knew	 all



about	 gunpowder.	 The	 two	 were	 great	 friends.	 Their	 gardens	 were
separated	by	a	common	wall	with	a	gate	to	which	each	had	a	key.	In	spite
of	the	fact	that	both	the	mathematician	and	the	chemist	were	anything	but
pious,	Cauchy	senior	scraped	an	acquaintance	with	his	distinguished	and
well-fed	neighbors.

Berthollet	 never	 went	 anywhere.	 Laplace	 was	 more	 sociable	 and
presently	began	dropping	in	at	his	friend’s	cottage,	where	he	was	struck	by
the	spectacle	of	young	Cauchy,	 too	 feeble	physically	 to	be	 tearing	 round
like	 a	 properly	 nourished	 boy,	 poring	 over	 his	 books	 and	 papers	 like	 a
penitent	monk	 and	 seeming	 to	 enjoy	 it.	 Before	 long	Laplace	discovered
that	 the	boy	had	a	phenomenal	mathematical	 talent	and	advised	him	 to
husband	 his	 strength.	 Within	 a	 few	 years	 Laplace	 was	 to	 be	 listening
apprehensively	to	Cauchy’s	lectures	on	infinite	series,	fearing	that	the	bold
young	man’s	discoveries	 in	convergence	might	have	destroyed	 the	whole
vast	edifice	of	his	own	celestial	mechanics.	“The	system	of	the	world”	came
within	 a	 hairsbreadth	 of	 going	 to	 smash	 that	 time;	 a	 slightly	 greater
ellipticity	 of	 the	 Earth’s	 almost	 circular	 orbit,	 and	 the	 infinite	 series	 on
which	Laplace	had	based	his	calculations	would	have	diverged.	Luckily	his
astronomical	intuition	had	preserved	him	from	disaster,	as	he	discovered
on	 rising	 with	 a	 sigh	 of	 infinite	 relief	 after	 a	 prolonged	 testing	 of	 the
convergence	of	all	his	series	by	Cauchy’s	methods.

On	January	1,	1800,	Cauchy	senior,	who	had	kept	discreetly	in	touch	with
Paris,	 was	 elected	 Secretary	 of	 the	 Senate.	 His	 office	 was	 in	 the
Luxembourg	Palace.	Young	Cauchy	shared	the	office,	using	a	corner	as	his
study.	 Thus	 it	 came	 about	 that	 he	 frequently	 saw	 Lagrange—then
Professor	 at	 the	 Polytechnique—who	 dropped	 in	 frequently	 to	 discuss
business	with	Secretary	Cauchy.	Lagrange	 soon	became	 interested	 in	 the
boy	 and,	 like	 Laplace,	 was	 struck	 by	 his	 mathematical	 talent.	 On	 one
occasion	when	Laplace	and	several	other	notables	were	present,	Lagrange
pointed	to	young	Cauchy	in	his	corner	and	said,	“You	see	that	little	young
man?	Well!	He	will	supplant	all	of	us	in	so	far	as	we	are	mathematicians.”

To	Cauchy	senior	Lagrange	gave	some	sound	advice,	believing	that	the
delicate	boy	might	burn	himself	out:	“Don’t	let	him	touch	a	mathematical
book	 till	he	 is	 seventeen.”	Lagrange	meant	higher	mathematics.	And	on
another	 occasion:	 “If	 you	 don’t	 hasten	 to	 give	 Augustin	 a	 solid	 literary
education	his	tastes	will	carry	him	away;	he	will	be	a	great	mathematician
but	he	won’t	know	how	to	write	his	own	 language.”	The	 father	 took	 this



advice	 from	the	greatest	mathematician	of	 the	age	 to	heart	and	gave	his
son	 a	 sound	 literary	 education	 before	 turning	 him	 loose	 on	 advanced
mathematics.

After	 his	 father	 had	 done	 all	 he	 could	 for	 him,	 Cauchy	 entered	 the
Central	 School	of	 the	Panthéon,	 at	 about	 the	age	of	 thirteen.	Napoleon
had	instituted	several	prizes	in	the	school	and	a	sort	of	grand	sweepstakes
prize	for	all	the	schools	of	France	in	the	same	class.	From	the	first	Cauchy
was	 the	 star	 of	 the	 school,	 carrying	 off	 the	 first	 prizes	 in	 Greek,	 Latin
composition,	and	Latin	verse.	On	 leaving	 the	school	 in	1804	he	won	the
sweepstakes	 and	 a	 special	 prize	 in	 humanities.	 The	 same	 year	 Cauchy
received	his	first	communion,	a	solemn	and	beautiful	occasion	in	the	life
of	any	Catholic	and	trebly	so	to	him.

For	 the	 next	 ten	 months	 he	 studied	 mathematics	 intensively	 with	 a
good	 tutor,	 and	 in	 1805	 at	 the	 age	 of	 sixteen	 passed	 second	 into	 the
Polytechnique.	There	his	 experiences	were	not	 altogether	happy	 among
the	ribald	young	skeptics	who	hazed	him	unmercifully	for	making	a	public
exhibition	of	his	 religious	observances.	But	Cauchy	 kept	his	 temper	 and
even	tried	to	convert	some	of	his	scorners.

From	the	Polytechnique	Cauchy	passed	to	the	civil	engineering	school
(Ponts	 et	Chaussées)	 in	1807.	Although	only	 eighteen	he	easily	beat	 young
men	of	twenty	who	had	been	two	years	in	the	school,	and	was	early	marked
for	special	service.	On	completing	his	training	in	March,	1810,	Cauchy	was
at	 once	 given	 an	 important	 commission.	His	 ability	 and	 bold	 originality
had	singled	him	out	as	a	man	for	whom	red	tape	should	be	cut,	even	at
the	 risk	 of	 lopping	off	 some	older	man’s	head	 in	 the	process.	Whatever
else	may	be	said	of	Napoleon,	he	took	ability	wherever	he	found	it.

In	March,	 1810,	when	Cauchy	 left	Paris,	 “light	of	baggage,	but	 full	 of
hope,”	 for	 Cherbourg	 on	 his	 first	 commission,	 the	 battle	 of	 Waterloo
(June	18,	1815)	was	 still	over	 five	 years	 in	 the	 future,	and	Napoleon	 still
confidently	expected	 to	 take	England	by	 the	neck	and	rub	 its	nose	 in	 its
own	 fragrant	 sod.	 Before	 an	 invasion	 could	 be	 launched	 an	 enormous
fleet	was	necessary,	and	this	had	yet	to	be	built.	Harbors	and	fortifications
to	defend	the	shipyards	 from	the	seagoing	British	were	 the	first	detail	 to
be	disposed	of	in	the	glamorous	dream.	Cherbourg	for	many	reasons	was
the	 logical	 point	 to	 begin	 all	 these	 grandiose	 operations	 which	 were	 to
hasten	“the	day	of	glory”	the	French	had	been	yelling	about	ever	since	the



fall	 of	 the	 Bastille.	 Hence	 the	 gifted	 young	 Cauchy’s	 assignment	 to
Cherbourg	to	become	a	great	military	engineer.

In	 his	 light	 baggage	 Cauchy	 carried	 only	 four	 books,	 the	 Mécanique
céleste	of	Laplace,	the	Traité	des	fonctions	analytiques	of	Lagrange,	Thomas	à
Kempis’	 Imitation	 of	 Christ,	 and	 a	 copy	 of	 Virgil’s	 works—an	 unusual
assortment	 for	an	ambitious	 young	military	engineer.	Lagrange’s	 treatise
was	 to	 be	 the	 very	 book	 which	 caused	 its	 author’s	 prophecy	 that	 “this
young	man	will	supplant	all	of	us”	to	come	true	first,	as	it	inspired	Cauchy
to	 seek	 some	 theory	 of	 functions	 free	 from	 the	 glaring	 defects	 of
Lagrange’s.

The	third	on	the	 list	was	 to	occasion	Cauchy	some	distress,	 for	with	 it
and	 his	 aggressive	 piety	 he	 rather	 got	 on	 the	 nerves	 of	 his	 practical
associates	who	were	anxious	to	get	on	with	their	job	of	killing.	But	Cauchy
soon	showed	them	by	turning	the	other	cheek	that	he	had	at	least	read	the
book.	“You’ll	soon	get	over	all	 that,”	they	assured	him.	To	which	Cauchy
replied	by	sweetly	asking	them	to	point	out	what	was	wrong	in	his	conduct
and	he	would	gladly	correct	it.	What	answer	this	drew	has	not	survived.

Rumors	 that	 her	 darling	 boy	 was	 fast	 becoming	 an	 infidel	 or	 worse
reached	the	ears	of	his	anxious	mother.	In	a	 letter	 long	enough	and	full
enough	of	pious	 sentiments	 to	 calm	all	 the	mothers	who	ever	 sent	 their
sons	 to	 the	front	or	anywhere	near	 it	Cauchy	reassured	her,	and	she	was
happy	once	more.	The	conclusion	of	the	letter	shows	that	the	holy	Cauchy
was	 quite	 capable	 of	 holding	 his	 own	 against	 his	 tormentors,	 who	 had
hinted	he	was	slightly	cracked.

“It	 is	 therefore	 ridiculous	 to	 suppose	 that	 religion	can	 turn	anybody’s
head,	and	if	all	the	insane	were	sent	to	insane	asylums,	more	philosophers
than	Christians	would	be	found	there.”	Is	this	a	slip	on	Cauchy’s	part,	or
did	he	really	mean	that	no	Christians	are	philosophers?	He	signs	off	with	a
flash	 from	 the	 other	 side	 of	 his	 head:	 “But	 enough	 of	 this—it	 is	 more
profitable	for	me	to	work	at	certain	Memoirs	on	Mathematics.”	Precisely;
but	every	time	he	saw	a	windmill	waving	its	gigantic	arms	against	the	sky	he
was	off	again	full	tilt.

Cauchy	stayed	approximately	 three	years	at	Cherbourg.	Outside	of	his
heavy	duties	his	time	was	well	spent.	In	a	letter	of	July	S,	1811,	he	describes
his	crowded	life.	“I	get	up	at	four	and	am	busy	from	morning	to	night.	My
ordinary	 work	 is	 augmented	 this	 month	 by	 the	 arrival	 of	 the	 Spanish
prisoners.	We	had	only	eight	days’	warning,	and	during	 those	eight	days



we	had	to	build	barracks	and	prepare	camp	beds	for	1200	men.	.	.	.	At	last
our	prisoners	are	lodged	and	covered—since	the	last	two	days.	They	have
camp	 beds,	 straw,	 food,	 and	 count	 themselves	 very	 fortunate.	 .	 .	 .	Work
doesn’t	 tire	me;	 on	 the	 contrary	 it	 strengthens	me	 and	 I	 am	 in	 perfect
health.”

On	top	of	all	this	good	work	pour	la	gloire	de	la	belle	France	Cauchy	found
time	for	research.	As	early	as	December,	1810,	he	had	begun	“to	go	over
again	 all	 the	 branches	 of	 Mathematics,	 beginning	 with	 Arithmetic	 and
finishing	 with	 Astronomy,	 clearing	 up	 obscurities,	 applying	 [my	 own
methods]	 to	 the	 simplification	 of	 proofs	 and	 the	 discovery	 of	 new
propositions.”	And	still	on	top	of	this	the	amazing	young	man	found	time
to	 instruct	others	who	begged	for	 lessons	so	 that	 they	might	rise	 in	 their
profession,	 and	he	 even	 assisted	 the	mayor	of	Cherbourg	by	 conducting
school	examinations.	In	this	way	he	learned	to	teach.	He	still	had	time	for
hobbies.

The	Moscow	 fiasco	 of	 1812,	 war	 against	 Prussia	 and	 Austria,	 and	 the
thorough	drubbing	he	 got	 at	 the	 battle	 of	 Leipzig	 in	October,	 1813,	 all
distracted	Napoleon’s	attention	from	the	dream	of	invading	England,	and
the	 works	 at	 Cherbourg	 languished.	 Cauchy	 returned	 to	 Paris	 in	 1813,
worn	out	by	overwork.	He	was	then	only	twenty	four,	but	he	had	already
attracted	 the	 attention	 of	 the	 leading	 mathematicians	 of	 France	 by	 his
brilliant	 researches,	 particularly	 the	 memoir	 on	 polyhedra	 and	 that	 on
symmetric	functions.	As	the	nature	of	both	is	easily	understood,	and	each
offers	suggestions	of	the	very	first	importance	to	the	mathematics	of	today,
we	shall	briefly	describe	them.

*		*		*

The	first	is	of	only	minor	interest	in	itself.	What	is	significant	regarding
it	today	is	the	extraordinary	acuteness	of	the	criticism	which	Malus	levelled
at	 it.	By	 a	 curious	historical	 coincidence	Malus	was	 exactly	one	hundred
years	ahead	of	his	times	in	objecting	to	Cauchy’s	reasoning	in	the	precise
manner	in	which	he	did.	The	Academy	had	proposed	as	its	prize	problem
“To	 perfect	 in	 some	 essential	 point	 the	 theory	 of	 polyhedra,”	 and
Lagrange	had	suggested	this	as	a	promising	research	for	young	Cauchy	to
undertake.	 In	February,	1811,	Cauchy	 submitted	his	 first	memoir	on	 the
theory	of	polyhedra.	This	answered	negatively	a	question	asked	by	Poinsot



(1777-1859):	is	it	possible	that	regular	polyhedra	other	than	those	having
4,	 6,	 8,	 12,	 or	 20	 faces	 exist?	 In	 the	 second	part	 of	 this	memoir	Cauchy
extended	 the	 formula	 of	 Euler,	 given	 in	 the	 school	 books	 on	 solid
geometry,	connecting	the	number	of	edges	(E),	faces	(F),	and	vertices	(V)
of	a	polyhedron,	E	+	2	=	F	+	V.

This	work	was	printed.	Legendre	thought	highly	of	 it	and	encouraged
Cauchy	 to	 continue,	 which	 Cauchy	 did	 in	 a	 second	 memoir	 (January,
1812).	Legendre	and	Malus	(1775-1812)	were	the	referees.	Legendre	was
enthusiastic	 and	predicted	great	 things	 for	 the	 young	author.	But	Malus
was	more	reserved.

Êtienne-Louis	Malus	was	 not	 a	 professional	mathematician	 but	 an	 ex-
officer	of	engineers	in	Napoleon’s	campaigns	in	Germany	and	Egypt,	who
made	 himself	 famous	 by	 his	 accidental	 discovery	 of	 the	 polarization	 of
light	by	 reflexion.	So	possibly	his	objections	 struck	 young	Cauchy	as	 just
the	sort	of	captious	criticisms	to	be	expected	from	an	obstinate	physicist.
In	 proving	 his	most	 important	 theorems	Cauchy	 had	 used	 the	 “indirect
method”	 familiar	 to	 all	 beginners	 in	 geometry.	 It	 was	 to	 this	method	 of
proof	that	Malus	objected.

In	 proving	 a	 proposition	 by	 the	 indirect	 method,	 a	 contradiction	 is
deduced	from	the	assumed	falsity	of	the	proposition;	whence	it	follows,	in
Aristotelian	logic,	that	the	proposition	is	true.	Cauchy	could	not	meet	the
objection	by	supplying	direct	proofs,	and	Malus	gave	in—still	unconvinced
that	Cauchy	had	proved	anything.	When	we	come	to	the	conclusion	of	the
whole	 story	 (in	 the	 last	 chapter)	 we	 shall	 see	 the	 same	 objection	 being
raised	 in	 other	 connections	 by	 the	 intuitionists.	 If	Malus	 failed	 to	make
Cauchy	see	the	point	in	1812,	Malus	was	avenged	by	Brouwer	in	1912	and
thereafter	 when	 Brouwer	 succeeded	 in	 making	 some	 of	 Cauchy’s
successors	in	mathematical	analysis	at	 least	see	that	there	is	a	point	to	be
seen.	Aristotelian	logic,	as	Malus	was	trying	to	tell	Cauchy,	is	not	always	a
safe	method	of	reasoning	in	mathematics.

Passing	to	the	theory	of	substitutions,	begun	systematically	by	Cauchy,	and
elaborated	by	him	in	a	 long	series	of	papers	 in	the	middle	1840’s,	which
developed	 into	 the	 theory	 of	 finite	 groups,	 we	 shall	 presently	 illustrate	 the
underlying	 notions	 by	 a	 simple	 example.	 First,	 however,	 the	 leading
properties	of	a	group	of	operations	may	be	described	informally.

Operations	will	be	denoted	by	capital	 letters,	A,	B,	C,	D,	 .	 .	 .;	 and	 the
performance	 of	 two	 operations	 in	 succession,	 say	A	 first,	 B	 second,	 will	 be



indicated	by	 juxtaposition	 thus,	AB.	Note	 that	BA,	 by	what	has	 just	been
said,	means	that	B	is	performed	first,	A	second;	so	that	AB	and	BA	are	not
necessarily	the	same	operation.	For	example,	if	A	 is	the	operation	“add	10
to	a	given	number,”	and	B	is	the	operation	“divide	a	given	number	by	10,”
AB	 applied	 to	 x	 gives	 	 while	 BA	 gives	 	 or	 	 and	 the
resulting	fractions	are	unequal;	hence	AB	and	BA	are	distinct.

If	the	effects	of	two	operations	X,	T	are	the	same,	X	and	T	are	said	to	be
equal	(or	equivalent),	and	this	is	expressed	by	writing	X	=	Y.

The	next	fundamental	notion	is	that	of	associativity.	If	for	every	triple	of
operations,	say	U,	V,	W	 is	any	triple,	 in	the	set,	(UV)W	=	U(VW),	 the	set	 is
said	to	satisfy	the	associative	 law.	By	(UV)W	 is	meant	that	UV	 is	performed
first,	 then,	 on	 the	 result,	W	 is	 performed;	 by	U(VW)	 is	 meant	 that	U	 is
performed	first,	then,	on	the	result	of	this	VW	is	performed.

The	 last	 fundamental	 notion	 is	 that	 of	 an	 identical	 operation,	 or	 an
identity:	an	operation	I	which	leaves	unchanged	whatever	it	operates	on	is
called	an	identity.

With	these	notions	we	can	now	state	the	simple	postulates	which	define
a	group	of	operations.

A	set	of	operations	I,	A,	B,	C,	.	.	.	,	X,	T,	.	.	.	is	said	to	form	a	group	if	the
postulates	(1)	–	(4)	are	satisfied.

(1)	 There	 is	 a	 rule	 of	 combination	 applicable	 to	 any	 pair	 X,	 Y	 of
operationsI	in	the	set	such	that	the	result,	denoted	by	XY,	of	combining	X,
Y,	 in	 this	 order,	 according	 to	 the	 rule	 of	 combination,	 is	 a	 uniquely
determined	operation	in	the	set.

(2)	 For	 any	 three	 operations	 X,	 Y,	 Z	 in	 the	 set,	 the	 rule	 in	 (1)	 is
associative,	namely	(XY)Z	=	X(YZ).

(3)	There	is	a	unique	identity	I	in	the	set,	such	that,	for	every	operation
X	in	the	set,	IX	=	XI	=	X.

(4)	If	X	is	any	operation	in	the	set,	there	is	in	the	set	a	unique	operation,
say	X′,	such	that	XX′	=	I	(it	can	be	easily	proved	that	X′X	=	i	also).

These	 postulates	 contain	 redundancies	 deducible	 from	 other
statements	in	(1)	 -	(4),	but	in	the	form	given	the	postulates	are	easier	to
grasp.	To	illustrate	a	group	we	shall	take	a	very	simple	example	relating	to
permutations	 (arrangements)	 of	 letters.	 This	 may	 seem	 trivial,	 but	 such
permutation	or	substitution	groups	were	found	to	be	the	long-sought	clue	to
the	algebraic	solvability	of	equations.



There	are	precisely	6	orders	in	which	the	3	letters	a,	b,	c	can	be	written,
namely	abc,	acb,	bca,	bac,	cab,	cba.	Take	any	one	of	these,	say	the	first	abc,	as
the	initial	order.	By	what	permutations	of	the	letters	can	we	pass	from	this
to	the	remaining	5	arrangements?	To	pass	from	abc	to	acb	it	is	sufficient	to
interchange,	 or	 permute,	 b	 and	 c.	 To	 indicate	 the	 operation	 of	 permuting	 b
and	c,	we	write	(be),	which	is	read,	“b	into	c,	and	c	into	b.”	From	abc	to	bca
we	pass	by	a	into	b,	b	into	c,	and	c	into	a,	which	is	written	(abc).	The	order
abc	itself	is	obtained	from	abc	by	no	change,	namely	a	into	a,	b	into	b,	c	into
c,	 which	 is	 the	 identity	 substitution	 and	 is	 denoted	 by	 I.	 Proceeding
similarly	with	all	6	orders

abc,	acb,	bca,	bac,	cab,	cba,

we	get	the	corresponding	substitutions,

I,	(bc),	(abc),	(ab),	(acb),	(ac).

The	“rule	of	combination”	in	the	postulates	is	here	as	follows.	Take	any
two	of	the	substitutions,	say	(be)	and	(acb),	and	consider	the	effect	of	these
applied	successively	in	the	order	stated,	namely	(be)	first	and	(acb)	 second:
(be)	carries	b	into	c,	then	(acb)	carries	c	into	b.	Thus	b	is	left	as	it	was.	Take
the	next	letter,	c,	in	(be):	by	(be),	c	is	carried	into	b,	which,	by	(acb)	is	carried
into	a;	 thus	c	 is	carried	 into	a.	Continuing,	we	 see	what	a	 is	now	carried
into:	(be)	leaves	a	as	it	was,	but	(acb)	carries	a	into	c.	Finally	then	the	total
effect	 of	 (be)	 followed	 by	 (acb)	 is	 seen	 to	 be	 (ca),	 which	 we	 indicate	 by
writing	(be)(acb)	=	(ca)	=	(ac).

In	the	same	way	it	is	easily	verified	that

(acb)	(abc)	=	(abc)	(acb)	=	I;
(abc)(ac)	=	(ab);	(bc)(ac)	=	(acb),

and	so	on	for	all	possible	pairs.	Thus	postulate	(1)	is	satisfied	for	these	6
substitutions,	and	it	can	be	checked	that	(2),	(3),	(4)	are	also	satisfied.

All	this	is	summed	up	in	the	“multiplication	table”	of	the	group,	which
we	shall	write	out,	denoting	the	substitutions	by	the	letters	under	them	(to
save	space),

I,	(be),	(abc),	(ab),	(acb),	(ac)
I,	A,	B,	C,	D,	E.



In	reading	the	table	any	letter,	say	C,	is	taken	from	the	left-hand	column,
and	any	letter,	say	D,	from	the	top	row,	and	the	entry,	here	A,	where	the
corresponding	row	and	column	 intersect	 is	 the	result	of	CD.	Thus	CD	=	A,
DC	=	E,	EA	=	B,	and	so	on.

As	an	example	we	may	 verify	 the	associative	 law	 for	 (AB)C	 and	A(BC),
which	should	be	equal.	First,	AB	=	C;	hence	(AB)C	=	CC	=	I.	Again	BC	=	A;
hence	A(BC)	=	AA	=	I.	In	the	same	way	A(DB)	=	AI	=	A;	(AD)B	=	EB	=	A;	thus
(AD)B	=	A(DB).

	 I A B C D E

I I A B C D E

A A I C B E D

B B E D A I C

C C D E I A B

D D C I E B A

E E B A D C I

The	 total	 number	 of	 distinct	 operations	 in	 a	 group	 is	 called	 its	 order.
Here	6	 is	 the	order	of	 the	group.	By	 inspection	of	 the	 table	we	pick	out
several	subgroups,	 for	example,	which	are	of	 the	respective	orders	1,	2,	3.
This	 illustrates	 one	 of	 the	 fundamental	 theorems	 proved	 by	Cauchy:	 the
order	of	any	subgroup	is	a	divisor	of	the	order	of	the	group.

	 I

I I

	 I A

I I A

A A I

	 I B D

I I B D



B B D I

D D I B

The	 reader	may	 find	 it	 amusing	 to	 try	 to	 construct	 groups	 of	 orders
other	than	6.	For	any	given	order	the	number	of	distinct	groups	(having
different	multiplication	tables)	is	finite,	but	what	this	number	may	be	for
any	given	order	(the	general	order	n)	is	not	known	—nor	likely	to	be	in	our
lifetime.	 So	 at	 the	 very	 beginning	 of	 a	 theory	 which	 on	 its	 surface	 is	 as
simple	as	dominoes	we	run	into	unsolved	problems.

Having	 constructed	 the	 “multiplication	 table”	 of	 a	 group,	 we	 forget
about	its	derivation	from	substitutions	(if	that	happens	to	be	the	way	the
table	was	made),	and	regard	the	table	as	defining	an	abstract	group;	that	is,
the	symbols	I,	A,	B,	.	.	.	are	given	no	interpretation	beyond	that	implied	by
the	rule	of	combination,	as	in	CD	=	A,	DC	=	E,	etc.	This	abstract	point	of
view	is	that	now	current.	It	was	not	Cauchy’s,	but	was	introduced	by	Cayley
in	 1854.	 Nor	 were	 completely	 satisfactory	 sets	 of	 postulates	 for	 groups
stated	till	the	first	decade	of	the	twentieth	century.

When	the	operations	of	a	group	are	interpreted	as	substitutions,	or	as
the	rotations	of	a	rigid	body,	or	in	any	other	department	of	mathematics
to	which	groups	are	applicable,	the	interpretation	is	called	a	realization	of
the	 abstract	 group	 defined	 by	 the	 multiplication	 table.	 A	 given	 abstract
group	may	have	many	diverse	realizations.	This	is	one	of	the	reasons	that
groups	 are	 of	 fundamental	 importance	 in	 modern	 mathematics:	 one
abstract,	underlying	structure	(that	summarized	in	the	multiplication	table)
of	one	and	the	same	group	is	the	essence	of	several	apparently	unrelated
theories,	and	by	an	intensive	study	of	the	properties	of	the	abstract	group,
a	knowledge	of	the	theories	in	question	and	their	mutual	relationships	is
obtained	by	one	investigation	instead	of	several.

To	give	but	one	 instance,	 the	 set	of	all	 rotations	which	 twirl	a	 regular
icosahedron	 (twenty-sided	 regular	 solid)	 about	 its	 axes	 of	 symmetry,	 so
that	after	any	rotation	of	the	set	the	volume	of	the	solid	occupies	the	same
space	 as	 before,	 forms	 a	 group,	 and	 this	 group	 of	 rotations,	 when
expressed	 abstractly,	 is	 the	 same	 group	 as	 that	 which	 appears,	 under
permutations	of	the	roots,	when	we	attempt	to	solve	the	general	equation
of	 the	 fifth	 degree.	 Further,	 this	 same	 group	 turns	 up	 (to	 anticipate
slightly)	in	the	theory	of	elliptic	functions.	This	suggests	that	although	it	is
impossible	to	solve	the	general	quintic	algebraically,	the	equation	may	be



—and	in	fact	is—solvable	in	terms	of	the	functions	mentioned.	Finally,	all
this	 can	 be	 pictured	 geometrically	 by	 describing	 the	 rotations	 of	 an
icosahedron	already	mentioned.	This	beautiful	unification	was	the	work	of
Felix	Klein	(1849–1925)	in	his	book	on	the	icosahedron	(1884).

Cauchy	 was	 one	 of	 the	 great	 pioneers	 in	 the	 theory	 of	 substitution
groups.	Since	his	day	an	immense	amount	of	work	has	been	done	in	the
subject,	and	the	theory	itself	has	been	vastly	extended	by	the	accession	of
infinite	 groups—groups	 having	 an	 infinity	 of	 operations	 which	 can	 be
counted	off	1,	2,	3,	.	.	.	 ,	and	further,	to	groups	of	continuous	motions.	In
the	latter	an	operation	of	the	group	shifts	a	body	into	another	position	by
infinitesimal	 (arbitrarily	 small)	 displacements—not	 like	 the	 icosahedral
group	described	above,	where	the	rotations	shift	the	whole	body	round	by
a	 finite	 amount.	 This	 is	 but	 one	 category	 of	 infinite	 groups	 (the
terminology	here	 is	not	 exact,	 but	 is	 sufficient	 to	bring	out	 the	point	of
importance—the	distinction	between	discrete	 and	 continuous	 groups).	 Just
as	 the	 theory	 of	 finite	 discrete	 groups	 is	 the	 structure	 underlying	 the
theory	 of	 algebraic	 equations,	 so	 is	 the	 theory	 of	 infinite,	 continuous
groups	 of	 great	 service	 in	 the	 theory	 of	 differential	 equations—those	 of
the	 greatest	 importance	 in	 mathematical	 physics.	 So	 in	 playing	 with
groups	Cauchy	was	not	idling.

To	close	this	description	of	groups	we	may	indicate	how	the	groups	of
substitutions	 discussed	 by	 Cauchy	 have	 entered	 the	 modern	 theory	 of
atomic	structure.	A	substitution,	say	(xy),	containing	precisely	two	letters	in
its	symbol,	is	called	a	transposition.	It	is	easily	proved	that	any	substitution	is
a	combination	of	transpositions.	For	example,

(abcdef)	=	(ab)(ac)(ad)(ae)(qf),

from	 which	 the	 rule	 for	 writing	 out	 any	 substitution	 in	 terms	 of
transpositions	is	evident.

Now,	it	is	an	entirely	reasonable	hypothesis	to	assume	that	the	electrons
in	 an	 atom	 are	 identical,	 that	 is,	 one	 electron	 is	 indistinguishable	 from
another.	Hence,	 if	 in	 an	atom	 two	electrons	 are	 interchanged,	 the	atom
will	 remain	 unchanged.	 Suppose	 for	 simplicity	 that	 the	 atom	 contains
precisely	three	electrons,	say	a,	b,	c.	To	the	group	of	 substitutions	on	a,	b,	 c
(the	 one	 whose	 multiplication	 table	 we	 gave)	 will	 correspond	 all
interchanges	of	electrons	leaving	the	atom	invariant—as	it	was.	From	this



to	 the	 spectral	 lines	 in	 the	 light	 emitted	 by	 an	 excited	 gas	 consisting	 of
atoms	may	 seem	 a	 long	 step,	 but	 it	 has	 been	 taken,	 and	 one	 school	 of
experts	 in	 quantum	 mechanics	 finds	 a	 satisfactory	 background	 for	 the
elucidation	 of	 spectra	 (and	 other	 phenomena	 associated	 with	 atomic
structure)	in	the	theory	of	substitution	groups.	Cauchy	of	course	foresaw
no	 such	 applications	 of	 the	 theory	 which	 he	 developed	 for	 its	 own
fascinations,	nor	did	he	foresee	its	application	to	the	outstanding	riddle	of
algebraic	 equations.	 That	 triumph	 was	 reserved	 for	 a	 boy	 in	 his	 teens
whom	we	shall	meet	later.

*		*		*

By	the	age	of	twenty	seven	(in	1816)	Cauchy	had	raised	himself	to	the
front	rank	of	living	mathematicians.	His	only	serious	rival	was	the	reticent
Gauss,	 twelve	 years	 older	 than	 himself.	 Cauchy’s	 memoir	 of	 1814	 on
definite	integrals	with	complex-number	limits	inaugurated	his	great	career
as	 the	 independent	 creator	 and	 unequalled	 developer	 of	 the	 theory	 of
functions	of	a	complex	variable.	For	the	technical	terms	we	must	refer	to
the	 chapter	 on	 Gauss—who	 had	 reached	 the	 fundamental	 theorem	 in
1811,	three	years	before	Cauchy.	Cauchy’s	luxuriantly	detailed	memoir	on
the	subject	was	published	only	in	1827.	The	delay	was	due	possibly	to	the
length	of	the	work—about	180	pages.	Cauchy	thought	nothing	of	hurling
massive	 works	 of	 from	 80	 to	 300	 pages	 at	 the	 Academy	 or	 the
Polytechnique	to	be	printed	out	of	their	stinted	funds.

The	following	year	(1815)	Cauchy	created	a	sensation	by	proving	one	of
the	great	 theorems	which	Fermat	had	bequeathed	 to	a	baffled	posterity:
every	 positive	 integer	 is	 a	 sum	 of	 three	 “triangles,”	 four	 “squares,”	 five
“pentagons,”	six	“hexagons,”	and	so	on,	zero	in	each	case	being	counted
as	a	number	of	the	kind	concerned.	A	“triangle”	is	one	of	the	numbers	0,
1,	3,	6,	10,	15,	21,	.	.	.	got	by	building	up	regular	(equilateral)	triangles	out
of	dots,

“squares”	are	built	up	similarly,



where	 the	 “bordering”	 by	 which	 one	 square	 is	 obtained	 from	 its
predecessor	 is	 evident.	 Similarly	 “pentagons”	 are	 regular	 pentagons	 built
up	by	dots;	 and	 so	on	 for	 “hexagons”	 and	 the	 rest.	This	was	not	 easy	 to
prove.	 In	 fact	 it	had	been	 too	much	 for	Euler,	Lagrange,	and	Legendre.
Gauss	had	early	proved	the	case	of	“triangles.”

As	 if	 to	 show	 that	 he	 was	 not	 limited	 to	 first-rate	 work	 in	 pure
mathematics	 Cauchy	 next	 captured	 the	 Grand	 Prize	 offered	 by	 the
Academy	in	1816	for	a	“theory	of	the	propagation	of	waves	on	the	surface
of	a	heavy	fluid	of	indefinite	depth”—ocean	waves	are	close	enough	to	this
type	for	mathematical	treatment.	This	finally	(when	printed)	ran	to	more
than	300	pages.	At	 the	 age	of	 twenty	 seven	Cauchy	 found	himself	 being
strongly	 “rushed”	 for	 membership	 in	 the	 Academy	 of	 Sciences—a	most
unusual	 honor	 for	 so	 young	 a	 man.	 The	 very	 first	 vacancy	 in	 the
mathematical	section	would	fall	to	him,	he	was	assured	on	the	quiet.	So	far
as	popularity	is	concerned	this	was	the	highwater	mark	of	Cauchy’s	career.

In	1816,	then,	Cauchy	was	ripe	for	election	to	the	Academy.	But	there
were	no	vacancies.	Two	of	the	seats	however	might	soon	be	expected	to	be
empty	owing	 to	 the	age	of	 the	 incumbents:	Monge	was	 seventy,	L.	M.	N.
Carnot	sixty	three.	Monge	we	have	already	met;	Carnot	was	a	precursor	of
Poncelet.	 Carnot	 held	 his	 seat	 in	 the	 Academy	 on	 account	 of	 his
researches	which	restored	and	extended	the	synthetic	geometry	of	Pascal
and	Desargues,	 and	 for	his	heroic	 attempt	 to	put	 the	 calculus	on	a	 firm
logical	 foundation.	 Outside	 of	 mathematics	 Carnot	 made	 an	 enviable
name	 for	 himself	 in	 French	 history,	 being	 the	 genius	 who	 in	 1793
organized	fourteen	armies	to	defeat	the	half	million	troops	hurled	against
France	 by	 the	 united	 antidemocratic	 reactionaries	 of	 Europe.	 When
Napoleon	seized	the	power	 for	himself	 in	1796,	Carnot	was	banished	for
opposing	 the	 tyrant:	 “I	 am	 an	 irreconcilable	 enemy	 of	 all	 kings,”	 said
Carnot.	After	the	Russian	campaign	of	1812	Carnot	offered	his	services	as
a	soldier,	but	with	one	stipulation.	He	would	fight	for	France,	not	for	the
French	Empire	of	Napoleon.



In	 the	 reorganization	of	 the	Academy	of	Sciences	during	 the	political
upheaval	after	Napoleon’s	glorious	 “Hundred	Days”	 following	his	escape
from	Elba,	Carnot	and	Monge	were	expelled.	Carnot’s	successor	took	his
seat	without	much	being	said,	but	when	young	Cauchy	calmly	sat	down	in
Monge’s	 chair	 the	 storm	 broke.	 The	 expulsion	 of	 Monge	 was	 sheer
political	 indecency,	 and	 whoever	 profited	 by	 it	 showed	 at	 least	 that	 he
lacked	 the	 finer	 sensibilities.	Cauchy	of	 course	was	well	within	his	 rights
and	his	conscience.

The	 hippopotamus	 is	 said	 to	 have	 a	 tender	 heart	 by	 those	 who	 have
eaten	that	delicacy	baked,	so	a	thick	skin	is	not	necessarily	a	reliable	index
to	 what	 is	 inside	 a	 man.	 Worshipping	 the	 Bourbons	 as	 he	 did,	 and
believing	 the	 dynasty	 to	 be	 the	 direct	 representatives	 of	Heaven	 sent	 to
govern	 France—even	 when	 Heaven	 sent	 an	 incompetent	 clown	 like
Charles	 X—Cauchy	 was	 merely	 doing	 his	 loyal	 duty	 to	 Heaven	 and	 to
France	when	he	slipped	into	Monge’s	chair.	That	he	was	sincere	and	not
merely	 self-seeking	 will	 appear	 from	 his	 subsequent	 devotion	 to	 the
sanctified	Charles.

Honorable	 and	 important	 positions	 now	 came	 thick	 and	 fast	 to	 the
greatest	 mathematician	 in	 France—still	 well	 under	 thirty.	 Since	 1815
(when	 he	 was	 twenty	 six)	 Cauchy	 had	 been	 lecturing	 on	 analysis	 at	 the
Polytechnique.	 He	 was	 now	 made	 Professor,	 and	 before	 long	 was
appointed	 also	 at	 the	 Collège	 de	 France	 and	 the	 Sorbonne.	 Everything
began	coming	his	way.	His	mathematical	activity	was	incredible;	sometimes
two	 full	 length	 papers	 would	 be	 laid	 before	 the	 Academy	 in	 the	 same
week.	In	addition	to	his	own	research	he	drew	up	innumerable	reports	on
the	memoirs	of	others	submitted	to	the	Academy,	and	found	time	to	emit
an	 almost	 constant	 stream	of	 short	 papers	 on	practically	 all	 branches	 of
mathematics,	pure	and	applied.	He	became	better	known	 than	Gauss	 to
the	mathematicians	of	Europe.	Savants	as	well	as	students	came	to	hear	his
beautifully	 clear	 expositions	 of	 the	 new	 theories	 he	 was	 developing,
particularly	 in	 analysis	 and	 mathematical	 physics.	 His	 auditors	 included
well-known	mathematicians	from	Berlin,	Madrid,	and	St.	Petersburg.

In	the	midst	of	all	this	work	Cauchy	found	time	to	do	his	courting.	His
fancy,	Aloise	de	Bure,	whom	he	married	in	1818	and	with	whom	he	lived
for	nearly	forty	years,	was	the	daughter	of	a	cultured	old	family	and,	 like
himself,	 an	ardent	Catholic.	They	had	 two	daughters,	who	were	brought
up	as	Cauchy	had	been.



*		*		*

One	 great	work	 of	 this	 period	may	be	noted.	Encouraged	by	Laplace
and	others,	Cauchy	in	1821	wrote	up	for	publication	the	course	of	lectures
on	 analysis	 he	 had	 been	 giving	 at	 the	 Polytechnique.	 This	 is	 the	 work
which	for	 long	set	the	standard	in	rigor.	Even	today	Cauchy’s	definitions
of	limit	and	continuity,	and	much	of	what	he	wrote	on	the	convergence	of
infinite	 series	 in	 this	 course	 of	 lectures,	 will	 be	 found	 in	 any	 carefully
written	book	on	the	calculus.	An	extract	from	the	preface	will	show	what
he	had	in	mind	and	what	he	accomplished.

“I	have	sought	to	give	to	the	methods	[of	analysis]	all	the	rigor	which	is
demanded	in	geometry,	 in	such	a	way	as	never	to	refer	to	reasons	drawn
from	the	generality	of	algebra.	[As	it	would	be	put	today,	the	formalism	of
algebra.]	 Reasons	 of	 this	 kind,	 although	 commonly	 enough	 admitted,
above	all	in	the	passage	from	convergent	to	divergent	series,	and	from	real
quantities	to	imaginary,	cannot	be	considered,	it	seems	to	me,	as	anything
more	 than	 inductions	 which	 occasionally	 suggest	 the	 truth,	 but	 which
agree	but	little	with	the	boasted	exactitude	of	mathematics.	We	must	also
observe	 that	 they	 tend	 to	 cause	 an	 indefinite	 validity	 to	 be	 attributed	 to
algebraical	 formulas,II	 while,	 in	 reality,	 the	 majority	 of	 these	 formulas
subsist	 only	 under	 certain	 conditions,	 and	 for	 certain	 values	 of	 the
quantities	which	they	contain.	By	determining	these	conditions	and	values,
and	by	fixing	precisely	the	meaning	of	the	notations	I	make	use	of,	I	shall
dispel	all	uncertainty.”

Cauchy’s	productivity	was	so	prodigious	that	he	had	to	found	a	sort	of
journal	of	his	own,	the	Exercises	de	Mathématiques	(1826-30),	continued	in	a
second	 series	 as	 Exercises	 d’Analyse	 Mathématique	 et	 de	 Physique,	 for	 the
publication	 of	 his	 expository	 and	 original	 work	 in	 pure	 and	 applied
mathematics.	These	works	were	eagerly	bought	and	studied,	and	did	much
to	reform	mathematical	taste	before	1860.

One	aspect	of	Cauchy’s	 terrific	 activity	 is	 rather	 amusing.	 In	1835	 the
Academy	 of	 Sciences	 began	 publishing	 its	 weekly	 bulletin	 (the	 Comptes
rendus).	 Here	 was	 a	 virgin	 dumping	 ground	 for	 Cauchy,	 and	 he	 began
swamping	 the	 new	 publication	 with	 notes	 and	 lengthy	 memoirs—
sometimes	more	than	one	a	week.	Dismayed	at	the	rapidly	mounting	bill
for	 printing,	 the	Academy	 passed	 a	 rule,	 in	 force	 today,	 prohibiting	 the
publication	 of	 an	 article	 over	 four	 pages	 long.	 This	 cramped	 Cauchy’s



luxuriant	 style,	 and	 his	 longer	 memoirs,	 including	 a	 great	 one	 of	 300
pages	on	the	theory	of	numbers,	were	published	elsewhere.

*		*		*

Happily	married	and	as	prolific	 in	his	 research	as	a	 spawning	 salmon,
Cauchy	was	 ripe	 for	 the	 jester	when	 the	 revolution	of	1830	unseated	his
beloved	Charles.	Fate	never	enjoyed	a	heartier	 laugh	 than	 it	did	when	 it
motioned	Cauchy	to	rise	 from	Monge’s	chair	 in	the	Academy	and	follow
his	 anointed	 King	 into	 exile.	 Cauchy	 could	 not	 refuse;	 he	 had	 sworn	 a
solemn	oath	of	allegiance	to	Charles,	and	to	Cauchy	an	oath	was	an	oath,
even	if	sworn	to	a	deaf	donkey.	To	his	credit,	Cauchy,	at	the	age	of	forty,
gave	up	all	his	positions	and	went	into	voluntary	exile.

He	was	 not	 sorry	 to	 go.	 The	 bloodied	 streets	 of	 Paris	 had	 turned	 his
sensitive	stomach.	He	firmly	believed	that	good	King	Charles	was	in	no	way
responsible	for	the	gory	mess.

Leaving	his	 family	 in	Paris,	but	not	resigning	his	 seat	 in	 the	Academy,
Cauchy	went	first	to	Switzerland,	where	he	sought	distraction	in	scientific
conferences	and	research.	He	never	asked	the	slightest	favor	from	Charles
and	 did	 not	 even	 know	 that	 the	 exiled	 king	 was	 aware	 of	 his	 voluntary
sacrifice	 for	 a	 matter	 of	 principle.	 Shortly	 a	 more	 enlightened	 Charles,
Charles	Albert,	King	of	Sardinia,	heard	that	the	renowned	Cauchy	was	out
of	 a	 job	 and	made	 one	 for	 him	 as	 Professor	 of	Mathematical	 Physics	 at
Turin.	 Cauchy	 was	 perfectly	 happy.	 He	 quickly	 learned	 Italian	 and
delivered	his	lectures	in	that	language.

Presently	overwork	and	excitement	made	him	ill,	and	to	his	regret	(as
he	wrote	to	his	wife)	he	was	forced	to	abandon	evening	work	for	a	time.	A
vacation	 in	 Italy,	 with	 a	 visit	 to	 the	 Pope	 for	 good	measure,	 completely
restored	him,	 and	he	 returned	 to	Turin,	 eagerly	 anticipating	 a	 long	 life
devoted	 to	 teaching	 and	 research.	 But	 presently	 the	 obtuse	 Charles	 ×
butted	 into	 the	retiring	mathematician’s	 life	 like	a	brainless	goat	and,	 in
seeking	to	reward	his	 loyal	follower,	did	him	a	singular	disservice.	In	1833
Cauchy	 was	 entrusted	 with	 the	 education	 of	 Charles’	 heir,	 the	 thirteen-
year-old	Duke	of	Bordeaux.	The	 job	of	male	nurse	and	elementary	 tutor
was	the	last	thing	on	earth	that	Cauchy	desired.	Nevertheless	he	dutifully
reported	 to	 Charles	 at	 Prague	 and	 took	 up	 the	 cross	 of	 loyalty.	 The
following	year	he	was	joined	by	his	family.



The	education	of	 the	heir	 to	 the	Bourbons	proved	no	sinecure.	From
early	morning	to	late	evening,	with	barely	time	out	for	meals,	Cauchy	was
pestered	by	the	royal	brat.	Not	only	the	elementary	lessons	of	an	ordinary
school	 course	 had	 to	 be	 hammered	 somehow	 or	 another	 into	 the
pampered	boy,	but	Cauchy	was	detailed	to	see	that	his	charge	did	not	fall
down	and	skin	his	knees	on	his	gambols	 in	the	park.	Needless	 to	say	 the
major	 part	 of	 Cauchy’s	 instruction	 consisted	 in	 intimate	 talks	 on	 the
peculiar	brand	of	moral	philosophy	to	which	he	was	addicted;	so	perhaps
it	is	as	well	that	France	finally	decided	not	to	take	the	Bourbons	back	to	its
heart,	but	to	leave	them	and	their	innumerable	descendants	as	prizes	to	be
raffled	off	 to	 the	daughters	of	millionaires	 in	 the	 international	marriage
bureau.

In	 spite	 of	 almost	 constant	 attendance	 on	his	 pupil	Cauchy	 somehow
managed	to	keep	his	mathematics	going,	dashing	into	his	private	quarters
at	odd	moments	to	jot	down	a	formula	or	scribble	a	hasty	paragraph.	The
most	 impressive	 work	 of	 this	 period	 was	 the	 long	 memoir	 on	 the
dispersion	 of	 light,	 in	 which	 Cauchy	 attempted	 to	 explain	 the
phenomenon	 of	 dispersion	 (the	 separation	 of	 white	 light	 into	 colors
owing	 to	 different	 refrangibilities	 of	 the	 colored	 lights	 composing	 the
white)	on	the	hypothesis	that	light	is	caused	by	the	vibrations	of	an	elastic
solid.	 This	 work	 is	 of	 great	 interest	 in	 the	 history	 of	 physics,	 as	 it
exemplified	the	tendency	of	the	nineteenth	century	to	try	to	account	for
physical	 phenomena	 in	 terms	 of	 mechanical	 models	 instead	 of	 merely
constructing	 an	 abstract,	 mathematical	 theory	 to	 correlate	 observations.
This	 was	 a	 departure	 from	 the	 prevailing	 practice	 of	 Newton	 and	 his
successors—although	 there	 had	 been	 attempts	 to	 “explain”	 gravitation
mechanically.

Today	 the	 tendency	 is	 in	 the	 opposite	 direction	 of	 a	 purely
mathematical	correlation	and	a	complete	abandonment	of	ethers,	elastic
solids,	or	other	mechanical	“explanations”	more	difficult	to	grasp	than	the
thing	explained.	Physicists	at	present	seem	to	have	heeded	Byron’s	query,
“Who	will	 then	 explain	 the	 explanation?”	The	 elastic	 solid	 theory	 had	 a
long	 and	brilliant	 success,	 and	 even	 today	 some	of	 the	 formulas	Cauchy
derived	 from	 his	 false	 hypothesis	 are	 in	 use.	 But	 the	 theory	 itself	 was
abandoned	 when,	 as	 not	 infrequently	 happens,	 refined	 experimental
technique	 and	 unsuspected	 phenomena	 (anomalous	 dispersion	 in	 this
case)	failed	to	accord	with	the	predictions	of	the	theory.



Cauchy	 escaped	 from	 his	 pupil	 in	 1838	 (he	 was	 then	 almost	 fifty).
Friends	in	Paris	had	been	urging	him	for	some	time	to	return,	and	Cauchy
seized	the	excuse	of	his	parents’	golden	wedding	to	bid	adieu	to	Charles
and	 all	 his	 entourage.	By	 a	 special	 dispensation	members	 of	 the	 Institut
(of	which	the	Academy	of	Sciences	was,	and	is,	a	part)	were	not	required
to	take	an	oath	of	allegiance	to	the	Government,	so	Cauchy	resumed	his
seat.	His	mathematical	activity	now	became	greater	than	ever.	During	the
last	nineteen	years	of	his	life	he	produced	over	500	papers	on	all	branches
of	 mathematics,	 including	 mechanics,	 physics,	 and	 astronomy.	 Many	 of
these	works	were	long	treatises.

His	troubles	were	not	yet	over.	When	a	vacancy	occurred	at	the	Collège
de	France	Cauchy	was	unanimously	elected	to	fill	the	place.	But	here	there
was	 no	 dispensation	 and	 before	 he	 could	 step	 into	 the	 position	Cauchy
would	have	to	take	the	oath	of	allegiance.	Believing	the	Government	to	be
usurping	 the	 divine	 rights	 of	 his	master,	 Cauchy	 stiffened	 his	 neck	 and
refused	to	take	the	oath.	Once	more	he	was	out	of	a	job.	But	the	Bureau
des	 Longitudes	 could	 use	 a	mathematician	 of	 his	 calibre.	 Again	 he	 was
unanimously	elected.

Then	 began	 an	 amusing	 tug	 of	 war	 between	 Baron	 Cauchy	 and	 the
Bureau	at	one	end	of	 the	 rope	and	 the	unsanctified	Government	 at	 the
other.	 Conscious	 for	 once	 that	 it	 was	 making	 a	 fool	 of	 itself	 the
Government	 let	 go	 and	 Cauchy	 was	 shot	 backwards	 into	 the	 Bureau
without	an	oath.	Defiance	of	the	Government	was	grossly	illegal,	not	to	say
treasonable,	 but	 Cauchy	 stuck	 to	 his	 job.	 His	 colleagues	 at	 the	 Bureau
embarrassed	 the	 Government	 by	 politely	 ignoring	 its	 request	 to	 elect
someone	 legally.	For	 four	years	Cauchy	turned	his	obstinate	back	on	the
Government	and	went	on	with	his	work.

To	this	period	belong	some	of	Cauchy’s	most	 important	contributions
to	mathematical	astronomy.	Leverrier	had	unwittingly	 started	Cauchy	off
with	his	memoir	of	1840	on	Pallas.	This	was	a	 lengthy	work	packed	with
numerical	calculations	which	it	would	take	any	referee	as	long	to	check	as
it	 had	 taken	 the	 author	 to	 perform	 them	 in	 the	 first	 place.	 When	 the
memoir	was	presented	 to	 the	Academy	 the	officers	began	 looking	about
for	 someone	 willing	 to	 undertake	 the	 inhuman	 task	 of	 verifying	 the
correctness	of	 the	conclusions.	Cauchy	 volunteered.	 Instead	of	 following
Leverrier’s	 footsteps	 he	 quickly	 found	 shortcuts	 and	 invented	 new



methods	which	enabled	him	to	verify	and	extend	the	work	in	a	remarkably
short	time.

The	tussle	with	the	Government	reached	its	crisis	in	1843	when	Cauchy
was	 fifty	 four.	The	Minister	declined	 to	be	made	a	public	 laughing	stock
any	 longer	 and	 demanded	 that	 the	 Bureau	 hold	 r.n	 election	 to	 fill	 the
position	Cauchy	refused	to	vacate.	On	the	advice	of	his	friends	Cauchy	laid
his	case	before	the	people	in	an	open	letter.	This	letter	is	one	of	the	finest
things	Cauchy	ever	wrote.

Whatever	we	may	think	of	his	quixotic	championship	of	a	cause	which
all	but	flyblown	reactionaries	knew	had	been	well	 lost	 forever,	we	cannot
help	respecting	Cauchy’s	fearlessness	in	stating	his	own	case,	with	dignity
and	without	passion,	and	in	fighting	for	the	freedom	of	his	conscience.	It
was	the	old	fight	for	free	thought	in	a	guise	that	was	not	very	familiar	then
but	is	common	enough	now.

In	the	time	of	Galileo,	Cauchy	no	doubt	would	have	gone	to	the	stake
to	maintain	the	freedom	of	his	beliefs;	under	Louis	Philippe	he	denied	the
right	of	any	government	to	exact	an	oath	of	allegiance	which	traversed	his
conscience,	 and	 he	 suffered	 for	 his	 courage.	 His	 stand	 earned	 him	 the
respect	even	of	his	enemies,	and	brought	the	Government	into	contempt,
even	in	the	eyes	of	its	supporters.	Presently	the	stupidity	of	repression	was
brought	 home	 to	 the	 Government	 in	 a	 way	 it	 could	 understand—street
fighting,	riots,	strikes,	civil	war,	and	an	unanswerable	order	to	get	out	and
stay	out.	Louis	Philippe	and	all	his	gang	were	ousted	in	1848.	One	of	the
first	 acts	 of	 the	 Provisional	 Government	 was	 to	 abolish	 the	 oath	 of
allegiance.	With	rare	good	sense	the	politicians	realized	that	all	such	oaths
are	either	unnecessary	or	worthless.

In	1852,	when	Napoleon	III	took	charge,	the	oath	was	restored.	But	by
this	time	Cauchy	had	won	his	battle.	Word	was	quietly	passed	to	him	that
he	might	 resume	his	 lectures	without	 taking	 the	oath.	 It	was	understood
on	 both	 sides	 that	 no	 fuss	 was	 to	 be	made.	 The	 Government	 asked	 no
thanks	for	 its	 liberality,	nor	did	Cauchy	tender	any,	but	went	on	with	his
lectures	as	if	nothing	had	happened.	From	then	to	the	end	of	his	life	he
was	the	chief	glory	of	the	Sorbonne.

In	the	interim	between	official	instability	and	unofficial	stability	Cauchy
had	 taken	 time	 out	 to	 splinter	 a	 lance	 in	 defence	 of	 the	 Jesuits.	 The
trouble	was	 the	 old	 one—the	 State	 educational	 authorities	 insisting	 that
the	 Jesuit	 training	 incurred	 a	 divided	 allegiance,	 the	 Jesuits	 defending



religious	 instruction	 as	 the	 only	 sound	 basis	 for	 any	 education.	 It	 was	 a
fight	up	Cauchy’s	own	alley	and	he	sailed	into	it	with	eloquent	gusto.	His
defence	 of	 his	 friends	 was	 touching	 and	 sincere	 but	 unconvincing.
Whenever	Cauchy	got	off	mathematics	he	substituted	emotion	for	reason.

The	 Crimean	 War	 afforded	 Cauchy	 his	 last	 opportunity	 for	 getting
himself	 disliked	 by	 his	 harder-headed	 colleagues.	 He	 became	 an
enthusiastic	propagandist	for	a	singular	enterprise	known	as	Work	of	the
Schools	of	the	Orient.	“Work”	here	is	intended	in	the	sense	of	a	particular
“good	work.”

“It	 was	 necessary,”	 according	 to	 the	 sponsors	 of	 the	Work	 in	 1855,	 “to
remedy	 the	disorders	of	 the	past	 and	at	 the	 same	 time	 impose	a	double
check	on	Muscovite	ambition	and	Mohammedan	fanaticism:	above	all	 to
prepare	the	regeneration	of	peoples	brutalized	by	the	Koran	.	.	.	.”	In	short
the	Crimean	War	had	been	the	customary	bayonet	preparing	the	way	for
the	 Cross.	 Deeply	 impressed	 by	 the	 obvious	 necessity	 of	 replacing	 the
brutalizing	Koran	by	something	more	humane,	Cauchy	threw	himself	into
the	project,	“completing	and	consolidating	.	.	.	the	work	of	emancipation
so	admirably	begun	by	the	arms	of	France.”

The	 Jesuit	 Council,	 grateful	 for	 Cauchy’s	 expert	 help,	 gave	 him	 full
credit	 for	many	of	 the	details	 (including	 the	collection	of	 subscriptions)
which	were	to	accomplish	“the	moral	regeneration	of	peoples	enslaved	to
the	law	of	the	Koran,	the	triumph	of	the	Gospel	round	the	cradle	and	the
sepulchre	of	Jesus	Christ	being	the	sole	acceptable	compensation	for	these
billows	 of	 blood	 that	 have	 been	 shed”	 by	 the	Christian	 French,	 English,
Russians,	Sardinians,	and	the	Mohammedan	Turks	in	the	Crimean	War.

It	 was	 good	 works	 of	 this	 character	 that	 caused	 some	 of	 Cauchy’s
friends,	out	of	sympathy	with	the	pious	spirit	of	the	orthodox	religion	of
the	time,	to	call	him	a	smug	hypocrite.	The	epithet	was	wholly	undeserved.
Cauchy	was	one	of	the	sincerest	bigots	that	ever	lived.

The	 net	 result	 of	 the	Work	was	 the	 particularly	 revolting	massacre	 of
May,	1860.	Cauchy	did	not	live	to	see	his	labors	crowned.

*		*		*

Reputations	of	great	mathematicians	are	subject	to	the	same	vicissitudes
as	 those	of	other	great	men.	For	 long	after	his	death—and	even	today—
Cauchy	was	severely	criticized	for	overproduction	and	hasty	composition.



His	total	output	is	789	papers	(many	of	 them	very	extensive	works)	filling
twenty	four	large	quarto	volumes.	Criticism	of	this	sort	always	seems	rather
beside	the	point	if	a	man	has	put	out	a	mass	of	first	rate	work	in	addition
to	some	that	is	not	of	high	quality,	and	is	usually	indulged	in	by	men	who
themselves	have	done	comparatively	little,	and	that	little	not	of	the	highest
order	of	originality.	Cauchy’s	part	 in	modern	mathematics	 is	 somewhere
not	 far	 from	 the	 center	 of	 the	 stage.	 This	 is	 now	 almost	 universally
admitted,	 if	 grudgingly	 in	 some	 quarters.	 Since	 his	 death,	 especially	 in
recent	decades,	Cauchy’s	reputation	as	a	mathematician	has	risen	steadily.
The	 methods	 he	 introduced,	 his	 whole	 program	 inaugurating	 the	 first
period	 of	 modern	 rigor,	 and	 his	 almost	 unequalled	 inventiveness	 have
made	a	mark	on	mathematics	that	is,	so	far	as	we	can	now	see,	destined	to
be	visible	for	many	years	to	come.

One	 apparently	 unimportant	 detail	 out	 of	 all	 the	mass	 of	 new	 things
Cauchy	 did	 may	 be	 mentioned	 as	 an	 illustration	 of	 his	 prophetic
originality.	Instead	of	using	the	“imaginary”	 	Cauchy	proposed	to
accomplish	all	that	complex	numbers	do	in	mathematics	by	operating	with
congruences	to	the	modulus	i2	+	1.	This	was	done	in	1847.	The	paper—a
short	one—attracted	but	little	attention.	Yet	it	is	the	germ	of	something—
Kronecker’s	 program—that	 is	 on	 its	 way	 to	 revolutionizing	 some	 of	 the
fundamental	 concepts	 of	 mathematics.	 This	 matter	 will	 reappear
frequently	in	later	chapters,	so	we	may	pass	it	here	with	this	allusion.

In	 social	 contacts	 Cauchy	 was	 extremely	 polite,	 not	 to	 say	 oily	 on
occasion	as	when,	 for	example,	he	was	soliciting	subscriptions	 for	one	of
his	jousts.	His	habits	were	temperate	and	in	all	things	except	mathematics
and	 religion	 he	 was	moderate.	On	 the	 last	 he	 lacked	 ordinary	 common
sense.	Everyone	who	came	near	him	was	a	prospect	for	conversion.	When
William	Thomson	(Lord	Kelvin)	as	a	young	man	of	twenty	one	called	on
Cauchy	 to	discuss	mathematics,	Cauchy	 spent	 the	 time	 trying	 to	 convert
his	 visitor—then	 a	 staunch	 adherent	 of	 the	 Scottish	 Free	 Church—to
Catholicism.

Cauchy	had	his	share	of	rows	over	priority	in	which	his	enemies	accused
him	of	greed	and	unfair	play.	His	last	year	was	marred	by	one	such	dispute
wherein	 it	 would	 seem	 that	 Cauchy	 had	 no	 case.	 But	 with	 his	 usual
stubbornness	 where	 a	 matter	 of	 principle	 was	 involved	 he	 braved	 the
outcry	and	stuck	to	his	point	with	invincible	sweetness	and	pertinacity.



Another	peculiarity	added	 to	Cauchy’s	unpopularity	with	his	 scientific
colleagues.	In	scientific	academies	and	societies	a	man	is	supposed	to	base
his	vote	for	a	candidate	only	on	the	candidate’s	scientific	merits;	any	other
procedure	 is	 considered	 bad	 ethics.	Whether	 rightly	 or	 wrongly	 Cauchy
was	accused	of	voting	in	accordance	with	his	religious	and	political	views.
His	 last	 years	 were	 embittered	 by	 what	 he	 considered	 a	 lack	 of
understanding	 among	his	 colleagues	on	 this	 and	 similar	 foibles.	Neither
side	could	get	the	point	of	view	of	the	other.

Cauchy	 died	 rather	 unexpectedly	 in	 his	 sixty	 eighth	 year	 on	May	 23,
1857.	Hoping	to	benefit	a	bronchial	trouble,	he	retired	to	the	country	to
recuperate,	only	to	be	smitten	with	a	fever	which	proved	fatal.	A	few	hours
before	his	death	he	was	talking	animatedly	with	the	Archbishop	of	Paris	of
the	charitable	works	he	had	in	view—charity	was	one	of	Cauchy’s	lifelong
interests.	His	last	words	were	addressed	to	the	Archbishop:	“Men	pass	away
but	their	deeds	abide.”

I.	The	operations	in	a	pair	may	be	the	same,	thus	X,	X.

II.	For	example,	 	to	infinity,	obtained	by	dividing	1

by	1—x,	is	nonsense	if	x	is	a	positive	number	equal	to	or	greater	than	1.



CHAPTER	SIXTEEN

The	Copernicus	of	Geometry

LOBATCHEWSKY

Lobatchewsky’s	theory	was	incomprehensible	to	his	contemporaries,	appearing	as	it	did	to	contradict	an	axiom
whose	 necessity	 is	 based	 only	 on	 a	 prejudice	 sanctified	 by	 thousands	 of	 years.—THE	 EDITORS	 OF
LOBATCHEWSKY’S	WORKS

GRANTING	THAT	THE	COMMONLY	ACCEPTED	estimate	of	the	importance	of	what
Copernicus	 did	 is	 correct,	 we	 shall	 have	 to	 admit	 that	 it	 is	 either	 the
highest	 praise	 or	 the	 severest	 condemnation	 humanly	 possible	 to	 call
another	 man	 the	 “Copernicus”	 of	 anything.	 When	 we	 understand	 what
Lobatchewsky	 did	 in	 the	 creation	 of	 non-Euclidean	 geometry,	 and
consider	 its	 significance	 for	 all	human	 thought,	of	which	mathematics	 is
only	a	small	if	important	part,	we	shall	probably	agree	that	Clifford	(1845-
1879),	 himself	 a	 great	 geometer	 and	 far	 more	 than	 a	 “mere
mathematician,”	 was	 not	 overpraising	 his	 hero	 when	 he	 called
Lobatchewsky	“The	Copernicus	of	Geometry.”

Nikolas	 Ivanovitch	 Lobatchewsky,	 the	 second	 son	 of	 a	 minor
government	 official,	 was	 born	 on	 November	 2,	 1793	 in	 the	 district	 of
Makarief,	 government	 of	Nijni	Novgorod,	 Russia.	 The	 father	 died	 when
Nikolas	was	seven,	leaving	his	widow,	Praskovia	Ivanovna,	the	care	of	three
young	 sons.	 As	 the	 father’s	 salary	 had	 barely	 sufficed	 to	 keep	 his	 family
going	while	he	was	alive	the	widow	found	herself	in	extreme	poverty.	She
moved	to	Kazan,	where	she	prepared	her	boys	for	school	as	best	she	could,
and	had	the	satisfaction	of	seeing	them	accepted,	one	after	 the	other,	as
free	scholars	at	the	Gymnasium.	Nikolas	was	admitted	in	1802	at	the	age	of
eight.	His	progress	was	phenomenally	rapid	in	both	mathematics	and	the
classics.	At	the	age	of	fourteen	he	was	ready	for	the	university.	In	1807	he
entered	the	University	of	Kazan	(founded	in	1805),	where	he	was	to	spend
the	next	forty	years	of	his	life	as	student,	assistant	professor,	professor,	and
finally	rector.



Hoping	to	make	Kazan	ultimately	the	equal	of	any	university	in	Europe,
the	 authorities	 had	 imported	 several	 distinguished	 professors	 from
Germany.	 Among	 these	 was	 the	 astronomer	 Littrow,	 who	 later	 became
director	of	the	Observatory	at	Vienna,	whom	Abel	mentioned	as	one	of	his
excuses	 for	 seeing	 something	 of	 “the	 south.”	 The	 German	 professors
quickly	 recognized	 Lobatchewsky’s	 genius	 and	 gave	 him	 every
encouragement.

In	 1811,	 at	 the	 age	 of	 eighteen,	 Lobatchewsky	 obtained	 his	 master’s
degree	after	a	short	tussle	with	the	authorities,	whose	ire	he	had	incurred
through	his	youthful	exuberance.	His	German	friends	on	the	faculty	took
his	 part	 and	 he	 got	 his	 degree	 with	 distinction.	 At	 this	 time	 his	 elder
brother	Alexis	was	 in	charge	of	 the	elementary	mathematical	courses	 for
the	training	of	minor	government	officials,	and	when	Alexis	presently	took
a	sick-leave,	Nikolas	stepped	into	his	place	as	substitute.	Two	years	later,	at
the	age	of	twenty	one,	Lobatchewsky	received	a	probationary	appointment
as	 “Extraordinary	 Professor”	 or,	 as	 we	 should	 say	 in	 America,	 Assistant
Professor.

*		*		*

Lobatchewsky’s	promotion	to	an	ordinary	professorship	came	in	1816	at
the	unusually	early	age	of	twenty	three.	His	duties	were	heavy.	In	addition
to	his	mathematical	work	he	was	charged	with	courses	 in	astronomy	and
physics,	the	former	to	substitute	for	a	colleague	on	leave.	The	fine	balance
with	which	he	carried	his	heavy	 load	made	him	a	conspicuous	candidate
for	yet	more	work,	on	the	theory	that	a	man	who	can	do	much	is	capable
of	 doing	 more,	 and	 presently	 Lobatchewsky	 found	 himself	 University
Librarian	and	curator	of	the	chaotically	disordered	University	Museum.

Students	are	often	an	unruly	lot	before	life	teaches	them	that	generosity
of	spirit	does	not	pay	in	the	cut-throat	business	of	earning	a	living.	Among
Lobatchewsky’s	 innumerable	duties	 from	1819	 till	 the	death	of	 the	Czar
Alexander	in	1825	was	that	of	supervisor	of	all	the	students	in	Kazan,	from
the	 elementary	 schools	 to	 the	 men	 taking	 post-graduate	 courses	 in	 the
University.	The	supervision	was	primarily	over	the	political	opinions	of	his
charges.	 The	 difficulties	 of	 such	 a	 thankless	 job	 can	 easily	 be	 imagined.
That	Lobatchewsky	contrived	to	send	in	his	reports	day	after	day	and	year
after	 year	 to	 his	 suspicious	 superiors	 without	 once	 being	 called	 on	 the



carpet	for	laxity	in	espionage,	and	without	losing	the	sincere	respect	and
affection	of	 all	 the	 students,	 says	more	 for	his	 administrative	ability	 than
do	 all	 the	 gaudy	 orders	 and	 medals	 which	 a	 grateful	 Government
showered	on	him	and	with	which	he	delighted	to	adorn	himself	on	state
occasions.

The	collections	 in	 the	University	Museum	to	all	appearance	had	been
tossed	 in	with	 a	 pitchfork.	A	 similar	 disorder	made	 the	 extensive	 library
practically	 unusable.	 Lobatchewsky	 was	 commanded	 to	 clean	 up	 these
messes.	In	recognition	of	his	signal	services	the	authorities	promoted	him
to	the	deanship	of	the	Faculty	of	Mathematics	and	Physics,	but	omitted	to
appropriate	any	funds	for	hiring	assistance	in	straightening	out	the	library
and	 the	 museum.	 Lobatchewsky	 did	 the	 work	 with	 his	 own	 hands,
cataloguing,	 dusting	 and	 casing,	 or	 wielding	 a	 mop	 as	 the	 occasion
demanded.

With	the	death	of	Alexander	in	1825	things	took	a	turn	for	the	better.
The	 particular	 official	 responsible	 for	 the	 malicious	 persecution	 of	 the
University	 of	 Kazan	 was	 kicked	 out	 as	 being	 too	 corrupt	 for	 even	 a
government	 post,	 and	 his	 successor	 appointed	 a	 professional	 curator	 to
relieve	 Lobatchewsky	 of	 his	 endless	 tasks	 of	 cataloguing	 books,	 dusting
mineral	specimens,	and	deverminizing	stuffed	birds.	Needing	political	and
moral	 support	 for	 his	 work	 in	 the	University,	 the	 new	 curator	 did	 some
high	politics	on	his	own	account	and	secured	the	appointment	in	1827	of
Lobatchewsky	 as	 Rector.	 The	 mathematician	 was	 now	 head	 of	 the
University,	but	the	new	position	was	no	sinecure.	Under	his	able	direction
the	entire	staff	was	reorganized,	better	men	were	brought	 in,	 instruction
was	liberalized	in	spite	of	official	obstruction,	the	library	was	built	up	to	a
higher	 standard	 of	 scientific	 sufficiency,	 a	 mechanical	 workshop	 was
organized	for	making	the	scientific	instruments	required	in	research	and
instruction,	 an	observatory	was	 founded	 and	 equipped—a	pet	 project	 of
the	 energetic	 Rector’s—and	 the	 vast	 mineralogical	 collection,
representative	 of	 the	 whole	 of	 Russia,	 was	 put	 in	 order	 and	 constantly
enriched.

Even	the	new	dignity	of	his	rectorship	did	not	deter	Lobatchewsky	from
manual	 labor	 in	 the	 library	 and	museum	when	he	 felt	 that	his	 help	was
necessary.	 The	 University	 was	 his	 life	 and	 he	 loved	 it.	 On	 the	 slightest
provocation	he	would	take	off	his	collar	and	coat	and	go	to	work.	Once	a
distinguished	 foreigner,	 taking	 the	 coatless	 Rector	 for	 a	 janitor	 or



workman,	 asked	 to	 be	 shown	 through	 the	 libraries	 and	 museum
collections.	 Lobatchewsky	 showed	him	 the	 choicest	 treasures,	 explaining
as	 he	 exhibited.	 The	 visitor	 was	 charmed	 and	 greatly	 impressed	 by	 the
superior	 intelligence	 and	 courtesy	 of	 this	 obliging	 Russian	 worker.	 On
parting	from	his	guide	he	tendered	a	handsome	tip.	Lobatchewsky,	to	the
foreigner’s	bewilderment,	froze	up	in	a	cold	rage	and	indignantly	spurned
the	proffered	coin.	Thinking	it	but	just	one	more	eccentricity	of	the	high-
minded	Russian	janitor,	 the	visitor	bowed	and	pocketed	his	money.	That
evening	he	and	Lobatchewsky	met	at	the	Governor’s	dinner	table,	where
apologies	were	offered	and	accepted	on	both	sides.

Lobatchewsky	was	a	 strong	believer	 in	 the	philosophy	 that	 in	order	 to
get	 a	 thing	 done	 to	 your	 own	 liking	 you	 must	 either	 do	 it	 yourself	 or
understand	enough	about	its	execution	to	be	able	to	criticize	the	work	of
another	 intelligently	 and	 constructively.	 As	 has	 been	 said,	 the	University
was	 his	 life.	When	 the	Government	 decided	 to	modernize	 the	 buildings
and	add	new	ones,	Lobatchewsky	made	it	his	business	to	see	that	the	work
was	done	properly	and	the	appropriation	not	squandered.	To	fit	himself
for	 this	 task	he	 learned	 architecture.	 So	practical	was	 his	mastery	 of	 the
subject	 that	 the	 buildings	 were	 not	 only	 handsome	 and	 suited	 for	 their
purposes	but,	what	must	be	almost	unique	in	the	history	of	governmental
building,	 were	 constructed	 for	 less	money	 than	 had	 been	 appropriated.
Some	years	later	(in	1842)	a	disastrous	fire	destroyed	half	Kazan	and	took
with	 it	 Lobatchewsky’s	 finest	 buildings,	 including	 the	 barely	 completed
observatory—the	 pride	 of	 his	 heart.	 But	 due	 to	 his	 energetic	 cool-
headedness	 the	 instruments	and	 the	 library	were	 saved.	After	 the	 fire	he
set	 to	 work	 immediately	 to	 rebuild.	 Two	 years	 later	 not	 a	 trace	 of	 the
disaster	remained.

We	 recall	 that	 1842,	 the	 year	 of	 the	 fire,	 was	 also	 the	 year	 in	 which,
thanks	 to	 the	good	offices	of	Gauss,	Lobatchewsky	was	 elected	 a	 foreign
correspondent	of	 the	Royal	Society	of	Göttingen	for	his	creation	of	non-
Euclidean	 geometry.	 Although	 it	 seems	 incredible	 that	 any	 man	 so
excessively	 burdened	 with	 teaching	 and	 administration	 as	 Lobatchewsky
was,	could	find	the	time	to	do	even	one	piece	of	mediocre	scientific	work,
he	had	actually,	somehow	or	another,	made	the	opportunity	to	create	one
of	 the	 great	masterpieces	 of	 all	mathematics	 and	 a	 landmark	 in	 human
thought.	He	had	worked	at	it	off	and	on	for	twenty	years	or	more.	His	first
public	 communication	 on	 the	 subject,	 to	 the	 Physical-Mathematical



Society	of	Kazan,	was	made	in	1826.	He	might	have	been	speaking	in	the
middle	of	the	Sahara	Desert	for	all	the	echo	he	got.	Gauss	did	not	hear	of
the	work	till	about	1840.

Another	episode	in	Lobatchewsky’s	busy	life	shows	that	it	was	not	only
in	mathematics	that	he	was	far	ahead	of	his	time.	The	Russia	of	1830	was
probably	 no	 more	 sanitary	 than	 that	 of	 a	 century	 later,	 and	 it	 may	 be
assumed	 that	 the	 same	 disregard	 of	 personal	 hygiene	 which	 filled	 the
German	 soldiers	 in	 the	 World	 War	 with	 an	 amazed	 disgust	 for	 their
unfortunate	 Russian	 prisoners,	 and-which	 today	 causes	 the	 industrious
proletariat	to	use	the	public	parks	and	playgrounds	of	Moscow	as	vast	and
convenient	 latrines,	 distinguished	 the	 luckless	 inhabitants	 of	 Kazan	 in
Lobatchewsky’s	 day	 when	 the	 cholera	 epidemic	 found	 them	 richly
prepared	for	a	prolonged	visitation.	The	germ	theory	of	disease	was	still	in
the	 future	 in	 1830,	 although	 progressive	minds	 had	 long	 suspected	 that
filthy	habits	had	more	 to	do	with	 the	 scourge	of	 the	pestilence	 than	 the
anger	of	the	Lord.

On	the	arrival	of	the	cholera	in	Kazan	the	priests	did	what	they	could
for	 their	 smitten	 people,	 herding	 them	 into	 the	 churches	 for	 united
supplication,	 absolving	 the	 dying	 and	 burying	 the	 dead,	 but	 never	 once
suggesting	 that	 a	 shovel	 might	 be	 useful	 for	 any	 purpose	 other	 than
digging	 graves.	 Realizing	 that	 the	 situation	 in	 the	 town	 was	 hopeless,
Lobatchewsky	induced	his	faculty	to	bring	their	families	to	the	University
and	 prevailed	 upon—practically	 ordered—some	 of	 the	 students	 to	 join
him	in	a	rational,	human	fight	against	the	cholera.	The	windows	were	kept
closed,	 strict	 sanitary	 regulations	 were	 enforced,	 and	 only	 the	 most
necessary	 forays	 for	replenishing	the	 food	supply	were	permitted.	Of	 the
660	men,	women	and	children	thus	sanely	protected,	only	sixteen	died,	a
mortality	 of	 less	 than	 2.5	 per	 cent.	 Compared	 to	 the	 losses	 under	 the
traditional	remedies	practised	in	the	town	this	was	negligible.

It	might	be	imagined	that	after	all	his	distinguished	services	to	the	state
and	his	European	recognition	as	a	mathematician,	Lobatchewsky	would	be
in	line	for	substantial	honors	from	his	Government.	To	imagine	anything
of	the	kind	would	not	only	be	extremely	naïve	but	would	also	traverse	the
scriptural	injunction	“Put	not	your	trust	in	princes.”	As	a	reward	for	all	his
sacrifices	 and	his	 unswerving	 loyalty	 to	 the	 best	 in	Russia,	 Lobatchewsky
was	brusquely	relieved	in	1846	of	his	Professorship	and	his	Rectorship	of
the	 university.	 No	 explanation	 of	 this	 singular	 and	 unmerited	 double



insult	was	made	public.	Lobatchewsky	was	in	his	fifty	fourth	year,	vigorous
of	 body	 and	 mind	 as	 ever,	 and	 more	 eager	 than	 he	 had	 ever	 been	 to
continue	 with	 his	 mathematical	 researches.	 His	 colleagues	 to	 a	 man
protested	 against	 the	 outrage,	 jeopardizing	 their	 own	 security,	 but	 were
curtly	 informed	 that	 they	 as	 mere	 professors	 were	 constitutionally
incapable	 of	 comprehending	 the	 higher	 mysteries	 of	 the	 science	 of
government.

The	ill-disguised	disgrace	broke	Lobatchewsky.	He	was	still	permitted	to
retain	his	study	at	the	University.	But	when	his	successor,	hand-picked	by
the	Government	to	discipline	the	disaffected	faculty,	arrived	in	1847	to	take
up	his	ungracious	 task,	Lobatchewsky	 abandoned	 all	 hope	of	 ever	being
anybody	 ag£Ín	 in	 the	 University	 which	 owed	 its	 intellectual	 eminence
almost	entirely	to	his	efforts,	and	he	appeared	thereafter	only	occasionally
to	assist	at	examinations.	Although	his	eyesight	was	failing	rapidly	he	was
still	capable	of	intense	mathematical	thinking.

He	still	loved	the	University.	His	health	broke	when	his	son	died,	but	he
lingered	 on,	 hoping	 that	 he	 might	 still	 be	 of	 some	 use.	 In	 1855	 the
University	celebrated	 its	 semicentennial	anniversary.	To	do	honor	 to	 the
occasion,	Lobatchewsky	attended	the	exercises	in	person	to	present	a	copy
of	his	Pangeometry,	the	completed	work	of	his	scientific	life.	This	work	(in
French	and	Russian)	was	not	written	by	his	own	hand,	but	was	dictated,	as
Lobatchewsky	was	now	blind.	A	few	months	later	he	died,	on	February	24,
1856,	at	the	age	of	sixty	two.

*		*		*

To	 see	 what	 Lobatchewsky	 did	 we	 must	 first	 glance	 at	 Euclid’s
outstanding	 achievement.	 The	 name	 Euclid	 until	 quite	 recently	 was
practically	 synonymous	 with	 elementary	 school	 geometry.	 Of	 the	 man
himself	 very	 little	 is	 known	 beyond	 his	 doubtful	 dates,	 330-275.	 B.C.	 In
addition	 to	 a	 systematic	 account	 of	 elementary	 geometry	 his	 Elements
contain	 all	 that	 was	 known	 in	 his	 time	 of	 the	 theory	 of	 numbers.
Geometrical	teaching	was	dominated	by	Euclid	for	over	2200	years.	His	part
in	the	Elements	appears	to	have	been	principally	that	of	a	coordinator	and
logical	 arranger	 of	 the	 scattered	 results	 of	 his	 predecessors	 and
contemporaries,	and	his	aim	was	to	give	a	connected,	reasoned	account	of
elementary	 geometry	 such	 that	 every	 statement	 in	 the	 whole	 long	 book



could	be	referred	back	to	the	postulates.	Euclid	did	not	attain	this	ideal	or
anything	 even	 distantly	 approaching	 it,	 although	 it	 was	 assumed	 for
centuries	that	he	had.

Euclid’s	title	to	immortality	is	based	on	something	quite	other	than	the
supposed	 logical	perfection	which	 is	 still	 sometimes	erroneously	ascribed
to	him.	This	 is	his	 recognition	 that	 the	 fifth	of	his	postulates	(his	Axiom
XI)	 is	 a	 pure	 assumption.	 The	 fifth	 postulate	 can	 be	 stated	 in	 many
equivalent	forms,	each	of	which	is	deducible	from	any	one	of	the	others	by
means	 of	 the	 remaining	 postulates	 of	 Euclid’s	 geometry.	 Possibly	 the
simplest	of	these	equivalent	statements	is	the	following:	Given	any	straight
line	l	and	a	point	P	not	on	l,	then	in	the	plane	determined	by	l	and	P	it	is
possible	 to	draw	precisely	one	 straight	 line	V	 through	P	 such	 that	V	 never
meets	 l	 no	 matter	 how	 far	 l′	 and	 l	 are	 extended	 (in	 either	 direction).
Merely	as	a	nominal	definition	we	say	that	two	straight	 lines	 lying	in	one
plane	 which	 never	 meet	 are	 parallel.	 Thus	 the	 fifth	 postulate	 of	 Euclid
asserts	 that	 through	 P	 there	 is	 precisely	 one	 straight	 line	 parallel	 to	 /.
Euclid’s	 penetrating	 insight	 into	 the	 nature	 of	 geometry	 convinced	 him
that	 this	 postulate	 had	 not,	 in	 his	 time,	 been	 deduced	 from	 the	 others,
although	 there	 had	 been	 many	 attempts	 to	 prove	 the	 postulate.	 Being
unable	 to	deduce	 the	postulate	himself	 from	his	other	assumptions,	 and
wishing	to	use	it	in	the	proofs	of	many	of	his	theorems,	Euclid	honestly	set
it	out	with	his	other	postulates.

There	are	one	or	two	simple	matters	to	be	disposed	of	before	we	come
to	Lobatchewsky’s	Copernican	part	in	the	extension	of	geometry.	We	have
alluded	 to	 “equivalents”	 of	 the	 parallel	 postulate.	 One	 of	 these,	 “the
hypothesis	of	the	right	angle,”	as	it	is	called,	will	suggest	two	possibilities,
neither	 equivalent	 to	 Euclid’s	 assumption,	 one	 of	 which	 introduces
Lobatchewsky’s	geometry,	the	other,	Riemann’s.

Consider	 a	 figure	AXTB	 which	 “looks	 like”	 a	 rectangle,	 consisting	 of
four	straight	lines	AX,	XT,	TB,	BA,	in	which	BA	(or	AB)is	the	base,	AX	and



TB	 (or	BT)	 are	drawn	equal	 and	perpendicular	 to	AB,	 and	on	 the	 same
side	of	AB.	The	essential	 things	 to	be	 remembered	about	 this	 figure	are
that	each	of	the	angles	XA	B,	TBA	(at	the	base)	is	a	right	angle,	and	that
the	sides	AX,	BY	are	equal	 in	 length.	Without	using	 the	parallel	postulate,	 it
can	be	proved	that	the	angles	AXT,	BTX,	are	equal,	but,	without	using	this
postulate,	 it	 is	 impossible	 to	 prove	 that	 AXT,	 BTX	 are	 right	 angles,	 although
they	look	it.	If	we	assume	the	parallel	postulate	we	can	prove	 that	AXT,	BTX
are	right	angles	and,	conversely,	if	we	assume	that	AXT,	BTX	are	right	angles,
we	can	prove	 the	parallel	postulate.	Thus	 the	assumption	 that	AXT,	BTX	are
right	 angles	 is	 equivalent	 to	 the	 parallel	 postulate.	 This	 assumption	 is	 today
called	the	hypothesis	of	the	right	angle	(since	both	angles	are	right	angles	the
singular	instead	of	the	plural	“angles”	is	used).

It	is	known	that	the	hypothesis	of	the	right	angle	leads	to	a	consistent,
practically	 useful	 geometry,	 in	 fact	 to	 Euclid’s	 geometry	 refurbished	 to
meet	modern	standards	of	logical	rigor.	But	the	figure	suggests	two	other
possibilities:	each	of	 the	equal	angles	AXY,	BYX	 is	 less	 than	a	 right	 angle
—the	hypothesis	of	the	acute	angle;	each	of	the	equal	angles	AXY,	BYX	is	greater
than	 a	 right	 angle—the	 hypothesis	 of	 the	 obtuse	 angle.	 Since	 any	 angle	 can
satisfy	one,	and	only	one,	of	the	requirements	that	it	be	equal	to,	less	than,
or	 greater	 than	 a	 right	 angle,	 the	 three	 hypotheses—of	 the	 right	 angle,
acute	angle,	and	obtuse	angle	respectively—exhaust	the	possibilities.

Common	experience	predisposes	us	in	favor	of	the	first	hypothesis.	To
see	that	each	of	the	others	is	not	as	unreasonable	as	might	at	first	appear



we	shall	consider	something	closer	to	actual	human	experience	than	the
highly	 idealized	“plane”	 in	which	Euclid	 imagined	his	 figures	drawn.	But
first	we	observe	that	neither	the	hypothesis	of	the	acute	angle	nor	that	of
the	 obtuse	 angle	 will	 enable	 us	 to	 prove	 Euclid’s	 parallel	 postulate,
because,	 as	 has	 been	 stated	 above,	 Euclid’s	 postulate	 is	 equivalent	 to	 the
hypothesis	 of	 the	 right	 angle	 (in	 the	 sense	 of	 interdeducibility;	 the
hypothesis	 of	 the	 right	 angle	 is	 both	 necessary	 and	 sufficient	 for	 the
deduction	of	the	parallel	postulate).	Hence	if	we	succeed	in	constructing
geometries	on	either	of	the	two	new	hypotheses,	we	shall	not	find	in	them
parallels	in	Euclid’s	sense.

To	make	the	other	hypotheses	less	unreasonable	than	they	may	seem	at
first	sight,	suppose	the	Earth	were	a	perfect	sphere	(without	irregularities
due	 to	mountains,	 etc.).	A	plane	drawn	 through	 the	 center	of	 this	 ideal
Earth	 cuts	 the	 surface	 in	 a	 great	 circle.	 Suppose	 we	 wish	 to	 go	 from	 one
point	A	 to	another	B	 on	 the	 surface	of	 the	Earth,	 keeping	always	 on	 the
surface	in	passing	from	A	to	B,	and	suppose	further	that	we	wish	to	make
the	 journey	 by	 the	 shortest	 way	 possible.	 This	 is	 the	 problem	 of	 “great
circle	sailing.”	Imagine	a	plane	passed	through	A,	B,	and	the	center	of	the
Earth	(there	is	one,	and	only	one,	such	plane).	This	plane	cuts	the	surface
in	a	great	circle.	To	make	our	shortest	 journey	we	go	 from	A	 to	B	along
the	shorter	of	the	two	arcs	of	this	great	circle	joining	them.	If	A,	B	happen
to	lie	at	the	extremities	of	a	diameter,	we	may	go	by	either	arc.

The	preceding	 example	 introduces	 an	 important	 definition,	 that	 of	 a
geodesic	on	a	surface,	which	will	now	be	explained.	It	has	just	been	seen	that
the	 shortest	 distance	 joining	 two	 points	 on	 a	 sphere,	 the	 distance	 itself
being	measured	on	the	surface,	is	an	arc	of	the	great	circle	joining	them.	We
have	also	 seen	 that	 the	 longest	distance	 joining	 the	 two	points	 is	 the	other
arc	of	the	same	great	circle,	except	in	the	case	when	the	points	are	ends	of
a	diameter,	when	shortest	and	longest	are	equal.	In	the	chapter	on	Fermat
“greatest”	and	“least”	were	subsumed	under	the	common	name	“extreme,”
or	 “extremum.”	 We	 recall	 now	 one	 usual	 definition	 of	 a	 straight-line
segment	 joining	 two	points	 in	a	plane—“the	 shortest	distance	 between	 two
points.”	Transferring	 this	 to	 the	 sphere,	we	 say	 that	 to	 straight	 line	 in	 the
plane	 corresponds	great	circle	 on	 the	 sphere.	 Since	 the	Greek	word	 for	 the
Earth	is	the	first	syllable	ge	 	of	geodesic	we	call	all	extrema	joining	any	two
points	on	any	surface	the	geodesics	of	that	surface.	Thus	in	a	plane	the	geodesics
are	Euclid’s	 straight	 lines;	 on	a	 sphere	 they	 are	great	 circles.	A	geodesic



can	 be	 visualized	 as	 the	 position	 taken	 by	 a	 string	 stretched	 as	 tight	 as
possible	between	two	points	on	a	surface.

Now,	in	navigation	at	least,	an	ocean	is	not	thought	of	as	a	flat	surface
(Euclidean	 plane)	 if	 even	moderate	 distances	 are	 concerned;	 it	 is	 taken
for	what	it	very	approximately	is,	namely	a	part	of	the	surface	of	a	sphere,
and	the	geometry	of	great	circle	sailing	is	not	Euclid’s.	Thus	Euclid’s	is	not
the	only	geometry	of	human	utility.	On	the	plane	two	geodesics	intersect
in	exactly	one	point	unless	they	are	parallel,	when	they	do	not	intersect	(in
Euclidean	geometry);	but	on	the	sphere	any	two	geodesics	always	intersect
in	precisely	two	points.	Again,	on	a	plane,	no	two	geodesics	can	enclose	a
space—as	Euclid	assumed	in	one	of	the	postulates	for	his	geometry;	on	a
sphere,	any	two	geodesics	always	enclose	a	space.

Imagine	 now	 the	 equator	 on	 the	 sphere	 and	 two	 geodesics	 drawn
through	 the	 north	 pole	 perpendicular	 to	 the	 equator.	 In	 the	 northern
hemisphere	this	gives	a	triangle	with	curved	sides,	two	of	which	are	equal.
Each	side	of	this	triangle	is	an	arc	of	a	geodesic.	Draw	any	other	geodesic
cutting	 the	 two	 equal	 sides	 so	 that	 the	 intercepted	 parts	 between	 the
equator	 and	 the	 cutting	 line	 are	 equal.	We	 now	 have,	 on	 the	 sphere,	 the



four-sided	figure	corresponding	to	the	AXTB	we	had	a	few	moments	ago
in	the	plane.	The	two	angles	at	the	base	of	this	figure	are	right	angles	and
the	corresponding	sides	are	equal,	as	before,	but	each	of	the	equal	angles	at	X,
T	 is	now	 greater	 than	a	 right	 angle.	 So,	 in	 the	highly	practical	 geometry	of
great	 circle	 sailing,	 which	 is	 closer	 to	 real	 human	 experience	 than	 the
idealized	 diagrams	 of	 elementary	 geometry	 ever	 get,	 it	 is	 not	 Euclid’s
postulate	 which	 is	 true—or	 its	 equivalent	 in	 the	 hypothesis	 of	 the	 right
angle—but	the	geometry	which	follows	from	the	hypothesis	of	the	obtuse
angle.

In	 a	 similar	 manner,	 inspecting	 a	 less	 familiar	 surface,	 we	 can	 make
reasonable	 the	hypothesis	of	 the	acute	 angle.	The	 surface	 looks	 like	 two
infinitely	 long	 trumpets	 soldered	 together	 at	 their	 largest	 ends.	 To
describe	it	more	accurately	we	must	introduce	the	plane	curve	called	the
tractrix,	which	is	generated	as	follows.	Let	two	lines	XOX′	TOT’	be	drawn	in
a	 horizontal	 plane	 intersecting	 at	 right	 angles	 in	 O,	 as	 in	 Cartesian
geometry.	 Imagine	an	inextensible	fiber	 lying	along	TOT’,	 to	one	end	of
which	 is	attached	a	small	heavy	pellet;	 the	other	end	of	 the	fiber	 is	at	O.
Pull	this	end	out	along	the	line	OX.



As	the	pellet	follows,	it	traces	out	one	half	of	the	tractrix;	the	other	half	is
traced	 out	 by	 drawing	 the	 end	 of	 the	 fiber	 along	OX’,	 and	 of	 course	 is
merely	the	reflection	or	image	in	OT	of	the	first	half.	The	drawing	out	is
supposed	 to	 continue	 indefinitely—“to	 infinity”—in	 each	 instance.	 Now
imagine	 the	 tractrix	 to	 be	 revolved	 about	 the	 line	 XOX’.	 The	 double-
trumpet	 surface	 is	 generated;	 for	 reasons	 we	 need	 not	 go	 into	 (it	 has
constant	negative	curvature)	it	is	called	a.	pseudosphere.	If	on	this	surface	we
draw	 the	 four-sided	 figure	 with	 two	 equal	 sides	 and	 two	 right	 angles	 as
before,	using	geodesics,	we	 find	 that	 the	hypothesis	of	 the	acute	angle	 is
realized.

Thus	the	hypotheses	of	the	right	angle,	the	obtuse	angle,	and	the	acute
angle	 respectively	 are	 true	 on	 a	 Euclidean	 plane,	 a	 sphere,	 and	 a
pseudosphere	respectively,	and	in	all	cases	“straight	 lines”	are	geodesics	or
extrema.	Euclidean	geometry	is	a	limiting,	or	degenerate,	case	of	geometry
on	 a	 sphere,	 being	 attained	 when	 the	 radius	 of	 the	 sphere	 becomes
infinite.

Instead	 of	 constructing	 a	 geometry	 to	 fit	 the	 Earth	 as	 human	 beings
now	 know	 it,	 Euclid	 apparently	 proceeded	 on	 the	 assumption	 that	 the
Earth	 is	 flat.	 If	Euclid	did	not,	his	predecessors	did,	and	by	 the	 time	 the
theory	of	“space,”	or	geometry,	reached	him	the	bald	assumptions	which	he
embodied	in	his	postulates	had	already	taken	on	the	aspect	of	hoary	and



immutable	necessary	truths,	revealed	to	mankind	by	a	higher	intelligence
as	 the	 veritable	 essence	of	 all	material	 things.	 It	 took	over	 two	 thousand
years	to	knock	the	eternal	truth	out	of	geometry,	and	Lobatchewsky	did	it.

To	 use	 Einstein’s	 phrase,	 Lobatchewsky	 challenged	 an	 axiom.	 Anyone
who	 challenges	 an	 “accepted	 truth”	 that	 has	 seemed	 necessary	 or
reasonable	to	the	great	majority	of	sane	men	for	2000	years	or	more	takes
his	 scientific	 reputation,	 if	 not	 his	 life,	 in	 his	 hands.	 Einstein	 himself
challenged	the	axiom	that	two	events	can	happen	in	different	places	at	 the
same	time,	and	by	analyzing	this	hoary	assumption	was	led	to	the	invention
of	the	special	theory	of	relativity.	Lobatchewsky	challenged	the	assumption
that	Euclid’s	parallel	postulate	or,	what	is	equivalent,	the	hypothesis	of	the
right	 angle,	 is	 necessary	 to	 a	 consistent	 geometry,	 and	 he	 backed	 his
challenge	by	producing	a	system	of	geometry	based	on	the	hypothesis	of
the	acute	angle	in	which	there	is	not	one	parallel	through	a	fixed	point	to	a
given	straight	 line	but	 two.	Neither	of	Lobatchewsky’s	parallels	meets	 the
line	to	which	both	are	parallel,	nor	does	any	straight	line	drawn	through
the	 fixed	 point	 and	 lying	 within	 the	 angle	 formed	 by	 the	 two	 parallels.
This	 apparently	 bizarre	 situation	 is	 “realized”	 by	 the	 geodesics	 on	 a
pseudosphere.

For	 any	 everyday	 purpose	 (measurements	 of	 distances,	 etc.),	 the
differences	 between	 the	 geometries	 of	 Euclid	 and	Lobatchewsky	 are	 too
small	 to	 count,	 but	 this	 is	 not	 the	 point	 of	 importance:	 each	 is	 self-
consistent	 and	 each	 is	 adequate	 for	 human	 experience.	 Lobatchewsky
abolished	 the	necessary	 “truth”	 of	 Euclidean	 geometry.	His	 geometry	 was
but	 the	 first	 of	 several	 constructed	 by	 his	 successors.	 Some	 of	 these
substitutes	for	Euclid’s	geometry—for	instance	the	Riemannian	geometry
of	general	relativity—are	today	at	least	as	important	in	the	still	living	and
growing	 parts	 of	 physical	 science	 as	 Euclid’s	 was,	 and	 is,	 in	 the
comparatively	 static	 and	 classical	 parts.	 For	 some	 purposes	 Euclid’s



geometry	is	best	or	at	least	sufficient,	for	others	it	is	inadequate	and	a	non-
Euclidean	geometry	is	demanded.

Euclid	in	some	sense	was	believed	for	2200	years	to	have	discovered	an
absolute	truth	or	a	necessary	mode	of	human	perception	in	his	system	of
geometry.	Lobatchewsky’s	creation	was	a	pragmatic	demonstration	of	the
error	 of	 this	 belief.	 The	 boldness	 of	 his	 challenge	 and	 its	 successful
outcome	 have	 inspired	 mathematicians	 and	 scientists	 in	 general	 to
challenge	 other	 “axioms”	 or	 accepted	 “truths,”	 for	 example	 the	 “law”	 of
causality,	 which,	 for	 centuries,	 have	 seemed	 as	 necessary	 to	 straight
thinking	as	Euclid’s	postulate	appeared	till	Lobatchewsky	discarded	it.

The	 full	 impact	of	 the	Lobatchewskian	method	of	challenging	axioms
has	probably	yet	to	be	felt.	It	is	no	exaggeration	to	call	Lobatchewsky	the
Copernicus	of	Geometry,	for	geometry	is	only	a	part	of	the	vaster	domain
which	he	renovated;	it	might	even	be	just	to	designate	him	as	a	Copernicus
of	all	thought.



CHAPTER	SEVENTEEN

Genius	and	Poverty

ABEL

I	have	 finished	a	monument	more	 lasting	 than	bronze	and	 loftier	 than	 the	pyramids	 reared	by	kings,	 that
neither	corroding	rain	nor	the	uncontrolled	north	wind	can	dash	apart,	nor	the	countless	succession	of	years	and
the	flight	of	ages.	I	shall	not	wholly	die;	that	greater	part	of	me	shall	escape	Death	and	ever	shall	I	grow,	still
fresh	in	the	praise	of	posterity.—HORACE	(Odes,	3,	xxx)

AN	ASTROLOGER	 IN	 THE	 YEAR	 1801	might	have	 read	 in	 the	 stars	 that	 a	new
galaxy	of	mathematical	genius	was	about	 to	blaze	 forth	 inaugurating	 the
greatest	century	of	mathematical	history.	In	all	that	galaxy	of	talent	there
was	no	brighter	 star	 than	Niels	Henrik	Abel,	 the	man	of	whom	Hermite
said,	 “He	has	 left	mathematicians	 something	 to	 keep	 them	busy	 for	 five
hundred	years.”

Abel’s	father	was	the	pastor	of	the	little	village	of	Findö,	in	the	diocese
of	Kristiansand,	Norway,	where	his	second	son,	Niels	Henrik,	was	born	on
August	5,	1802.	On	the	father’s	side	several	ancestors	had	been	prominent
in	 the	work	of	 the	 church	 and	 all,	 including	Abel’s	 father,	were	men	of
culture.	Anne	Marie	Simonsen,	Abel’s	mother,	was	chiefly	remarkable	for
her	 great	 beauty,	 love	 of	 pleasure,	 and	 general	 flightiness—quite	 an
exciting	combination	for	a	pastor’s	helpmeet.	From	her	Abel	inherited	his
striking	good	looks	and	a	very	human	desire	to	get	something	more	than
everlasting	hard	work	out	of	life,	a	desire	he	was	seldom	able	to	gratify.

The	pastor	was	blessed	with	seven	children	in	all	at	a	time	when	Norway
was	desperately	poor	as	the	result	of	wars	with	England	and	Sweden,	to	say
nothing	 of	 a	 famine	 thrown	 in	 for	 good	 measure	 between	 wars.
Nevertheless	the	family	was	a	happy	one.	In	spite	of	pinching	poverty	and
occasional	empty	stomachs	they	kept	their	chins	up.	There	is	a	charming
picture	of	Abel	after	his	mathematical	genius	had	seized	him	sitting	by	the
fireside	 with	 the	 others	 chattering	 and	 laughing	 in	 the	 room	 while	 he
researched	with	one	eye	on	his	mathematics	and	the	other	on	his	brothers



and	sisters.	The	noise	never	distracted	him	and	he	joined	in	the	badinage
as	he	wrote.

Like	several	of	the	first-rank	mathematicians	Abel	discovered	his	talent
early.	 A	 brutal	 schoolmaster	 unwittingly	 threw	 opportunity	 Abel’s	 way.
Education	in	the	first	decades	of	the	nineteenth	century	was	virile,	at	least
in	Norway.	Corporal	punishment,	 as	 the	 simplest	method	of	 toughening
the	 pupils’	 characters	 and	 gratifying	 the	 sadistic	 inclinations	 of	 the
masterful	 pedagogues,	 was	 generously	 administered	 for	 every	 trivial
offense.	Abel	was	not	awakened	through	his	own	skin,	as	Newton	is	said	to
have	 been	 by	 that	 thundering	 kick	 donated	 by	 a	 playmate,	 but	 by	 the
sacrifice	of	a	fellow	student	who	had	been	flogged	so	unmercifully	that	he
died.	This	was	a	bit	 too	 thick	even	 for	 the	 rugged	 schoolboard	and	 they
deprived	 the	 teacher	 of	 his	 job.	 A	 competent	 but	 by	 no	means	 brilliant
mathematician	filled	the	vacancy,	Bernt	Michael	Holmboë	(1795-1850),	who
was	later	to	edit	the	first	edition	of	Abel’s	collected	works	in	1839.

Abel	at	the	time	was	about	fifteen.	Up	till	now	he	had	shown	no	marked
talent	 for	 anything	 except	 taking	 his	 troubles	 with	 a	 sense	 of	 humor.
Under	 the	 kindly,	 enlightened	 Holmboë’s	 teaching	 Abel	 suddenly
discovered	 what	 he	 was.	 At	 sixteen	 he	 began	 reading	 privately	 and
thoroughly	digesting	the	great	works	of	his	predecessors,	 including	some
of	those	of	Newton,	Euler,	and	Lagrange.	Thereafter	real	mathematics	was
not	 only	 his	 serious	 occupation	 but	 his	 fascinating	 delight.	 Asked	 some
years	 later	 how	 he	 had	managed	 to	 forge	 ahead	 so	 rapidly	 to	 the	 front
rank	 he	 replied,	 “By	 studying	 the	 masters,	 not	 their	 pupils”—a
prescription	some	popular	writers	of	textbooks	might	do	well	to	mention
in	 their	 prefaces	 as	 an	 antidote	 to	 the	 poisonous	 mediocrity	 of	 their
uninspired	pedagogics.

Holmboë	 and	 Abel	 soon	 became	 close	 friends.	 Although	 the	 teacher
was	 himself	 no	 creative	 mathematician	 he	 knew	 and	 appreciated	 the
masterpieces	 of	mathematics,	 and	 under	 his	 eager	 suggestions	 Abel	 was
soon	 mastering	 the	 toughest	 of	 the	 classics,	 including	 the	 Disquisitiones
Arithmeticae	of	Gauss.

Today	 it	 is	 a	 commonplace	 that	 many	 fine	 things	 the	 old	 masters
thought	they	had	proved	were	not	really	proved	at	all.	Particularly	 is	 this
true	of	some	of	Euler’s	work	on	infinite	series	and	some	of	Lagrange’s	on
analysis.	 Abel’s	 keen	mind	was	 one	 of	 the	 first	 to	 detect	 the	 gaps	 in	 his
predecessors’	 reasoning,	 and	 he	 resolved	 to	 devote	 a	 fair	 share	 of	 his



lifework	to	caulking	the	cracks	and	making	the	reasoning	watertight.	One
of	 his	 classics	 in	 this	 direction	 is	 the	 first	 proof	 of	 the	 general	 binomial
theorem,	special	cases	of	which	had	been	stated	by	Newton	and	Euler.	It	is
not	 easy	 to	 give	 a	 sound	 proof	 in	 the	 general	 case,	 so	 perhaps	 it	 is	 not
astonishing	 to	 find	alleged	proofs	 still	displayed	 in	 the	 schoolbooks	 as	 if
Abel	had	never	lived.	This	proof	however	was	only	a	detail	in	Abel’s	vaster
program	of	cleaning	up	the	theory	and	application	of	infinite	series.

Abel’s	father	died	in	1820	at	the	early	age	of	forty	eight.	At	the	time	Abel
was	 eighteen.	 The	 care	 of	 his	 mother	 and	 six	 children	 fell	 on	 his
shoulders.	Confident	of	himself	Abel	assumed	his	sudden	responsibilities
cheerfully.	Abel	was	a	genial	and	optimistic	soul.	With	no	more	than	strict
justice	 he	 foresaw	 himself	 as	 an	 honored	 and	 moderately	 prosperous
mathematician	in	a	university	chair.	Then	he	could	provide	for	the	lot	of
them	in	reasonable	security.	In	the	meantime	he	took	private	pupils	and
did	 what	 he	 could.	 In	 passing	 it	 may	 be	 noted	 that	 Abel	 was	 a	 very
successful	 teacher.	 Had	 he	 been	 footloose	 poverty	 would	 never	 have
bothered	him.	He	could	have	earned	enough	for	his	own	modest	needs,
somehow	 or	 other,	 at	 any	 time.	 But	 with	 seven	 on	 his	 back	 he	 had	 no
chance.	He	never	 complained,	but	 took	 it	 all	 in	his	 stride	 as	part	of	 the
day’s	 work	 and	 kept	 at	 his	 mathematical	 researches	 in	 every	 spare
moment.

Convinced	that	he	had	one	of	 the	greatest	mathematicians	of	all	 time
on	 his	 hands,	 Holmboë	 did	 what	 he	 could	 by	 getting	 subsidies	 for	 the
young	 man	 and	 digging	 down	 generously	 into	 his	 own	 none	 too	 deep
pocket.	But	the	country	was	poor	to	the	point	of	starvation	and	not	nearly
enough	could	be	done.	In	those	years	of	privation	and	incessant	work	Abel
immortalized	himself	and	sowed	the	seeds	of	the	disease	which	was	to	kill
him	before	he	had	half	done	his	work.

*		*		*

Abel’s	first	ambitious	venture	was	an	attack	on	the	general	equation	of
the	 fifth	 degree	 (the	 “quintic”).	 All	 of	 his	 great	 predecessors	 in	 algebra
had	exhausted	their	efforts	to	produce	a	solution,	without	success.	We	can
easily	 imagine	 Abel’s	 exultation	 when	 he	 mistakenly	 imagined	 he	 had
succeeded.	Through	Holmboë	the	supposed	solution	was	sent	to	the	most
learned	mathematical	scholar	of	the	time	in	Denmark	who,	fortunately	for



Abel,	 asked	 for	 further	 particulars	 without	 committing	 himself	 to	 an
opinion	 on	 the	 correctness	 of	 the	 solution.	 Abel	 in	 the	 meantime	 had
found	the	flaw	in	his	reasoning.	The	supposed	solution	was	of	course	no
solution	at	all.	This	failure	gave	him	a	most	salutary	jolt;	it	jarred	him	onto
the	right	track	and	caused	him	to	doubt	whether	an	algebraic	solution	was
possible.	He	proved	the	impossibility.	At	the	time	he	was	about	nineteen.	But
he	had	been	anticipated,	at	least	in	part,	in	the	whole	project.

As	this	question	of	the	general	quintic	played	a	rôle	in	algebra	similar
to	 that	 of	 a	 crucial	 experiment	 to	 decide	 the	 fate	 of	 an	 entire	 scientific
theory,	 it	 is	worth	 a	moment’s	 attention.	We	 shall	 quote	presently	 a	 few
things	Abel	himself	says.

The	nature	of	 the	problem	 is	easily	described.	 In	early	 school	algebra
we	learn	to	solve	the	general	equations	of	the	first	and	second	degrees	in	the
unknown	x,	say

ax	+	b	=	0,	ax2	+	bx	+	c	=	0,

and	a	little	later	those	of	the	third	and	fourth	degrees,	say

ax3	+	bx2	+	cx	+	d	=	0,	ax4	+	bx3	+	cx2	+	dx	+	e	=	0.

That	 is,	 we	 produce	 finite	 (closed)	 formulas	 for	 each	 of	 these	 general
equations	of	the	first	four	degrees,	expressing	the	unknown	x	 in	terms	of
the	given	coefficients	a,	b,	c,	d,	e.	A	solution	such	as	any	one	of	these	four
which	 can	be	obtained	by	only	 a	 finite	 number	 of	 additions,	multiplications,
subtractions,	 divisions,	 and	 extractions	 of	 roots,	 all	 these	 operations	 being
performed	 on	 the	 given	 coefficients,	 is	 called	 algebraic.	 The	 important
qualification	in	this	definition	of	an	algebraic	solution	is	“finite”;	there	is	no
difficulty	in	describing	solutions	for	any	algebraic	equation	which	contain
no	extractions	of	roots	at	all,	but	which	do	 imply	an	 infinity	of	 the	other
operations	named.

After	 this	 success	 with	 algebraic	 equations	 of	 the	 first	 four	 degrees,
algebraists	 struggled	 for	 nearly	 three	 centuries	 to	 produce	 a	 similar
algebraic	solution	for	the	general	quintic

ax5	+	bx4	+	cx3	+	dx2	+	ex	+	f	=	0.

They	failed.	It	is	here	that	Abel	enters.



The	 following	 extracts	 are	 given	 partly	 to	 show	how	 a	 great	 inventive
mathematician	 thought	 and	 partly	 for	 their	 intrinsic	 interest.	 They	 are
from	Abel’s	memoir	On	the	algebraic	resolution	of	equations.

“One	 of	 the	 most	 interesting	 problems	 of	 algebra	 is	 that	 of	 the
algebraic	 solution	 of	 equations.	 Thus	 we	 find	 that	 nearly	 all
mathematicians	of	distinguished	rank	have	treated	this	subject.	We	arrive
without	difficulty	at	the	general	expression	of	the	roots	of	equations	of	the
first	 four	 degrees.	 A	 uniform	 method	 for	 solving	 these	 equations	 was
discovered	 and	 it	 was	 believed	 to	 be	 applicable	 to	 an	 equation	 of	 any
degree;	but	in	spite	of	all	the	efforts	of	Lagrange	and	other	distinguished
mathematicians	 the	 proposed	 end	 was	 not	 reached.	 That	 led	 to	 the
presumption	 that	 the	 solution	 of	 general	 equations	 was	 impossible
algebraically;	 but	 this	 is	 what	 could	 not	 be	 decided,	 since	 the	 method
followed	 could	 lead	 to	 decisive	 conclusions	 only	 in	 the	 case	 where	 the
equations	were	solvable.	In	effect	they	proposed	to	solve	equations	without
knowing	whether	it	was	possible.	In	this	way	one	might	indeed	arrive	at	a
solution,	 although	 that	 was	 by	 no	 means	 certain;	 but	 if	 by	 ill	 luck	 the
solution	was	impossible,	one	might	seek	it	for	an	eternity,	without	finding
it.	To	arrive	infallibly	at	something	in	this	matter,	we	must	therefore	follow
another	road.	We	can	give	the	problem	such	a	form	that	it	shall	always	be
possible	 to	 solve	 it,	 as	 we	 can	 always	 do	 with	 any	 problem.I	 Instead	 of
asking	for	a	relation	of	which	it	is	not	known	whether	it	exists	or	not,	we
must	ask	whether	such	a	relation	is	indeed	possible.	.	.	.	When	a	problem	is
posed	in	this	way,	the	very	statement	contains	the	germ	of	the	solution	and
indicates	what	road	must	be	taken;	and	I	believe	there	will	be	few	instances
where	we	 shall	 fail	 to	 arrive	 at	 propositions	 of	more	 or	 less	 importance,
even	 when	 the	 complication	 of	 the	 calculations	 precludes	 a	 complete
answer	to	the	problem.”

He	goes	on	 to	say	 that	 this,	 the	 true	scientific	method	to	be	 followed,
has	 been	 but	 little	 used	 owing	 to	 the	 extreme	 complication	 of	 the
calculations	(algebraic)	which	it	entails;	“but,”	he	adds,	“in	many	instances
this	complication	is	only	apparent	and	vanishes	after	the	first	attack.”	He
continues:

“I	 have	 treated	 several	 branches	 of	 analysis	 in	 this	 manner,	 and
although	 I	 have	 often	 set	 myself	 problems	 beyond	 my	 powers,	 I	 have
nevertheless	 arrived	 at	 a	 large	 number	 of	 general	 results	 which	 throw	 a
strong	 light	 on	 the	 nature	 of	 those	 quantities	 whose	 elucidation	 is	 the



object	 of	 mathematics.	 On	 another	 occasion	 I	 shall	 give	 the	 results	 at
which	I	have	arrived	in	these	researches	and	the	procedure	which	has	led
me	 to	 them.	 In	 the	 present	 memoir	 I	 shall	 treat	 the	 problem	 of	 the
algebraic	solution	of	equations	in	all	its	generality.”

Presently	 he	 states	 two	 general	 inter-related	 problems	 which	 he
proposes	to	discuss:

“1.	 To	 find	 all	 the	 equations	 of	 any	 given	 degree	 which	 are	 solvable
algebraically.

2.	 To	 determine	 whether	 a	 given	 equation	 is	 or	 is	 not	 solvable
algebraically.”

At	bottom,	he	says,	these	two	problems	are	the	same,	and	although	he
does	not	claim	a	complete	solution,	he	does	indicate	an	infallible	method	(des
moyens	sûrs)	for	disposing	of	them	fully.

Abel’s	 irrepressible	 inventiveness	 hurried	 him	 on	 to	 vaster	 problems
before	 he	 had	 time	 to	 return	 to	 these;	 their	 complete	 solution—the
explicit	statement	of	necessary	and	sufficient	conditions	that	an	algebraic
equation	 be	 solvable	 algebraically—was	 to	 be	 reserved	 for	Galois.	When
this	memoir	of	Abel’s	was	published	in	1828,	Galois	was	a	boy	of	sixteen,
already	 well	 started	 on	 his	 career	 of	 fundamental	 discovery.	Galois	 later
came	to	know	and	admire	the	work	of	Abel;	it	is	probable	that	Abel	never
heard	 the	 name	 of	 Galois,	 although	 when	 Abel	 visited	 Paris	 he	 and	 his
brilliant	 successor	 could	 have	 been	 only	 a	 few	 miles	 apart.	 But	 for	 the
stupidity	 of	 Galois’	 teachers	 and	 the	 loftiness	 of	 some	 of	 Abel’s
mathematical	“superiors,”	it	is	quite	possible	that	he	and	Abel	might	have
met.

Epoch-making	as	Abel’s	work	in	algebra	was,	 it	 is	overshadowed	by	his
creation	 of	 a	 new	 branch	 of	 analysis.	 This,	 as	 Legendre	 said,	 is	 Abel’s
“time-outlasting	monument.”	 If	 the	 story	 of	 his	 life	 adds	 nothing	 to	 the
splendor	 of	 his	 accomplishment	 it	 at	 least	 suggests	 what	 the	 world	 lost
when	 he	 died.	 It	 is	 a	 somewhat	 discouraging	 tale.	 Only	 Abel’s
unconquerable	 cheerfulness	 and	 unyielding	 courage	 under	 the	 stress	 of
poverty	and	lack	of	encouragement	from	the	mathematical	princes	of	his
day	lighten	the	story.	He	did	however	find	one	generous	friend	in	addition
to	Holmboë.

*		*		*



In	June,	1822,	when	Abel	was	nineteen,	he	completed	his	required	work
at	 the	University	of	Kristiania.	Holmboë	had	done	everything	possible	 to
relieve	 the	 young	man’s	poverty,	 convincing	his	 colleagues	 that	 they	 too
should	subscribe	to	make	it	possible	for	Abel	to	continue	his	mathematical
researches.	They	were	 immensely	proud	of	him	but	 they	were	 also	poor
themselves.	Abel	quickly	outgrew	Scandinavia.	He	 longed	 to	visit	France,
then	the	mathematical	queen	of	the	world,	where	he	could	meet	his	great
peers	(he	was	in	a	class	far	above	some	of	them,	but	he	did	not	know	it).
He	dreamed	also	of	touring	Germany	and	meeting	Gauss,	the	undisputed
prince	of	them	all.

Abel’s	mathematical	and	astronomical	friends	persuaded	the	University
to	appeal	to	the	Norwegian	Government	to	subsidize	the	young	man	for	a
grand	mathematical	 tour	 of	 Europe.	To	 impress	 the	 authorities	 with	his
worthiness,	Abel	submitted	an	extensive	memoir	which,	from	its	title,	was
probably	 connected	 with	 the	 fields	 of	 his	 greatest	 fame.	 He	 himself
thought	 highly	 enough	 of	 it	 to	 believe	 its	 publication	 by	 the	 University
would	 bring	 Norway	 honor,	 and	 Abel’s	 opinion	 of	 his	 own	 work,	 never
more	 than	 just,	 was	 probably	 as	 good	 as	 anyone’s.	 Unfortunately	 the
University	 was	 having	 a	 severe	 financial	 struggle	 of	 its	 own,	 and	 the
memoir	 was	 finally	 lost.	 After	 undue	 deliberation	 the	 Government
compromised—does	any	Government	ever	do	anything	else?—and	instead
of	doing	 the	only	 sensible	 thing,	namely	 sending	Abel	at	once	 to	France
and	Germany,	granted	him	a	subsidy	to	continue	his	university	studies	at
Kristiania	in	order	that	he	might	brush	up	his	French	and	German.	That	is
exactly	 the	 sort	 of	 decision	 he	 might	 have	 expected	 from	 any	 body	 of
officials	conspicuous	 for	 their	good	hearts	and	common	sense.	Common
sense	however	has	no	business	dictating	to	genius.

Abel	 dallied	 a	 year	 and	 a	 half	 at	 Kristiania,	 not	 wasting	 his	 time,	 but
dutifully	 keeping	 his	 part	 of	 the	 contract	 by	 wrestling	 (not	 too
successfully)	 with	 German,	 getting	 a	 fair	 start	 on	 French,	 and	 working
incessantly	 at	 his	mathematics.	With	his	 incurable	 optimism	he	had	 also
got	himself	engaged	to	a	young	woman—Crelly	Kemp.	At	last,	on	August
27,	 1825,	 when	 Abel	 was	 twenty	 three,	 his	 friends	 overcame	 the	 last
objection	of	 the	Government,	 and	 a	 royal	 decree	 granted	him	 sufficient
funds	for	a	year’s	 travel	and	study	in	France	and	Germany.	They	did	not
give	 him	 much,	 but	 the	 fact	 that	 they	 gave	 him	 anything	 at	 all	 in	 the
straitened	 financial	 condition	 of	 the	 country	 says	 more	 for	 the	 state	 of



civilization	in	Norway	in	1825	than	could	a	whole	encyclopaedia	of	the	arts
and	trades.	Abel	was	grateful.	It	took	him	about	a	month	to	straighten	out
his	dependents	before	leaving.	But	thirteen	months	before	this,	innocently
believing	that	all	mathematicians	were	as	generous-minded	as	himself,	he
had	burned	one	of	his	ladders	before	ever	setting	foot	on	it.

Out	of	his	own	pocket—God	only	knows	how—Abel	had	paid	 for	 the
printing	 of	 his	memoir	 in	which	 the	 impossibility	 of	 solving	 the	 general
equation	of	the	fifth	degree	algebraically	is	proved.	It	was	a	pretty	poor	job
of	 printing	 but	 the	 best	 backward	 Norway	 could	 manage.	 This,	 Abel
naively	 believed,	 was	 to	 be	 his	 scientific	 passport	 to	 the	 great
mathematicians	 of	 the	 Continent.	 Gauss	 in	 particular,	 he	 hoped,	 would
recognize	the	signal	merits	of	the	work	and	grant	him	more	than	a	formal
interview.	 He	 could	 not	 know	 that	 “the	 prince	 of	 mathematicians”
sometimes	 exhibited	 anything	 but	 a	 princely	 generosity	 to	 young
mathematicians	struggling	for	just	recognition.

Gauss	duly	received	the	paper.	Through	unimpeachable	witnesses	Abel
heard	how	Gauss	welcomed	 the	offering.	Without	deigning	 to	read	 it	he
tossed	 it	 aside	with	 the	disgusted	 exclamation	 “Here	 is	 another	 of	 those
monstrosities!”	Abel	decided	not	 to	call	on	Gauss.	Thereafter	he	disliked
Gauss	intensely	and	nicked	him	whenever	he	could.	He	said	Gauss	wrote
obscurely	and	hinted	that	the	Germans	thought	a	little	too	much	of	him.
It	 is	 an	open	question	whether	Gauss	or	Abel	 lost	more	by	 this	perfectly
understandable	dislike.

Gauss	 has	 often	 been	 censured	 for	 his	 “haughty	 contempt”	 in	 this
matter,	but	those	are	hardly	the	right	words	to	describe	his	conduct.	The
problem	 of	 the	 general	 equation	 of	 the	 fifth	 degree	 had	 become
notorious.	 Cranks	 as	 well	 as	 reputable	 mathematicians	 had	 been
burrowing	 into	 it.	 Now,	 if	 a	 mathematician	 today	 receives	 an	 alleged
squaring	 of	 the	 circle,	 he	 may	 or	 may	 not	 write	 a	 courteous	 note	 of
acknowledgement	 to	 the	 author,	 but	 he	 is	 almost	 certain	 to	 file	 the
author’s	manuscript	in	the	wastebasket.	For	he	knows	that	Lindemann	in
1882	proved	that	it	 is	 impossible	to	square	the	circle	by	straightedge	and
compass	alone—the	implements	 to	which	cranks	 limit	 themselves,	 just	as
Euclid	did.	He	knows	also	that	Lindemann’s	proof	is	accessible	to	anyone.
In	1824	the	probem	of	the	general	quintic	was	almost	on	a	par	with	that	of
squaring	the	circle.	Hence	Gauss’	impatience.	But	it	was	not	quite	as	bad;
the	 impossibility	 had	 not	 yet	 been	 proved.	 Abel’s	 paper	 supplied	 the



proof;	Gauss	might	have	read	something	to	interest	him	intensely	had	be
kept	his	temper.	It	is	a	tragedy	that	he	did	not.	A	word	from	him	and	Abel
would	have	been	made.	 It	 is	 even	possible	 that	his	 life	would	have	been
lengthened,	as	we	shall	admit	when	we	have	his	whole	story	before	us.

After	 leaving	 home	 in	 September,	 1825,	 Abel	 first	 visited	 the	 notable
mathematicians	 and	 astronomers	 of	 Norway	 and	 Denmark	 and	 then,
instead	 of	 hurrying	 to	 Göttingen	 to	 meet	 Gauss	 as	 he	 had	 intended,
proceeded	to	Berlin.	There	he	had	the	great	good	fortune	to	fall	in	with	a
man,	 August	 Leopold	 Crelle	 (1780-1856),	 who	 was	 to	 be	 a	 scientific
Holmboë	to	him	and	who	had	far	more	weight	in	the	mathematical	world
than	 the	 good	 Holmboë	 ever	 had.	 If	 Crelle	 helped	 to	 make	 Abel’s
reputation,	 Abel	 more	 than	 paid	 for	 the	 help	 by	 making	 Crelle’s.
Wherever	 mathematics	 is	 cultivated	 today	 the	 name	 of	 Crelle	 is	 a
household	 word,	 indeed	more;	 for	 “Crelle”	 has	 become	 a	 proper	 noun
signifying	the	great	 journal	he	 founded,	 the	 first	 three	volumes	of	which
contained	 twenty	 two	 of	 Abel’s	 memoirs.	 The	 journal	made	 Abel,	 or	 at
least	made	him	more	widely	known	 to	Continental	mathematicians	 than
he	could	ever	have	been	without	 it;	Abel’s	great	work	started	the	 journal
off	with	a	bang	that	was	heard	round	the	mathematical	world;	and	finally
the	 journal	 made	 Crelle.	 This	 self-effacing	 amateur	 of	 mathematics
deserves	more	 than	 a	 passing	mention.	His	 business	 ability	 and	his	 sure
instinct	 for	picking	collaborators	who	had	 real	mathematics	 in	 them	did
more	for	the	progress	of	mathematics	in	the	nineteenth	century	than	half
a	dozen	learned	academies.

Crelle	 himself	 was	 a	 self-taught	 lover	 of	 mathematics	 rather	 than	 a
creative	 mathematician.	 By	 profession	 he	 was	 a	 civil	 engineer.	 He	 early
rose	to	the	top	in	his	work,	built	the	first	railroad	in	Germany,	and	made	a
comfortable	 stake.	 In	 his	 leisure	 he	 pursued	mathematics	 as	 something
more	 than	 a	 hobby.	 He	 himself	 contributed	 to	 mathematical	 research
before	 and	 after	 the	 great	 stimulus	 to	 German	 mathematics	 which	 his
Journal	 für	 die	 reine	 und	 angewandte	 Mathematik	 (Journal	 for	 pure	 and
applied	 Mathematics)	 gave	 on	 its	 foundation	 in	 1826.	 This	 is	 Crelle’s
greatest	contribution	to	the	advancement	of	mathematics.

The	Journal	was	the	first	periodical	in	the	world	devoted	exclusively	to
mathematical	research.	Expositions	of	old	work	were	not	welcomed.	Papers
(except	some	of	Crelle’s	own)	were	accepted	from	anyone,	provided	only
the	matter	 was	 new,	 true,	 and	 of	 sufficient	 “importance”—an	 intangible



requirement—to	 merit	 publication.	 Regularly	 once	 every	 three	 months
from	1826	to	the	present	day	“Crelle”	has	appeared	with	its	sheaf	of	new
mathematics.	 In	 the	 chaos	 after	 the	 World	 War	 “Crelle”	 tottered	 and
almost	went	down,	but	was	sustained	by	subscribers	from	all	over	the	world
who	 were	 unwilling	 to	 see	 this	 great	 monument	 to	 a	 more	 tranquil
civilization	 than	our	own	obliterated.	Today	hundreds	of	periodicals	 are
devoted	either	wholly	or	in	considerable	part	to	the	advancement	of	pure
and	 applied	 mathematics.	 How	 many	 of	 them	 will	 survive	 our	 next
outburst	of	epidemic	insanity	is	anybody’s	guess.

When	Abel	arrived	in	Berlin	in	1825	Crelle	had	just	about	made	up	his
mind	to	start	his	great	venture	with	his	own	funds.	Abel	played	a	part	 in
clinching	the	decision.	There	are	two	accounts	of	the	first	meeting	of	Abel
and	 Crelle,	 both	 interesting.	 Crelle	 at	 the	 time	 was	 holding	 down	 a
government	job	for	which	he	had	but	little	aptitude	and	less	liking,	that	of
examiner	 at	 the	 Trade-School	 (Gewerbe-Institut)	 in	 Berlin.	 At	 third-hand
(Crelle	 to	Weierstrass	 to	Mittag-Leffler)	 Crelle’s	 account	 of	 that	 historic
meeting	is	as	follows.

“One	 fine	 day	 a	 fair	 young	 man,	 much	 embarrassed,	 with	 a	 very
youthful	and	very	 intelligent	 face,	walked	 into	my	room.	Believing	 that	 I
had	 to	 do	 with	 an	 examination-candidate	 for	 admission	 to	 the	 Trade-
School,	I	explained	that	several	separate	examinations	would	be	necessary.
At	 last	 the	 young	 man	 opened	 his	 mouth	 and	 explained	 [in	 poor
German],	’Not	examination,	only	mathematics.’ ”

Crelle	saw	that	Abel	was	a	foreigner	and	tried	him	in	French,	in	which
Abel	 could	 make	 himself	 understood	 with	 some	 difficulty.	 Crelle	 then
questioned	him	about	what	he	had	done	 in	mathematics.	Diplomatically
enough	Abel	replied	that	he	had	read,	among	other	things,	Crelle’s	own
paper	 of	 1823,	 then	 recently	 published,	 on	 “analytical	 faculties”	 (now
called	“factorials”	in	English).	He	had	found	the	work	most	interesting	he
said,	but	_______.	Then,	not	so	diplomatically,	he	proceeded	to	tell	Crelle
that	parts	of	the	work	were	quite	wrong.	It	was	here	that	Crelle	showed	his
greatness.	 Instead	 of	 freezing	 or	 blowing	 up	 in	 a	 rage	 at	 the	 daring
presumption	 of	 the	 young	man	 before	 him,	 he	 pricked	 up	his	 ears	 and
asked	 for	 particulars,	which	he	 followed	with	 the	 closest	 attention.	They
had	 a	 long	 mathematical	 talk,	 only	 parts	 of	 which	 were	 intelligible	 to
Crelle.	But	whether	he	understood	 all	 that	Abel	 told	him	or	not,	Crelle
saw	 clearly	 what	 Abel	 was.	 Crelle	 never	 did	 understand	 a	 tenth	 of	 what



Abel	was	up	to,	but	his	sure	instinct	for	mathematical	genius	told	him	that
Abel	was	a	mathematician	of	 the	 first	water	and	he	did	everything	 in	his
power	to	gain	recognition	for	his	young	protégé.	Before	the	interview	was
ended	Crelle	 had	made	 up	 his	mind	 that	 Abel	must	 be	 one	 of	 the	 first
contributors	to	the	projected	Journal.

Abel’s	account	differs,	but	not	essentially.	Reading	between	the	lines	we
may	see	that	the	differences	are	due	to	Abel’s	modesty.	At	first	Abel	feared
his	project	of	interesting	Crelle	was	fated	to	go	on	the	rocks.	Crelle	could
not	make	out	what	the	young	man	wanted,	who	he	was,	or	anything	about
him.	 But	 at	 Crelle’s	 question	 as	 to	 what	 Abel	 had	 read	 in	mathematics
things	 brightened	 up	 considerably.	When	 Abel	mentioned	 the	 works	 of
the	masters	he	had	studied	Crelle	became	instantly	alert.	They	had	a	long
talk	 on	 several	 outstanding	 unsettled	 problems,	 and	 Abel	 ventured	 to
spring	 his	 proof	 of	 the	 impossibility	 of	 solving	 the	 general	 quintic
algebraically	on	the	unsuspecting	Crelle.	Crelle	wouldn’t	hear	of	it;	there
must	be	something	wrong	with	any	such	proof.	But	he	accepted	a	copy	of
the	paper,	thumbed	through	it,	admitted	the	reasoning	was	beyond	him—
and	 finally	 published	Abel’s	 amplified	proof	 in	his	 Journal.	 Although	he
was	 a	 limited	mathematician	 with	 no	 pretensions	 to	 scientific	 greatness,
Crelle	was	a	broadminded	man,	in	fact	a	great	man.

Crelle	 took	 Abel	 everywhere,	 showing	 him	 off	 as	 the	 finest
mathematical	 discovery	 yet	 made.	 The	 self-taught	 Swiss	 Steiner—“the
greatest	geometer	since	Apollonius”—sometimes	accompanied	Crelle	and
Abel	on	their	rounds.	When	Crelle’s	friends	saw	him	coming	with	his	two
geniuses	in	tow	they	would	exclaim	“Here	comes	Father	Adam	again	with
Cain	and	Abel.”

The	generous	sociability	of	Berlin	began	to	distract	Abel	from	his	work
and	 he	 fled	 to	 Freiburg	 where	 he	 could	 concentrate.	 It	 was	 at	 Freiburg
that	he	hewed	his	 greatest	work	 into	 shape,	 the	 creation	of	what	 is	 now
called	Abel’s	Theorem.	But	he	had	to	be	getting	on	to	Paris	 to	meet	the
foremost	French	mathematicians	of	the	day—Legendre,	Cauchy,	and	the
rest.

*		*		*

It	can	be	said	at	once	that	Abel’s	reception	at	the	hands	of	the	French
mathematicians	 was	 as	 civil	 as	 one	 would	 expect	 from	 distinguished



representatives	of	a	very	civil	people	in	a	very	civil	age.	They	were	all	very
civil	to	him—damned	civil,	in	fact,	and	that	was	about	all	that	Abel	got	out
of	 the	 visit	 to	which	he	had	 looked	 forward	with	 such	 ardent	hopes.	Of
course	 they	 did	 not	 know	 who	 or	 what	 he	 was.	 They	 made	 only
perfunctory	efforts	 to	 find	out.	 If	Abel	opened	his	mouth—when	he	got
within	 talking	 distance	 of	 them—about	 his	 own	 work,	 they	 immediately
began	 lecturing	 about	 their	 own	 greatness.	 But	 for	 his	 indifference	 the
venerable	Legendre	might	have	learned	something	about	his	own	lifelong
passion	 (for	 elliptic	 integrals)	 which	 would	 have	 interested	 him	 beyond
measure.	But	he	was	just	stepping	into	his	carriage	when	Abel	called	and
had	 time	 for	 little	 more	 than	 a	 very	 civil	 good-day.	 Later	 he	 made
handsome	amends.

Late	 in	 July,	 1826,	Abel	 took	up	his	 lodgings	 in	Paris	with	a	poor	but
grasping	family	who	gave	him	two	bad	meals	a	day	and	a	vile	room	for	a
sufficiently	 outrageous	 rent.	 After	 four	 months	 of	 Paris	 Abel	 writes	 his
impressions	to	Holmboë:

“Paris,	24	October	1826.
“To	tell	you	the	truth	this	noisiest	capital	of	the	Continent	has	for	the	moment	the	effect	of

a	 desert	 on	me.	 I	 know	practically	 nobody;	 this	 is	 the	 lovely	 season	when	 everybody	 is	 in	 the
country.	 .	 .	 .	 Up	 till	 now	 I	 have	made	 the	 acquaintance	 of	Mr.	Legendre,	Mr.	Cauchy	 and	Mr.
Hachette,	and	some	less	celebrated	but	very	able	mathematicians:	Mr.	Saigey,	editor	of	the	Bulletin
des	Sciences,	and	Mr.	Lejeune-Dirichlet,	a	Prussian	who	came	to	see	me	the	other	day	believing	me
to	be	a	compatriot	of	his.	He	is	a	mathematician	of	great	penetration.	With	Mr.	Legendre	he	has
proved	 the	 impossibility	 of	 solving	x5	 +	 y5	 =	 z5	 in	 whole	 numbers,	 and	 other	 very	 fine	 things.
Legendre	 is	 extremely	 polite,	 but	 unfortunately	 very	 old.	Cauchy	 is	 mad.	 .	 .	 .	 What	 he	 does	 is
excellent	but	very	muddled.	At	first	I	understood	practically	none	of	it;	now	I	see	some	of	it	more
clearly.	.	.	.	Cauchy	is	the	only	one	occupied	with	pure	mathematics.	Poisson,	Fourier,	Ampère,	etc.,
busy	 themselves	 exclusively	 with	 magnetism	 and	 other	 physical	 subjects.	 Mr.	 Laplace	 writes
nothing	 now,	 I	 believe.	His	 last	 work	 was	 a	 supplement	 to	 his	 Theory	 of	 Probabilities.	 I	 have
often	seen	him	at	the	Institut.	He	is	a	very	jolly	little	chap.	Poisson	is	a	little	fellow;	he	knows	how
to	behave	with	a	great	deal	of	dignity;	Mr.	Fourier	 the	same.	Lacroix	 is	quite	old.	Mr.	Hachette	is
going	to	present	me	to	several	of	these	men.

“The	 French	 are	 much	 more	 reserved	 with	 strangers	 than	 the	 Germans.	 It	 is	 extremely
difficult	 to	gain	their	 intimacy,	and	I	do	not	dare	to	urge	my	pretensions	as	 far	as	 that;	 finally
every	 beginner	 has	 a	 great	 deal	 of	 difficulty	 in	 getting	 noticed	 here.	 I	 have	 just	 finished	 an
extensive	treatise	on	a	certain	class	of	transcendental	functions	[his	masterpiece]	to	present	it	to
the	Institut	[Academy	of	Sciences],	which	will	be	done	next	Monday.	I	showed	it	to	Mr.	Cauchy,
but	he	scarcely	deigned	to	glance	at	it.	And	I	dare	to	say,	without	bragging,	that	it	is	a	good	piece
of	work.	 I	 am	curious	 to	hear	 the	opinion	of	 the	 Institut	on	 it.	 I	 shall	not	 fail	 to	 share	 it	with
you	.	.	.

*		*		*



He	 then	 tells	 what	 he	 is	 doing	 and	 continues	with	 a	 rather	 disturbed
forecast	 of	 his	 prospects.	 “I	 regret	 having	 set	 two	 years	 for	my	 travels,	 a
year	and	a	half	would	have	sufficed”

He	has	 got	 all	 there	 is	 to	be	 got	 out	 of	Continental	Europe	 and	 is	 anxious	 to	be	 able	 to
devote	his	time	to	working	up	what	he	has	invented.	“So	many	things	remain	for	me	to	do,	but	so
long	as	I	am	abroad,	all	that	goes	badly	enough.	If	I	had	my	professorship	as	Mr.	Kielhau	has	his!
My	position	is	not	assured,	it	is	true,	but	I	am	not	uneasy	about	it;	if	fortune	deserts	me	in	one
quarter	perhaps	she	will	smile	on	me	in	another.”

*		*		*

From	a	 letter	of	earlier	date	 to	 the	astronomer	Hansteen	we	 take	 two
extracts,	 the	 first	 relating	 to	 Abel’s	 great	 project	 of	 re-establishing
mathematical	 analysis	 as	 it	 existed	 in	 his	 day	 on	 a	 firm	 foundation,	 the
second	showing	something	of	his	human	side.	(Both	are	free	translations.)

“In	the	higher	analysis	too	few	propositions	are	proved	with	conclusive	rigor.	Everywhere	we
find	the	unfortunate	procedure	of	reasoning	from	the	special	to	the	general,	and	the	miracle	is
that	after	 such	a	process	 it	 is	only	 seldom	that	we	 find	what	are	called	paradoxes.	 It	 is	 indeed
exceedingly	interesting	to	seek	the	reason	for	this.	This	reason,	in	my	opinion,	resides	in	the	fact
that	the	functions	which	have	hitherto	occurred	in	analysis	can	be	expressed	for	the	most	part	as
powers.	.	.	.	When	we	proceed	by	a	general	method,	it	is	not	too	difficult	[to	avoid	pitfalls];	but	I
have	had	to	be	very	circumspect,	because	propositions	without	rigorous	proof	(i.e.	without	any
proof)	 have	 taken	 root	 in	me	 to	 such	 an	 extent	 that	 I	 constantly	 run	 the	 risk	 of	 using	 them
without	further	examination.	These	trifles	will	appear	in	the	journal	published	by	Mr.	Creller.”

*		*		*

Immediately	following	this	he	expresses	his	gratitude	for	his	treatment
in	Berlin.	 “It	 is	 true	 that	 few	persons	are	 interested	 in	me,	but	 these	 few
are	infinitely	dear	to	me,	because	they	have	shown	me	so	much	kindness.
Perhaps	 I	 can	 respond	 in	 some	way	 to	 their	hopes	of	me,	 for	 it	must	be
hard	for	a	benefactor	to	see	his	trouble	lost.”

He	tells	then	how	Crelle	has	been	begging	him	to	take	up	his	residence
permanently	in	Berlin.	Crelle	was	already	using	all	his	human	engineering
skill	to	hoist	the	Norwegian	Abel	into	a	professorship	in	the	University	of
Berlin.	Such	was	 the	Germany	of	1826.	Abel	of	course	was	already	great,
and	the	sure	promise	of	what	he	had	in	him	indicated	him	as	the	likeliest
mathematical	 successor	 to	 Gauss.	 That	 he	 was	 a	 foreigner	 made	 no
difference;	Berlin	in	1826	wanted	the	best	in	mathematics.	A	century	later
the	best	 in	mathematical	physics	was	not	good	enough,	and	Berlin	quite



forcibly	 got	 rid	 of	 Einstein.	 Thus	 do	 we	 progress.	 But	 to	 return	 to	 the
sanguine	Abel.

“At	 first	 I	 counted	on	 going	directly	 from	Berlin	 to	 Paris,	 happy	 in	 the	promise	 that	Mr.
Crelle	would	accompany	me.	But	Mr.	Crelle	was	prevented,	and	I	shall	have	to	travel	alone.	Now	I
am	so	constituted	that	I	cannot	endure	solitude.	Alone,	I	am	depressed,	I	get	cantankerous,	and
I	have	little	inclination	for	work.	So	I	said	to	myself	it	would	be	much	better	to	go	with	Mr.	Boeck
to	Vienna,	and	this	trip	seems	to	me	to	be	justified	by	the	fact	that	at	Vienna	there	are	men	like
Littrow,	Burg,	and	still	others,	all	indeed	excellent	mathematicians;	add	to	this	that	I	shall	make
but	this	one	voyage	in	my	life.	Could	one	find	anything	but	reasonableness	in	this	wish	of	mine
to	see	something	of	the	life	of	the	South?	I	could	work	assiduously	enough	while	travelling.	Once
in	Vienna	and	leaving	there	for	Paris,	it	is	almost	a	bee-line	via	Switzerland.	Why	shouldn’t	I	see	a
little	of	it	too?	My	God!	I,	even	I,	have	some	taste	for	the	beauties	of	nature,	like	everybody	else.
This	whole	trip	would	bring	me	to	Paris	two	months	later,	that’s	all.	I	could	quickly	catch	up	the
time	lost.	Don’t	you	think	such	a	trip	would	do	me	good?”

*		*		*

So	 Abel	 went	 South,	 leaving	 his	 masterpiece	 in	 Cauchy’s	 care	 to	 be
presented	to	the	Institut.	The	prolific	Cauchy	was	so	busy	laying	eggs	of	his
own	 and	 cackling	 about	 them	 that	 he	 had	 no	 time	 to	 examine	 the
veritable	 roc’s	 egg	 which	 the	 modest	 Abel	 had	 deposited	 in	 the	 nest.
Hachette,	a	mere	pot-washer	of	a	mathematician,	presented	Abel’s	Memoir
on	a	general	property	 of	a	very	 extensive	 class	 of	 transcendental	 functions	 to	 the
Paris	Academy	of	Sciences	on	the	tenth	of	October,	1826.	This	is	the	work
which	Legendre	 later	described	 in	 the	words	of	Horace	as	“monumentum
aere	perennius,”	and	the	five	hundred	years’	work	which	Hermite	said	Abel
had	 laid	 out	 for	 future	 generations	 of	 mathematicians.	 It	 is	 one	 of	 the
crowning	achievements	of	modern	mathematics.

What	 happened	 to	 it?	 Legendre	 and	 Cauchy	 were	 appointed	 as
referees.	Legendre	was	seventy	four,	Cauchy	thirty	nine.	The	veteran	was
losing	 his	 edge,	 the	 captain	 was	 in	 his	 self-centred	 prime.	 Legendre
complained	 (letter	 to	 Jacobi,	 8	 April,	 1829)	 that	 “we	 perceived	 that	 the
memoir	was	 barely	 legible;	 it	was	written	 in	 ink	 almost	white,	 the	 letters
badly	 formed;	 it	was	agreed	between	us	 that	 the	author	 should	be	asked
for	 a	 neater	 copy	 to	 be	 read.”	What	 an	 alibi!	 Cauchy	 took	 the	memoir
home,	mislaid	it,	and	forgot	all	about	it.

To	match	this	phenomenal	feat	of	forgetfulness	we	have	to	imagine	an
Egyptologist	mislaying	the	Rosetta	Stone.	Only	by	a	sort	of	miracle	was	the
memoir	unearthed	after	Abel’s	death.	 Jacobi	heard	of	 it	 from	Legendre,
with	whom	Abel	corresponded	after	returning	to	Norway,	and	in	a	 letter



dated	 14	March,	 1829,	 Jacobi	 exclaims,	 “What	 a	 discovery	 is	 this	 of	Mr.
Abel’s!	 .	 .	 .	 Did	 anyone	 ever	 see	 the	 like?	 But	 how	 comes	 it	 that	 this
discovery,	 perhaps	 the	 most	 important	 mathematical	 discovery	 that	 has
been	made	in	our	Century,	having	been	communicated	to	your	Academy
two	years	ago,	has	escaped	the	attention	of	your	colleagues?”	The	enquiry
reached	 Norway.	 To	 make	 a	 long	 story	 short,	 the	 Norwegian	 consul	 at
Paris	 raised	 a	 diplomatic	 row	 about	 the	missing	manuscript	 and	Cauchy
dug	it	up	in	1830.	Finally	it	was	printed,	but	not	till	1841,	in	the	Mémoires
présentés	 par	 divers	 savants	 à	 l’	 Académie	 royale	 des	 sciences	 de	 l’	 Institut	 de
France,	 vol.	 7,	 pp.	 176-264.	 To	 crown	 this	 epic	 in	 parvo	 of	 crass
incompetence,	 the	 editor,	 or	 the	 printers,	 or	 both	 between	 them,
succeeded	 in	 losing	 the	manuscript	 before	 the	 proof-sheets	 were	 read.II
The	Academy	(in	1830)	made	amends	to	Abel	by	awarding	him	the	Grand
Prize	in	Mathematics	jointly	with	Jacobi.	Abel,	however,	was	dead.

*		*		*

The	opening	paragraphs	of	the	memoir	indicate	its	scope.
“The	 transcendental	 functions	 hitherto	 considered	 by	 mathematicians	 are	 very	 few	 in

number.	 Practically	 the	 entire	 theory	 of	 transcendental	 functions	 is	 reduced	 to	 that	 of
logarithmic	functions,	circular	and	exponential	functions,	functions	which,	at	bottom,	form	but
a	 single	 species.	 It	 is	 only	 recently	 that	 some	 other	 functions	 have	 begun	 to	 be	 considered.
Among	the	latter,	the	elliptic	transcendents,	several	of	whose	remarkable	and	elegant	properties
have	been	developed	by	Mr.	Legendre,	hold	the	first	place.	The	author	[Abel]	has	considered,
in	 the	memoir	 which	 he	 has	 the	 honor	 to	 present	 to	 the	 Academy,	 a	 very	 extended	 class	 of
functions,	namely:	 all	 those	whose	derivatives	 are	 expressible	by	means	of	 algebraic	 equations
whose	coefficients	are	rational	functions	of	one	variable,	and	he	has	proved	for	these	functions
properties	analogous	to	those	of	logarithmic	and	elliptic	functions	.	.	.	and	he	has	arrived	at	the
following	theorem:

“If	 we	 have	 several	 functions	 whose	 derivatives	 can	 be	 roots	 of	 one	 and	 the	 same	 algebraic
equation,	all	of	whose	coefficients	are	rational	functions	of	one	variable,	we	can	always	express	the
sum	of	any	number	of	such	functions	by	an	algebraic	and	logarithmic	 function,	provided	that	we
establish	 a	 certain	 number	 of	 algebraic	 relations	 between	 the	 variables	 of	 the	 functions	 in
question.

“The	number	of	these	relations	does	not	depend	at	all	upon	the	number	of	functions,	but
only	upon	the	nature	of	the	particular	functions	considered	.	.	.	.”

*		*		*

The	theorem	which	Abel	thus	briefly	describes	is	today	known	as	Abel’s
Theorem.	 His	 proof	 of	 it	 has	 been	 described	 as	 nothing	 more	 than	 “a
marvellous	 exercise	 in	 the	 integral	 calculus.”	As	 in	his	 algebra,	 so	 in	his



analysis,	 Abel	 attained	 his	 proof	 with	 a	 superb	 parsimony.	 The	 proof,	 it
may	 be	 said	 without	 exaggeration,	 is	 well	 within	 the	 purview	 of	 any
seventeen-year-old	 who	 has	 been	 through	 a	 good	 first	 course	 in	 the
calculus.	 There	 is	 nothing	 high-falutin’	 about	 the	 classic	 simplicity	 of
Abel’s	 own	 proof.	 The	 like	 cannot	 be	 said	 for	 some	 of	 the	 nineteenth
century	 expansions	 and	 geometrical	 reworkings	 of	 the	 original	 proof.
Abel’s	 proof	 is	 like	 a	 statue	 by	 Phidias;	 some	 of	 the	 others	 resemble	 a
Gothic	 cathedral	 smothered	 in	 Irish	 lace,	 Italian	 confetti,	 and	 French
pastry.

There	 is	 ground	 for	 a	 possible	 misunderstanding	 in	 Abel’s	 opening
paragraph.	 Abel	 no	 doubt	 was	merely	 being	 kindly	 courteous	 to	 an	 old
man	who	had	patronized	him—in	 the	bad	 sense—on	 first	 acquaintance,
but	 who,	 nevertheless,	 had	 spent	 most	 of	 his	 long	 working	 life	 on	 an
important	problem	without	seeing	what	it	was	all	about.	It	is	not	true	that
Legendre	had	discussed	the	elliptic	functions,	as	Abel’s	words	might	imply;
what	Legendre	spent	most	of	his	life	over	was	elliptic	integrals,	which	are	as
different	 from	 elliptic	 functions	 as	 a	 horse	 is	 from	 the	 cart	 it	 pulls,	 and
therein	 precisely	 is	 the	 crux	 and	 the	 germ	 of	 one	 of	 Abel’s	 greatest
contributions	 to	mathematics.	The	matter	 is	quite	 simple	 to	anyone	who
has	had	a	school	course	 in	 trigonometry;	 to	obviate	 tedious	explanations
of	elementary	matters	this	much	will	be	assumed	in	what	follows	presently.

For	 those	 who	 have	 forgotten	 all	 about	 trigonometry,	 however,	 the
essence,	the	methodology,	of	Abel’s	epochal	advance	can	be	analogized	thus.
We	alluded	 to	 the	cart	and	 the	horse.	The	 frowsy	proverb	about	putting
the	cart	before	the	horse	describes	what	Legendre	did;	Abel	saw	that	if	the
cart	 was	 to	move	 forward	 the	 horse	 should	 precede	 it.	 To	 take	 another
instance:	 Francis	Galton,	 in	his	 statistical	 studies	of	 the	 relation	between
poverty	 and	 chronic	 drunkenness,	 was	 led,	 by	 his	 impartial	 mind,	 to	 a
reconsideration	 of	 all	 the	 self-righteous	 platitudes	 by	 which	 indignant
moralists	and	economic	crusaders	with	an	axe	to	grind	evaluate	such	social
phenomena.	 Instead	 of	 assuming	 that	 people	 are	 depraved	 because	 they
drink	 to	 excess,	Galton	 inverted	 this	 hypothesis	 and	 assumed	 temporarily
that	people	drink	to	excess	because	they	have	inherited	no	moral	guts	from
their	ancestors,	 in	short,	because	 they	are	depraved.	Brushing	aside	all	 the
vaporous	 moralizings	 of	 the	 reformers,	 Galton	 took	 a	 firm	 grip	 on	 a
scientific,	 unemotional,	 workable	 hypothesis	 to	 which	 he	 could	 apply	 the
impartial	 machinery	 of	 mathematics.	 His	 work	 has	 not	 yet	 registered



socially.	For	the	moment	we	need	note	only	that	Galton,	like	Abel,	inverted
his	 problem—turned	 it	 upside-down	 and	 inside-out,	 back-end-to	 and
foremost-end-backward.	 Like	Hiawatha	 and	 his	 fabulous	mittens,	 Galton
put	the	skinside	inside	and	the	inside	outside.

All	 this	 is	 far	 from	being	 obvious	 or	 a	 triviality.	 It	 is	 one	 of	 the	most
powerful	methods	of	mathematical	discovery	(or	invention)	ever	devised,
and	Abel	was	 the	first	human	being	to	use	 it	consciously	as	an	engine	of
research.	“You	must	always	invert,”	as	Jacobi	said	when	asked	the	secret	of
his	 mathematical	 discoveries.	 He	 was	 recalling	 what	 Abel	 and	 he	 had
done.	 If	 the	 solution	 of	 a	 problem	 becomes	 hopelessly	 involved,	 try
turning	 the	 problem	 backwards,	 put	 the	 quaesita	 for	 the	 data	 and	 vice
versa.	Thus	if	we	find	Cardan’s	character	incomprehensible	when	we	think
of	him	as	a	son	of	his	father,	shift	the	emphasis,	invert	it,	and	see	what	we
get	 when	we	 analyse	Cardan’s	 father	 as	 the	 begetter	 and	 endower	 of	 his
son.	 Instead	 of	 studying	 “inheritance”	 concentrate	 on	 “endowing.”	 To
return	to	those	who	remember	some	trigonometry.

Suppose	mathematicians	had	been	so	blind	as	not	to	see	that	sin	x,	cos	x
and	 the	 other	 direct	 trigonometric	 functions	 are	 simpler	 to	 use,	 in	 the
addition	formulas	and	elsewhere,	than	the	inverse	functions	sin-1	x,	cos-1	x.
Recall	the	formula	sin	(x	+	y)	in	terms	of	sines	and	cosines	of	x	and	y,	and
contrast	it	with	the	formula	for	sin-1	(x	+	y)	in	terms	of	x	and	y.	Is	not	the
former	 incomparably	 simpler,	 more	 elegant,	 more	 “natural”	 than	 the
latter?	 Now,	 in	 the	 integral	 calculus,	 the	 inverse	 trigonometric	 functions
present	 themselves	 naturally	 as	 definite	 integrals	 of	 simple	 algebraic
irrationalities	(second	degree);	such	integrals	appear	when	we	seek	to	find
the	length	of	an	arc	of	a	circle	by	means	of	the	integral	calculus.	Suppose
the	inverse	trigonometric	functions	had	first	presented	themselves	this	way.
Would	 it	 not	 have	 been	 “more	natural”	 to	 consider	 the	 inverses	 of	 these
functions,	 that	 is,	 the	 familiar	 trigonometric	 functions	 themselves	 as	 the
given	functions	to	be	studied	and	analyzed?	Undoubtedly;	but	in	shoals	of
more	 advanced	 problems,	 the	 simplest	 of	 which	 is	 that	 of	 finding	 the
length	of	the	arc	of	an	ellipse	by	the	integral	calculus,	the	awkward	 inverse
“elliptic”	 (not	 “circular,”	 as	 for	 the	 arc	 of	 a	 circle)	 functions	 presented
themselves	first.	It	took	Abel	to	see	that	these	functions	should	be	“inverted”
and	studied,	precisely	as	in	the	case	of	sin	x,	cos	x	instead	of	sin-1	x,	cos-1	x.
Simple,	was	it	not?	Yet	Legendre,	a	great	mathematician,	spent	more	than
forty	years	 over	his	 “elliptic	 integrals”	 (the	awkward	 “inverse	 functions”	of



his	 problem)	 without	 ever	 once	 suspecting	 that	 he	 should	 invert.III	 This
extremely	 simple,	 uncommonsensical	 way	 of	 looking	 at	 an	 apparently
simple	 but	 profoundly	 recondite	 problem	 was	 one	 of	 the	 greatest
mathematical	advances	of	the	nineteenth	century.

All	 this	 however	 was	 but	 the	 beginning,	 although	 a	 sufficiently
tremendous	beginning—like	Kipling’s	dawn	coming	up	 like	 thunder—of
what	 Abel	 did	 in	 his	 magnificent	 theorem	 and	 in	 his	 work	 on	 elliptic
functions.	 The	 trigonometric	 or	 circular	 functions	 have	 a	 single	 real
period,	thus	sin	(x	+	2π)	=	sin	x,	etc.	Abel	discovered	that	his	new	functions
provided	by	the	inversion	of	an	elliptic	integral	have	precisely	two	periods,
whose	 ratio	 is	 imaginary.	 After	 that,	 Abel’s	 followers	 in	 this	 direction—
Jacobi,	Rosenhain,	Weierstrass,	Riemann,	and	many	more—mined	deeply
into	 Abel’s	 great	 theorem	 and	 by	 carrying	 on	 and	 extending	 his	 ideas
discovered	functions	of	n	variables	having	2n	periods.	Abel	himself	carried
the	exploitation	of	his	discoveries	far.	His	successors	have	applied	all	this
work	 to	 geometry,	 mechanics,	 parts	 of	 mathematical	 physics,	 and	 other
tracts	 of	 mathematics,	 solving	 important	 problems	 which,	 without	 this
work	initiated	by	Abel,	would	have	been	unsolvable.

*		*		*

While	in	Paris	Abel	consulted	good	physicians	for	what	he	thought	was
merely	a	persistent	cold.	He	was	told	that	he	had	tuberculosis	of	the	lungs.
He	 refused	 to	 believe	 it,	 wiped	 the	 mud	 of	 Paris	 off	 his	 boots,	 and
returned	 to	 Berlin	 for	 a	 short	 visit.	 His	 funds	 were	 running	 low;	 about
seven	dollars	was	the	extent	of	his	fortune.	An	urgent	letter	brought	a	loan
from	Holmboë	after	some	delay.	It	must	not	be	supposed	that	Abel	was	a
chronic	borrower	on	no	prospects.	He	had	good	reason	for	believing	that
he	should	have	a	paying	job	when	he	got	home.	Moreover,	money	was	still
owed	to	him.	On	Holmboë’s	 loan	of	about	sixty	dollars	Abel	existed	and
researched	from	March	till	May,	1827.	Then,	all	his	resources	exhausted,
he	turned	homeward	and	arrived	in	Kristiania	completely	destitute.

But	all	was	soon	to	be	rosy,	he	hoped.	Surely	the	University	 job	would
be	forthcoming	now.	His	genius	had	begun	to	be	recognized.	There	was	a
vacancy.	 Abel	 did	 not	 get	 it.	Holmboë	 reluctantly	 took	 the	 vacant	 chair
which	 he	 had	 intended	 Abel	 to	 fill	 only	 after	 the	 governing	 board
threatened	to	import	a	foreigner	if	Holmboë	did	not	take	it.	Holmboë	was



in	 no	 way	 to	 blame.	 It	 was	 assumed	 that	 Holmboë	 would	 be	 a	 better
teacher	 than	Abel,	 although	Abel	had	 amply	demonstrated	his	 ability	 to
teach.	 Anyone	 familiar	 with	 the	 current	 American	 pedagogical	 theory,
fostered	by	professional	Schools	of	Education,	 that	 the	 less	a	man	knows
about	what	he	 is	 to	 teach	 the	better	he	will	 teach	 it,	will	understand	 the
situation	perfectly.

Nevertheless	 things	 did	 brighten	 up.	 The	 University	 paid	 Abel	 the
balance	of	what	it	owed	on	his	travel	money	and	Holmboë	sent	pupils	his
way.	 The	 professor	 of	 astronomy	 took	 a	 leave	 of	 absence	 and	 suggested
that	Abel	be	employed	to	carry	part	of	his	work.	A	well-to-do	couple,	 the
Schjeldrups,	took	him	in	and	treated	him	as	if	he	were	their	own	son.	But
with	all	this	he	could	not	free	himself	of	the	burden	of	his	dependents.	To
the	last	they	clung	to	him,	leaving	him	practically	nothing	for	himself,	and
to	the	last	he	never	uttered	an	impatient	word.

By	the	middle	of	January,	1829,	Abel	knew	that	he	had	not	long	to	live.
The	 evidence	 of	 a	 hemorrhage	 is	 not	 to	 be	 denied.	 “I	 will	 fight	 for	my
life!”	 he	 shouted	 in	 his	 delirium.	 But	 in	 more	 tranquil	 moments,
exhausted	and	trying	to	work,	he	drooped	“like	a	sick	eagle	looking	at	the
sun,”	knowing	that	his	weeks	were	numbered.

Abel	 spent	his	 last	 days	 at	 Froland,	 in	 the	home	of	 an	English	 family
where	his	fiancée	(Crelly	Kemp)	was	governess.	His	last	thoughts	were	for
her	future,	and	he	wrote	to	his	 friend	Kielhau,	“She	is	not	beautiful;	 she
has	 red	hair	and	 freckles,	but	 she	 is	an	admirable	woman.”	 It	was	Abel’s
wish	 that	Crelly	 and	Kielhau	 should	marry	after	his	death;	 and	although
the	 two	 had	 never	 met,	 they	 did	 as	 Abel	 had	 half-jokingly	 proposed.
Toward	 the	 last	 Crelly	 insisted	 on	 taking	 care	 of	 Abel	 without	 help,	 “to
possess	 these	 last	moments	 alone.”	 Early	 in	 the	morning	 of	 the	 sixth	 of
April,	1829,	he	died,	aged	twenty	six	years,	eight	months.

Two	days	after	Abel’s	death	Crelle	wrote	to	say	that	his	negotiations	had
at	 last	 proved	 successful	 and	 that	 Abel	 would	 be	 appointed	 to	 the
professorship	of	mathematics	in	the	University	of	Berlin.

I.	“	.	.	.	ce	qu’on	peut	toujours	faire	d’un	problème	quelconque”	is	what	Abel	says.	This	seems	a	trifle	too
optimistic;	 at	 least	 for	 ordinary	 mortals.	 How	 would	 the	 method	 be	 applied	 to	 Fermat’s	 Last
Theorem?

II.	Libri,	a	soi-disant	mathematician,	who	saw	the	work	through	the	press	adds,	“by	permission	of
the	Academy,”	 a	 smug	 footnote	 acknowledging	 the	genius	of	 the	 lamented	Abel.	This	 is	 the	 last



straw;	the	Academy	might	have	come	out	with	all	the	facts	or	have	held	its	official	tongue.	But	at	all
costs	 the	 honor	 and	 dignity	 of	 a	 stuffed	 shirt	 must	 be	 upheld.	 Finally	 it	 may	 be	 recalled	 that
valuable	manuscripts	and	books	had	an	unaccountable	trick	of	vanishing	when	Libri	was	round.

III.	In	ascribing	priority	to	Abel,	rather	than	“joint	discovery”	to	Abel	and	Jacobi,	in	this	matter,	I
have	followed	Mittag-Leffler.	From	a	thorough	acquaintance	with	all	the	published	evidence,	I	am
convinced	that	Abel’s	claim	is	indisputable,	although	Jacobi’s	compatriots	argue	otherwise.



CHAPTER	EIGHTEEN

The	Great	Algorist

JACOBI

It	is	the	increasingly	pronounced	tendency	of	modern	analysis	to	substitute	ideas	for	calculation;	nevertheless
there	 are	 certain	 branches	 of	 mathematics	 where	 calculation	 conserves	 its	 rights.—P.	 G.	 LEJEUNE
DIRICHLET

THE	 NAME	 JACOBI	 appears	 frequently	 in	 the	 sciences,	 not	 always	meaning
the	 same	man.	 In	 the	 1840’s	 one	 very	 notorious	 Jacobi—M.	 H.—had	 a
comparatively	obscure	brother,	C.	G.	J.,	whose	reputation	then	was	but	a
tithe	of	M.	H.’s.	Today	 the	 situation	 is	 reversed:	C.	G.	 J.	 is	 immortal—or
seemingly	so,	while	M.	H.	is	rapidly	receding	into	the	obscurity	of	limbo.
M.	 H.	 achieved	 fame	 as	 the	 founder	 of	 the	 fashionable	 quackery	 of
galvanoplastics;	C.	G.	J.’s	much	narrower	but	also	much	higher	reputation
is	based	on	mathematics.	During	his	lifetime	the	mathematician	was	always
being	 confused	 with	 his	 more	 famous	 brother,	 or	 worse,	 being
congratulated	for	his	 involuntary	kinship	to	the	sincerely	deluded	quack.
At	 last	C.	G.	 J.	 could	 stand	 it	no	 longer.	 “Pardon	me,	beautiful	 lady,’	he
retorted	to	an	enthusiastic	admirer	of	M.	H.	who	had	complimented	him
on	having	 so	distinguished	 a	 brother,	 “but	/	 am	my	brother.”	On	other
occasions	 C.	 G.	 J.	 would	 blurt	 out,	 “I	 am	 not	 his	 brother,	 he	 is	mine.’	 1
There	is	where	fame	has	left	the	relationship	today.

Carl	 Gustav	 Jacob	 Jacobi,	 born	 at	 Potsdam,	 Prussia,	 Germany,	 on
December	 10,	 1804,	 was	 the	 second	 son	 of	 a	 prosperous	 banker,	 Simon
Jacobi,	 and	 his	 wife	 (family	 name	 Lehmann).	 There	 were	 in	 all	 four
children,	three	boys,	Moritz,	Carl,	and	Eduard,	and	a	girl,	Therese.	Carl’s
first	 teacher	was	one	of	his	maternal	uncles,	who	 taught	 the	boy	 classics
and	 mathematics,	 preparing	 him	 to	 enter	 the	 Potsdam	 Gymnasium	 in
1816	 in	 his	 twelfth	 year.	 From	 the	 first	 Jacobi	 gave	 evidence	 of	 the
“universal	mind”	which	the	rector	of	the	Gymnasium	declared	him	to	be
on	his	 leaving	 the	 school	 in	1821	 to	 enter	 the	University	of	Berlin.	Like



Gauss,	 Jacobi	could	easily	have	made	a	high	reputation	 in	philology	had
not	mathematics	 attracted	 him	more	 strongly.	Having	 seen	 that	 the	 boy
had	mathematical	genius,	the	teacher	(Heinrich	Bauer)	let	Jacobi	work	by
himself—after	 a	 prolonged	 tussle	 in	 which	 Jacobi	 rebelled	 at	 learning
mathematics	by	rote	and	by	rule.

Young	 Jacobi’s	 mathematical	 development	 was	 in	 some	 respects
curiously	parallel	 to	that	of	his	greater	rival	Abel.	 Jacobi	also	went	to	the
masters;	 the	 works	 of	 Euler	 and	 Lagrange	 taught	 him	 algebra	 and	 the
calculus,	and	introduced	him	to	the	theory	of	numbers.	This	earliest	self-
instruction	was	to	give	Jacobi’s	first	outstanding	work—in	elliptic	functions
—its	definite	direction,	for	Euler,	the	master	of	ingenious	devices,	found
in	Jacobi	his	brilliant	 successor.	For	sheer	manipulative	ability	 in	 tangled
algebra	 Euler	 and	 Jacobi	 have	 had	 no	 rival,	 unless	 it	 be	 the	 Indian
mathematical	genius,	Srinivasa	Ramanujan,	in	our	own	century.	Abel	also
could	handle	 formulas	 like	a	master	when	he	wished,	but	his	genius	was
more	philosophical,	less	formal	than	Jacobi’s.	Abel	is	closer	to	Gauss	in	his
insistence	 upon	 rigor	 than	 Jacobi	 was	 by	 nature—not	 that	 Jacobi’s	 work
lacked	 rigor,	 for	 it	 did	 not,	 but	 its	 inspiration	 appears	 to	 have	 been
formalistic	rather	than	rigoristic.

Abel	was	 two	years	older	than	Jacobi.	Unaware	that	Abel	had	attacked
the	general	quintic	in	1820,	Jacobi	in	the	same	year	attempted	a	solution,
reducing	the	general	quintic	 to	the	form	x5	−10q2x	=	p	 and	 showing	 that
the	solution	of	this	equation	would	follow	from	that	of	a	certain	equation
of	the	tenth	degree.	Although	the	attempt	was	abortive	it	taught	Jacobi	a
great	deal	of	 algebra	and	he	ascribed	considerable	 importance	 to	 it	 as	 a
step	in	his	mathematical	education.	But	it	does	not	seem	to	have	occurred
to	 him,	 as	 it	 did	 to	 Abel,	 that	 the	 general	 quintic	 might	 be	 unsolvable
algebraically.	This	oversight,	or	lack	of	imagination,	or	whatever	we	wish	to
call	it,	on	Jacobi’s	part	is	typical	of	the	difference	between	him	and	Abel.
Jacobi,	who	had	a	magnificently	objective	mind	and	not	a	particle	of	envy
or	 jealousy	 in	 his	 generous	 nature,	 himself	 said	 of	 one	 of	 Abel’s
masterpieces,	“It	is	above	my	praises	as	it	is	above	my	own	works.”

Jacobi’s	 student	 days	 at	 Berlin	 lasted	 from	April,	 1821,	 to	May,	 1825.
During	 the	 first	 two	 years	 he	 spent	 his	 time	 about	 equally	 between
philosophy,	 philology,	 and	 mathematics.	 In	 the	 philological	 seminar
Jacobi	 attracted	 the	 favorable	 attention	 of	 P.	 A.	 Boeckh,	 a	 renowned
classical	 scholar	who	brought	out	 (among	other	works)	a	 fine	edition	of



Pindar.	 Boeckh,	 luckily	 for	 mathematics,	 failed	 to	 convert	 his	 most
promising	pupil	 to	 classical	 studies	 as	 a	 life	 interest.	 In	mathematics	not
much	 was	 offered	 for	 an	 ambitious	 student	 and	 Jacobi	 continued	 his
private	 study	 of	 the	 masters.	 The	 university	 lectures	 in	 mathematics	 he
characterized	briefly	 and	 sufficiently	 as	 twaddle.	 Jacobi	was	usually	 blunt
and	 to	 the	 point,	 although	 he	 knew	 how	 to	 be	 as	 subservient	 as	 any
courtier	when	trying	to	insinuate	some	deserving	mathematical	friend	into
a	worthy	position.

While	Jacobi	was	diligently	making	a	mathematician	of	himself	Abel	was
already	 well	 started	 on	 the	 very	 road	 which	 was	 to	 lead	 Jacobi	 to	 fame.
Abel	 had	 written	 to	 Holmboë	 on	 August	 4,	 1823,	 that	 he	 was	 busy	 with
elliptic	 functions:	“This	 little	work,	you	will	recall,	deals	with	the	 inverses
of	 the	 elliptic	 transcendents,	 and	 I	 proved	 something	 [that	 seemed]
impossible;	I	begged	Degen	to	read	it	as	soon	as	he	could	from	one	end	to
the	other,	 but	he	 could	 find	no	 false	 conclusion,	nor	understand	where
the	mistake	was;	God	knows	how	I	shall	get	myself	out	of	it.”	By	a	curious
coincidence	Jacobi	at	last	made	up	his	mind	to	put	his	all	on	mathematics
almost	exactly	when	Abel	wrote	this.	Two	years’	difference	in	the	ages	of
young	men	around	twenty	(Abel	was	 twenty	one,	 Jacobi	nineteen)	count
for	more	 than	 two	decades	of	maturity.	Abel	 got	 a	 tremendous	 start	but
Jacobi,	 unaware	 that	 he	 had	 a	 competitor	 in	 the	 race,	 soon	 caught	 up.
Jacobi’s	 first	 great	 work	 was	 in	 Abel’s	 field	 of	 elliptic	 functions.	 Before
considering	this	we	shall	outline	his	busy	life.

Having	 decided	 to	 go	 into	 mathematics	 for	 all	 he	 was	 worth,	 Jacobi
wrote	to	his	uncle	Lehmann	his	estimate	of	the	labor	he	had	undertaken.
“The	huge	colossus	which	the	works	of	Euler,	Lagrange,	and	Laplace	have
raised	demands	the	most	prodigious	force	and	exertion	of	thought	if	one
is	to	penetrate	into	its	inner	nature	and	not	merely	rummage	about	on	its
surface.	 To	 dominate	 this	 colossus	 and	 not	 to	 fear	 being	 crushed	 by	 it
demands	a	strain	which	permits	neither	rest	nor	peace	till	one	stands	on
top	 of	 it	 and	 surveys	 the	 work	 in	 its	 entirety.	 Then	 only,	 when	 one	 has
comprehended	 its	 spirit,	 is	 it	 possible	 to	work	 justly	 and	 in	peace	 at	 the
completion	of	its	details.”

With	 this	declaration	of	willing	servitude	Jacobi	 forthwith	became	one
of	 the	 most	 terrific	 workers	 in	 the	 history	 of	 mathematics.	 To	 a	 timid
friend	 who	 complained	 that	 scientific	 research	 is	 exacting	 and	 likely	 to
impair	bodily	health,	Jacobi	retorted:



“Of	 course!	 Certainly	 I	 have	 sometimes	 endangered	 my	 health	 by
overwork,	but	what	of	 it?	Only	cabbages	have	no	nerves,	no	worries.	And
what	do	they	get	out	of	their	perfect	wellbeing?”

In	August,	1825,	Jacobi	received	his	Ph.D.	degree	for	a	dissertation	on
partial	fractions	and	allied	topics.	There	is	no	need	to	explain	the	nature
of	 this—it	 is	 not	 of	 any	 great	 interest	 and	 is	 now	 a	 detail	 in	 the	 second
course	 of	 algebra	 or	 the	 integral	 calculus.	 Although	 Jacobi	 handled	 the
general	 case	 of	 his	 problem	 and	 showed	 considerable	 ingenuity	 in
manipulating	 formulas,	 it	 cannot	 be	 said	 that	 the	 dissertation	 exhibited
any	marked	 originality	 or	 gave	 any	 definite	 hint	 of	 the	 author’s	 superb
talent.	 Concurrently	 with	 his	 examination	 for	 the	 Ph.D.	 degree,	 Jacobi
rounded	off	his	training	for	the	teaching	profession.

After	 his	 degree	 Jacobi	 lectured	 at	 the	 University	 of	 Berlin	 on	 the
applications	of	the	calculus	to	curved	surfaces	and	twisted	curves	(roughly,
curves	 determined	 by	 the	 intersections	 of	 surfaces).	 From	 the	 very	 first
lectures	 it	 was	 evident	 that	 Jacobi	 was	 a	 born	 teacher.	 Later,	 when	 he
began	developing	his	own	ideas	at	an	amazing	speed,	he	became	the	most
inspiring	mathematical	teacher	of	his	time.

Jacobi	seems	to	have	been	the	first	regular	mathematical	instructor	in	a
university	 to	 train	 students	 in	 research	 by	 lecturing	 on	 his	 own	 latest
discoveries	 and	 letting	 the	 students	 see	 the	 creation	 of	 a	 new	 subject
taking	place	before	them.	He	believed	in	pitching	young	men	into	the	icy
water	 to	 learn	 to	 swim	 or	 drown	 by	 themselves.	 Many	 students	 put	 off
attempting	 anything	 on	 their	 own	 account	 till	 they	 have	 mastered
everything	 relating	 to	 their	 problem	 that	 has	 been	 done	 by	 others.	 The
result	is	that	but	few	ever	acquire	the	knack	of	independent	work.	Jacobi
combated	this	dilatory	erudition.	To	drive	home	the	point	to	a	gifted	but
diffident	 young	man	who	was	 always	putting	off	doing	anything	until	he
had	 learned	 something	 more,	 Jacobi	 delivered	 himself	 of	 the	 following
parable.	“Your	father	would	never	have	married,	and	you	wouldn’t	be	here
now,	 if	 he	 had	 insisted	 on	 knowing	 all	 the	 girls	 in	 the	 world	 before
marrying	one.”

Jacobi’s	 entire	 life	was	 spent	 in	 teaching	 and	 research	except	 for	one
ghastly	 interlude,	 to	 be	 related,	 and	 occasional	 trips	 to	 attend	 scientific
meetings	 in	 England	 and	 on	 the	 Continent,	 or	 forced	 vacations	 to
recuperate	after	too	intensive	work.	The	chronology	of	his	life	is	not	very
exciting—a	professional	scientist’s	seldom	is	except	to	himself.



Jacobi’s	talents	as	a	teacher	secured	him	the	position	of	lecturer	at	the
University	of	Königsberg	in	1826	after	only	half	a	year	in	a	similar	position
at	 Berlin.	 A	 year	 later	 some	 results	 which	 Jacobi	 had	 published	 in	 the
theory	 of	 numbers	 (relating	 to	 cubic	 reciprocity;	 see	 chapter	 on	Gauss)
excited	Gauss’	 admiration.	As	Gauss	was	not	 an	easy	man	 to	 stir	up,	 the
Ministry	of	Education	took	prompt	notice	and	promoted	Jacobi	over	 the
heads	 of	 his	 colleagues	 to	 an	 assistant	 professorship—quite	 a	 step	 for	 a
young	 man	 of	 twenty	 three.	 Naturally	 the	 men	 he	 had	 stepped	 over
resented	the	promotion;	but	 two	years	 later	 (1829)	when	Jacobi	published
his	 first	 masterpiece,	 Fundamenta	 Nova	 Theoriae	 Functionum	 Ellipticarum
(New	Foundations	of	the	Theory	of	Elliptic	Functions)	they	were	the	first
to	say	that	no	more	than	justice	had	been	done	and	to	congratulate	their
brilliant	young	colleague.

*		*		*

In	1832	Jacobi’s	father	died.	Up	till	this	he	need	not	have	worked	for	a
living.	His	prosperity	continued	about	eight	years	longer,	when	the	family
fortune	went	to	smash	in	1840.	Jacobi	was	cleaned	out	himself	at	the	age
of	thirty	six	and	in	addition	had	to	provide	for	his	mother,	also	ruined.

Gauss	all	this	time	had	been	watching	Jacobi’s	phenomenal	activity	with
more	 than	 a	 mere	 scientific	 interest,	 as	 many	 of	 Jacobi’s	 discoveries
overlapped	some	of	those	of	his	own	youth	which	he	had	never	published.
He	had	 also	 (it	 is	 said)	met	 the	 young	man	personally:	 Jacobi	 called	on
Gauss	 (no	 account	 of	 the	 visit	 has	 survived)	 in	 September,	 1839,	 on	 his
return	 trip	 to	 Königsberg	 after	 a	 vacation	 in	 Marienbad	 to	 recuperate
from	 overwork.	 Gauss	 appears	 to	 have	 feared	 that	 Jacobi’s	 financial
collapse	 would	 have	 a	 disastrous	 effect	 on	 his	 mathematics,	 but	 Bessel
reassured	 him:	 “Fortunately	 such	 a	 talent	 cannot	 be	 destroyed,	 but	 I
should	have	liked	him	to	have	the	sense	of	freedom	which	money	assures.”

The	loss	of	his	fortune	had	no	effect	whatever	on	Jacobi’s	mathematics.
He	 never	 alluded	 to	 his	 reverses	 but	 kept	 on	 working	 as	 assiduously	 as
ever.	 In	 1842	 Jacobi	 and	 Bessel	 attended	 the	 meeting	 of	 the	 British
Association	 at	 Manchester,	 where	 the	 German	 Jacobi	 and	 the	 Irish
Hamilton	met	in	the	flesh.	It	was	to	be	one	of	Jacobi’s	greatest	glories	to
continue	the	work	of	Hamilton	in	dynamics	and,	 in	a	sense,	 to	complete



what	the	Irishman	had	abandoned	in	favor	of	a	will-o-the-wisp	(which	will
be	followed	when	we	come	to	it).

At	 this	 point	 in	 his	 career	 Jacobi	 suddenly	 attempted	 to	 blossom	 out
into	something	showier	than	a	mere	mathematician.	Not	to	interrupt	the
story	of	his	scientific	life	when	we	take	it	up,	we	shall	dispose	here	of	the
illustrious	mathematician’s	singular	misadventures	in	politics.

The	 year	 following	 his	 return	 from	 the	 trip	 of	 1842,	 Jacobi	 had	 a
complete	breakdown	from	overwork.	The	advancement	of	 science	 in	 the
1840’s	in	Germany	was	in	the	hands	of	the	benevolent	princes	and	kings	of
the	 petty	 states	 which	 were	 later	 to	 coalesce	 into	 the	 German	 Empire.
Jacobi’s	 good	 angel	 was	 the	 King	 of	 Prussia,	 who	 seems	 to	 have
appreciated	 fully	 the	 honor	 which	 Jacobi’s	 researches	 conferred	 on	 the
Kingdom.	 Accordingly,	 when	 Jacobi	 fell	 ill,	 the	 benevolent	 King	 urged
him	to	take	as	long	a	vacation	as	he	liked	in	the	mild	climate	of	Italy.	After
five	 months	 at	 Rome	 and	 Naples	 with	 Borchardt	 (whom	 we	 shall	 meet
later	 in	 the	 company	 of	 Weierstrass)	 and	 Dirichlet,	 Jacobi	 returned	 to
Berlin	in	June,	1844.	He	was	now	permitted	to	stay	on	in	Berlin	until	his
health	 should	 be	 completely	 restored	 but,	 owing	 to	 jealousies,	 was	 not
given	 a	 professorship	 in	 the	 University,	 although	 as	 a	 member	 of	 the
Academy	he	was	permitted	to	lecture	on	anything	he	chose.	Further,	out
of	 his	 own	 pocket,	 practically,	 the	 King	 granted	 Jacobi	 a	 substantial
allowance.

After	 all	 this	 generosity	on	 the	part	of	 the	King	one	might	 think	 that
Jacobi	would	have	 stuck	 to	his	mathematics.	But	on	 the	utterly	 imbecilic
advice	 of	 his	 physician	 he	 began	 meddling	 in	 politics	 “to	 benefit	 his
nervous	 system.”	 If	ever	a	more	 idiotic	prescription	was	handed	out	by	a
doctor	to	a	patient	whose	complaint	he	could	not	diagnose	it	has	yet	to	be
exhumed.	 Jacobi	 swallowed	 the	 dose.	When	 the	 democratic	 upheaval	 of
1848	began	to	erupt	Jacobi	was	ripe	for	office.	On	the	advice	of	a	friend—
who,	by	the	way,	happened	to	be	one	of	the	men	over	whose	head	Jacobi
had	 been	 promoted	 some	 twenty	 years	 before—the	 guileless
mathematician	stepped	into	the	arena	of	politics	with	all	the	innocence	of
an	enticingly	plump	missionary	setting	foot	on	a	cannibal	island.	They	got
him.

The	mildly	liberal	club	to	which	his	slick	friend	had	introduced	him	ran
Jacobi	as	 their	candidate	 for	 the	May	election	of	1848.	But	he	never	 saw
the	 inside	 of	 parliament.	 His	 eloquence	 before	 the	 club	 convinced	 the



wiser	members	 that	 Jacobi	was	no	candidate	 for	 them.	Quite	properly,	 it
would	 seem,	 they	 pointed	 out	 that	 Jacobi,	 the	 King’s	 pensioner,	 might
possibly	 be	 the	 liberal	 he	 now	 professed	 to	 be,	 but	 that	 it	 was	 more
probable	he	was	a	trimmer,	a	turncoat,	and	a	stoolpigeon	for	the	royalists.
Jacobi	refuted	these	base	insinuations	in	a	magnificent	speech	packed	with
irrefutable	 logic—oblivious	 of	 the	 axiom	 that	 logic	 is	 the	 last	 thing	 on
earth	 for	 which	 a	 practical	 politician	 has	 any	 use.	 They	 let	 him	 hang
himself	in	his	own	noose.	He	was	not	elected.	Nor	was	his	nervous	system
benefited	by	the	uproar	over	his	candidacy	which	rocked	the	beer	halls	of
Berlin	to	their	cellars.

Worse	 was	 to	 come.	 Who	 can	 blame	 the	 Minister	 of	 Education	 for
enquiring	 the	 following	 May	 whether	 Jacobi’s	 health	 had	 recovered
sufficiently	 for	 him	 to	 return	 safely	 to	 Königsberg?	Or	 who	 can	 wonder
that	 his	 allowance	 from	 the	King	was	 stopped	 a	 few	days	 later?	After	 all
even	 a	King	may	be	permitted	 a	 show	of	 petulance	when	 the	mouth	he
tries	to	feed	bites	him.	Nevertheless	Jacobi’s	desperate	plight	was	enough
to	 excite	 anybody’s	 sympathy.	 Married	 and	 practically	 penniless	 he	 had
seven	small	children	to	support	in	addition	to	his	wife.	A	friend	in	Gotha
took	in	the	wife	and	children,	while	Jacobi	retired	to	a	dingy	hotel	room	to
continue	his	researches.

He	was	now	(1849)	in	his	forty	fifth	year	and,	except	for	Gauss,	the	most
famous	mathematician	in	Europe.	Hearing	of	his	plight,	the	University	of
Vienna	began	angling	for	him.	As	an	item	of	interest	here,	Littrow,	Abel’s
Viennese	 friend,	 took	a	 leading	part	 in	 the	negotiations.	At	 last,	when	a
definite	 and	 generous	 offer	 was	 tendered,	 Alexander	 von	 Humboldt
talked	 the	 sulky	King	 round;	 the	 allowance	was	 restored,	 and	 Jacobi	was
not	permitted	to	rob	Germany	of	her	second	greatest	man.	He	remained
in	Berlin,	once	more	in	favor	but	definitely	out	of	politics.

*		*		*

The	subject,	elliptic	functions,	in	which	Jacobi	did	his	first	great	work,
has	already	been	given	what	may	seem	like	its	share	of	space;	for	after	all	it
is	 today	 more	 or	 less	 of	 a	 detail	 in	 the	 vaster	 theory	 of	 functions	 of	 a
complex	variable	which,	in	its	turn,	is	fading	from	the	ever	changing	scene
as	 a	 thing	 of	 living	 interest.	 As	 the	 theory	 of	 elliptic	 functions	 will	 be



mentioned	 several	 times	 in	 succeeding	 chapters	we	 shall	 attempt	 a	brief
justification	of	its	apparently	unmerited	prominence.

No	mathematician	would	dispute	the	claim	of	the	theory	of	functions	of
a	 complex	 variable	 to	 have	 been	 one	 of	 the	major	 fields	 of	 nineteenth
century	 mathematics.	 One	 of	 the	 reasons	 why	 this	 theory	 was	 of	 such
importance	may	be	repeated	here.	Gauss	had	shown	that	complex	numbers
are	both	necessary	and	sufficient	to	provide	every	algebraic	equation	with
a	root.	Are	any	further,	more	general,	kinds	of	“numbers”	possible?	How
might	such	“numbers”	arise?

Instead	 of	 regarding	 complex	 numbers	 as	 having	 first	 presented
themselves	in	the	attempt	to	solve	certain	simple	equations,	say	x2	+	1	=	0,
we	may	 also	 see	 their	 origin	 in	 another	 problem	of	 elementary	 algebra,
that	 of	 factorization.	 To	 resolve	 x2—y2	 into	 factors	 of	 the	 first	 degree	 we
need	nothing	more	mysterious	than	the	positive	and	negative	integers:	(x2

—y2)	 =	 (x	 +	 y)(x—y).	 But	 the	 same	 problem	 for	 x2	 +	 y2	 demands
“imaginaries”:	 .	Carrying	this	up	a	step
in	one	of	many	possible	ways	open,	we	might	seek	to	resolve	x2	+	y2	+	z2
into	 two	 factors	 of	 the	 first	 degree.	 Are	 the	 positives,	 negatives,	 and
imaginaries	 sufficient?	Or	must	 some	new	kind	of	“number”	be	 invented
to	solve	the	problem?	The	latter	is	the	case.	It	was	found	that	for	the	new
“numbers”	 necessary	 the	 rules	 of	 common	 algebra	 break	 down	 in	 one
important	particular:	it	is	no	longer	true	that	the	order	in	which	“numbers”
are	multiplied	together	is	indifferent;	that	is,	for	the	new	numbers	it	is	not
true	that	a	×	b	is	equal	to	b	×	a.	More	will	be	said	on	this	when	we	come	to
Hamilton.	For	the	moment	we	note	that	the	elementary	algebraic	problem
of	factorization	quickly	leads	us	into	regions	where	complex	numbers	are
inadequate.

How	far	can	we	go,	what	are	the	most	general	numbers	possible,	if	we	insist
that	 for	 these	 numbers	 all	 the	 familiar	 laws	 of	 common	 algebra	 are	 to
hold?	 It	was	proved	 in	 the	 latter	part	of	 the	nineteenth	century	 that	 the
complex	numbers	x	+	iy,	where	x,	y	are	real	numbers	and	 	are	the
most	 general	 for	 which	 common	 algebra	 is	 true.	 The	 real	 numbers,	 we
recall,	correspond	to	the	distances	measured	along	a	fixed	straight	line	in
either	direction	(positive,	negative)	from	a	fixed	point,	and	the	graph	of	a
function	f(x),	plotted	as	y	=	f(x),	in	Cartesian	geometry,	gives	us	a	picture	of
a	 function	 y	 of	 a	 real	 variable	 x.	 The	mathematicians	 of	 the	 seventeenth
and	eighteenth	centuries	 imagined	 their	 functions	as	being	of	 this	kind.



But	if	the	common	algebra	and	its	extensions	into	the	calculus	which	they
applied	 to	 their	 functions	 are	 equally	 applicable	 to	 complex	 numbers,
which	 include	 the	 real	 numbers	 as	 a	 very	 degenerate	 case,	 it	 was	 but
natural	that	many	of	the	things	the	early	analysts	found	were	less	than	half
the	 whole	 story	 possible.	 In	 particular	 the	 integral	 calculus	 presented
many	inexplicable	anomalies	which	were	cleared	up	only	when	the	field	of
operations	 was	 enlarged	 to	 its	 fullest	 possible	 extent	 and	 functions	 of
complex	variables	were	introduced	by	Gauss	and	Cauchy.

The	 importance	 of	 elliptic	 functions	 in	 all	 this	 vast	 and	 fundamental
development	 cannot	 be	 overestimated.	Gauss,	 Abel,	 and	 Jacobi,	 by	 their
extensive	 and	 detailed	 elaboration	 of	 the	 theory	 of	 elliptic	 functions,	 in
which	complex	numbers	appear	inevitably,	provided	a	testing	ground	for
the	 discovery	 and	 improvement	 of	 general	 theorems	 in	 the	 theory	 of
functions	 of	 a	 complex	 variable.	 The	 two	 theories	 seemed	 to	 have	 been
designed	by	fate	to	complement	and	supplement	one	another—there	is	a
reason	for	this,	also	for	the	deep	connection	of	elliptic	functions	with	the
Gaussian	theory	of	quadratic	forms,	which	considerations	of	space	force	us
to	forego.	Without	the	innumerable	clues	for	a	general	theory	provided	by
the	 special	 instances	 of	 more	 inclusive	 theorems	 occurring	 in	 elliptic
functions,	 the	 theory	 of	 functions	 of	 a	 complex	 variable	 would	 have
developed	much	more	slowly	than	it	did—Liouville’s	theorem,	the	entire
subject	of	multiple	periodicity	with	 its	 impact	on	 the	 theory	of	 algebraic
functions	and	their	integrals,	may	be	recalled	to	mathematical	readers.	If
some	 of	 these	 great	monuments	 of	 nineteenth	 century	mathematics	 are
already	 receding	 into	 the	 mists	 of	 yesterday,	 we	 need	 only	 remind
ourselves	 that	 Picard’s	 theorem	 on	 exceptional	 values	 in	 the
neighborhood	 of	 an	 essential	 singularity,	 one	 of	 the	most	 suggestive	 in
current	 analysis,	 was	 first	 proved	 by	 devices	 originating	 in	 the	 theory	 of
elliptic	 functions.	 With	 this	 partial	 summary	 of	 the	 reason	 why	 elliptic
functions	were	important	in	the	mathematics	of	the	nineteenth	century	we
may	pass	on	to	Jacobi’s	cardinal	part	in	the	development	of	the	theory.

*		*		*

The	 history	 of	 elliptic	 functions	 is	 quite	 involved,	 and	 although	 of
considerable	 interest	 to	 specialists,	 is	 not	 likely	 to	 appeal	 to	 the	 general
reader.	 Accordingly	 we	 shall	 omit	 the	 evidence	 (letters	 of	 Gauss,	 Abel,



Jacobi,	 Legendre,	 and	 others)	 on	 which	 the	 following	 bare	 summary	 is
based.

First,	it	is	established	that	Gauss	anticipated	both	Abel	and	Jacobi	by	as
much	 as	 twenty	 seven	 years	 in	 some	of	 their	most	 striking	work.	 Indeed
Gauss	says	that	“Abel	has	followed	exactly	the	same	road	that	I	did	in	1798.”
That	 this	 claim	 is	 just	 will	 be	 admitted	 by	 anyone	 who	 will	 study	 the
evidence	published	only	after	Gauss’	death.	Second,	it	seems	to	be	agreed
that	 Abel	 anticipated	 Jacobi	 in	 certain	 important	 details,	 but-that	 Jacobi
made	his	great	start	in	entire	ignorance	of	his	rival’s	work.

A	 capital	 property	 of	 the	 elliptic	 functions	 is	 their	 double	 periodicity
(discovered	in	1825	by	Abel):	 if	E(x)	 is	an	elliptic	 function,	 then	there	are
two	distinct	numbers,	say	p1,	p2,	such	that

E(x	+	p1)	=	E(x),	and	E(x	+	p2)	=	E(x)

for	all	values	of	the	variable	x.
Finally,	 on	 the	 historical	 side,	 is	 the	 somewhat	 tragic	 part	 played	 by

Legendre.	For	 forty	 years	he	had	 slaved	over	elliptic	 integrals	 (not	 elliptic
functions)	without	noticing	what	both	Abel	and	Jacobi	saw	almost	at	once,
namely	that	by	inverting	his	point	of	view	the	whole	subject	would	become
infinitely	simpler.	Elliptic	integrals	first	present	themselves	in	the	problem
of	 finding	 the	 length	 of	 an	 arc	 of	 an	 ellipse.	 To	 what	 was	 said	 about
inversion	in	connection	with	Abel	the	following	statement	in	symbols	may
be	 added.	 This	 will	 bring	 out	 more	 clearly	 the	 point	 which	 Legendre
missed.

If	R(t)	denotes	a	polynomial	in	t,	an	integral	of	the	type

is	called	an	elliptic	integral	if	R(t)	is	of	either	the	third	or	the	fourth	degree;
if	R(t)	 is	 of	 degree	 higher	 than	 the	 fourth,	 the	 integral	 is	 called	Abelian
(after	Abel,	some	of	whose	greatest	work	concerned	such	integrals).	If	R(t)
is	of	only	the	second	degree,	the	integral	can	be	calculated	out	in	terms	of
elementary	functions.	In	particular



(sin-1x	is	read,	“an	angle	whose	sine	is	x”).	That	is,	if

we	consider	the	upper	limit,	x,	of	the	integral,	as	a	function	of	the	integral
itself,	 namely	 of	 y.	 This	 inversion	 of	 the	 problem	 removed	 most	 of	 the
difficulties	 which	 Legendre	 had	 grappled	 with	 for	 forty	 years.	 The	 true
theory	of	these	important	integrals	rushed	forth	almost	of	itself	after	this
obstruction	had	been	removed—like	a	log-jam	going	down	the	river	after
the	king	log	has	been	snaked	out.

When	 Legendre	 grasped	 what	 Abel	 and	 Jacobi	 had	 done	 he
encouraged	 them	most	cordially,	 although	he	realized	 that	 their	 simpler
approach	 (that	 of	 inversion)	 nullified	 what	 was	 to	 have	 been	 his	 own
masterpiece	of	 forty	 years’	 labor.	 For	Abel,	 alas,	Legendre’s	praise	 came
too	late,	but	for	Jacobi	 it	was	an	inspiration	to	surpass	himself.	In	one	of
the	finest	correspondences	in	the	whole	of	scientific	literature	the	young
man	 in	 his	 early	 twenties	 and	 the	 veteran	 in	 his	 late	 seventies	 strive	 to
outdo	one	another	in	sincere	praise	and	gratitude.	The	only	jarring	note	is
Legendre’s	 outspoken	 disparagement	 of	 Gauss,	 whom	 Jacobi	 vigorously
defends.	But	as	Gauss	never	condescended	to	publish	his	researches—he
had	 planned	 a	 major	 work	 on	 elliptic	 functions	 when	 Abel	 and	 Jacobi
anticipated	 him	 in	 publication—Legendre	 can	 hardly	 be	 blamed	 for
holding	a	totally	mistaken	opinion.	For	lack	of	space	we	must	omit	extracts
from	this	beautiful	correspondence	(the	letters	are	given	in	full	in	vol.	1	of
Jacobi’s	Werke—in	French).

*		*		*

The	joint	creation	with	Abel	of	the	theory	of	elliptic	functions	was	only
a	 small	 if	 highly	 important	 part	 of	 Jacobi’s	 huge	 output.	 Only	 to
enumerate	all	the	fields	he	enriched	in	his	brief	working	life	of	less	than	a
quarter	of	a	century	would	 take	more	 space	 than	can	be	devoted	 to	one
man	in	an	account	 like	 the	present,	 so	we	shall	merely	mention	a	 few	of
the	other	great	things	he	did.

Jacobi	was	the	first	to	apply	elliptic	functions	to	the	theory	of	numbers.
This	 was	 to	 become	 a	 favorite	 diversion	 with	 some	 of	 the	 greatest
mathematicians	 who	 followed	 Jacobi.	 It	 is	 a	 curiously	 recondite	 subject,



where	 arabesques	 of	 ingenious	 algebra	 unexpectedly	 reveal	 hitherto
unsuspected	relations	between	the	common	whole	numbers.	It	was	by	this
means	 that	 Jacobi	 proved	 the	 famous	 assertion	 of	 Fermat	 that	 every
integer	1,	2,	3,	.	.	.	is	a	sum	of	four	integer	squares	(zero	being	counted	as
an	integer)	and,	moreover,	his	beautiful	analysis	told	him	in	how	many	ways
any	given	integer	may	be	expressed	as	such	a	sum.I

For	those	whose	tastes	are	more	practical	we	may	cite	Jacobi’s	work	in
dynamics.	 In	 this	 subject,	 of	 fundamental	 importance	 in	 both	 applied
science	 and	 mathematical	 physics,	 Jacobi	 made	 the	 first	 significant
advance	 beyond	 Lagrange	 and	 Hamilton.	 Readers	 acquainted	 with
quantum	 mechanics	 will	 recall	 the	 important	 part	 played	 in	 some
presentations	 of	 that	 revolutionary	 theory	 by	 the	 Hamilton-Jacobi
equation.	His	work	in	differential	equations	began	a	new	era.

In	algebra,	to	mention	only	one	thing	of	many,	Jacobi	cast	the	theory	of
determinants	 into	 the	 simple	 form	 now	 familiar	 to	 every	 student	 in	 a
second	course	of	school	algebra.

To	 the	 Newton-Laplace-Lagrange	 theory	 of	 attraction	 Jacobi	 made
substantial	 contributions	 by	 his	 beautiful	 investigations	 on	 the	 functions
which	 recur	 repeatedly	 in	 that	 theory	and	by	applications	of	elliptic	 and
Abelian	functions	to	the	attraction	of	ellipsoids.

Of	 a	 far	 higher	 order	 of	 originality	 is	 his	 great	 discovery	 in	 Abelian
functions.	Such	functions	arise	in	the	inversion	of	an	Abelian	integral,	in
the	 same	 way	 that	 the	 elliptic	 functions	 arise	 from	 the	 inversion	 of	 an
elliptic	integral.	(The	technical	terms	were	noted	earlier	in	this	chapter.)
Here	he	had	nothing	 to	 guide	him,	 and	 for	 long	he	wandered	 lost	 in	 a
maze	that	had	no	clue.	The	appropriate	inverse	functions	in	the	simplest
case	are	functions	of	two	variables	having	four	periods;	in	the	general	case
the	 functions	 have	 n	 variables	 and	 2n	 periods;	 the	 elliptic	 functions
correspond	to	n	=	1.	This	discovery	was	to	nineteenth	century	analysis	what
Columbus’	discovery	of	America	was	to	fifteenth	century	geography.

*		*		*

Jacobi	did	not	suffer	an	early	death	from	overwork,	as	his	lazier	friends
predicted	 that	 he	 should,	 but	 from	 smallpox	 (February	 18,	 1851)	 in	 his
forty	seventh	year.	In	taking	leave	of	this	large-minded	man	we	may	quote
his	 retort	 to	 the	 great	 French	 mathematical	 physicist	 Fourier,	 who	 had



reproached	 both	 Abel	 and	 Jacobi	 for	 “wasting”	 their	 time	 on	 elliptic
functions	while	there	were	still	problems	in	heat-conduction	to	be	solved.

“It	 is	 true,”	 Jacobi	 says,	 “that	 M.	 Fourier	 had	 the	 opinion	 that	 the
principal	 aim	 of	 mathematics	 was	 public	 utility	 and	 the	 explanation	 of
natural	phenomena;	but	a	philosopher	 like	him	should	have	known	that
the	sole	end	of	science	is	the	honor	of	the	human	mind,	and	that	under
this	title	a	question	about	numbers	is	worth	as	much	as	a	question	about
the	system	of	the	world.”

If	Fourier	could	revisit	the	glimpses	of	the	moon	he	might	be	disgusted
at	what	has	happened	to	the	analysis	he	invented	for	“public	utility	and	the
explanation	 of	 natural	 phenomena.”	 So	 far	 as	 mathematical	 physics	 is
concerned	 Fourier	 analysis	 today	 is	 but	 a	 detail	 in	 the	 infinitely	 vaster
theory	 of	 boundary-value	 problems,	 and	 it	 is	 in	 the	 purest	 of	 pure
mathematics	that	the	analysis	which	Fourier	invented	finds	its	interest	and
its	 justification.	Whether	“the	human	mind”	is	honored	by	these	modern
researches	may	be	put	up	to	the	experts—provided	the	behaviorists	have
left	anything	of	the	human	mind	to	be	honored.

I.	If	n	is	odd,	the	number	of	ways	is	8	times	the	sum	of	all	the	divisors	of	n	(l	and	n	included);	if	n
is	even,	the	number	of	ways	is	24	times	the	sum	of	all	the	odd	divisors	of	n.



CHAPTER	NINETEEN

An	Irish	Tragedy

HAMILTON

In	mathematics	he	was	greater
Than	Tycho	Brahe	or	Erra	Pater;
For	he	by	geometric	scale
Could	take	the	size	of	pots	of	ale.

—SAMUEL	BUTLER

WILLIAM	ROWAN	HAMILTON	is	by	long	odds	the	greatest	man	of	science	that
Ireland	has	 produced.	His	 nationality	 is	 emphasized	 because	 one	 of	 the
driving	 impulses	 behind	 Hamilton’s	 incessant	 activity	 was	 his	 avowed
desire	 to	 put	 his	 superb	 genius	 to	 such	uses	 as	would	 bring	 glory	 to	his
native	 land.	Some	have	claimed	that	he	was	of	Scotch	descent.	Hamilton
himself	 insisted	that	he	was	Irish,	and	it	 is	certainly	difficult	for	a	Scot	to
see	 anything	 Scotch	 in	 Ireland’s	 greatest	 and	 most	 eloquent
mathematician.

Hamilton’s	father	was	a	solicitor	in	Dublin,	Ireland,	where	William,	the
youngest	of	three	brothers	and	one	sister,	was	born	on	August	3,	1805.I	The
father	 was	 a	 first-rate	 business	 man	 with	 an	 “exuberant	 eloquence,”	 a
religious	zealot,	and	last,	but	unfortunately	not	least,	a	very	convivial	man,
all	of	which	traits	he	passed	on	to	his	gifted	son.	Hamilton’s	extraordinary
intellectual	 brilliance	 was	 probably	 inherited	 from	 his	 mother,	 Sarah
Hutton,	who	came	of	a	family	well	known	for	its	brains.

However,	on	the	 father’s	 side,	 the	swirling	clouds	of	eloquence,	“both
of	 lips	 and	 pen,”	 which	 made	 the	 jolly	 toper	 the	 life	 of	 every	 party	 he
graced	with	his	reeling	presence,	condensed	 into	something	 less	gaseous
in	William’s	uncle,	the	Reverend	James	Hamilton,	curate	of	the	village	of
Trim	 (about	 twenty	 miles	 from	 Dublin).	 Uncle	 James	 was	 in	 fact	 an
inhumanly	 accomplished	 linguist—Greek,	 Latin,	 Hebrew,	 Sanskrit,



Chaldee,	Pali,	and	heaven	knows	what	other	heathen	dialects,	came	to	the
tip	of	his	tongue	as	readily	as	the	more	civilized	languages	of	Continental
Europe	and	Ireland.	This	polyglot	 fluency	played	no	 inconsiderable	part
in	the	early	and	extremely	extensive	miseducation	of	the	hapless	but	eager
William,	 for	at	 the	age	of	 three,	having	already	given	 signs	of	genius,	he
was	 relieved	 of	 his	 doting	 mother’s	 affection	 and	 packed	 off	 by	 his
somewhat	 stupid	 father	 to	 glut	 himself	 with	 languages	 under	 the	 expert
tutelage	of	the	supervoluble	Uncle	James.

Hamilton’s	parents	had	very	little	to	do	with	his	upbringing;	his	mother
died	when	 he	 was	 twelve,	 his	 father	 two	 years	 later.	 To	 James	Hamilton
belongs	whatever	 credit	 there	may	be	 for	having	wasted	 young	William’s
abilities	 in	 the	 acquisition	 of	 utterly	 useless	 languages	 and	 turning	 him
out,	 at	 the	 age	 of	 thirteen,	 as	 one	 of	 the	most	 shocking	 examples	 of	 a
linguistic	 monstrosity	 in	 history.	 That	 Hamilton	 did	 not	 become	 an
insufferable	 prig	 under	his	misguided	parson-uncle’s	 instruction	 testifies
to	 the	essential	 soundness	of	his	 Irish	common	 sense.	The	education	he
suffered	might	well	have	made	a	permanent	ass	of	even	a	humorous	boy,
and	Hamilton	had	no	humor.

The	 tale	 of	 Hamilton’s	 infantile	 accomplishments	 reads	 like	 a	 bad
romance,	but	 it	 is	 true:	at	 three	he	was	a	 superior	reader	of	English	and
was	 considerably	 advanced	 in	 arithmetic;	 at	 four	 he	 was	 a	 good
geographer;	at	five	he	read	and	translated	Latin,	Greek,	and	Hebrew,	and
loved	 to	 recite	 yards	of	Dryden,	Collins,	Milton,	 and	Homer—the	 last	 in
Greek;	at	eight	he	added	a	mastery	of	Italian	and	French	to	his	collection
and	 extemporized	 fluently	 in	 Latin,	 expressing	 his	 unaffected	 delight	 at
the	 beauty	 of	 the	 Irish	 scene	 in	 Latin	 hexameters	 when	 plain	 English
prose	 offered	 too	 plebeian	 a	 vent	 for	 his	 nobly	 exalted	 sentiments;	 and
finally,	 before	 he	 was	 ten	 he	 had	 laid	 a	 firm	 foundation	 for	 his
extraordinary	 scholarship	 in	oriental	 languages	by	beginning	Arabic	and
Sanskrit.

The	 tally	 of	Hamilton’s	 languages	 is	 not	 yet	 complete.	When	William
was	three	months	under	ten	years	old	his	uncle	reports	that	“His	thirst	for
the	Oriental	 languages	 is	unabated.	He	is	now	master	of	most,	 indeed	of
all	 except	 the	 minor	 and	 comparatively	 provincial	 ones.	 The	 Hebrew,
Persian,	 and	 Arabic	 are	 about	 to	 be	 confirmed	 by	 the	 superior	 and
intimate	 acquaintance	 with	 the	 Sanskrit,	 in	 which	 he	 is	 already	 a
proficient.	 The	 Chaldee	 and	 Syriac	 he	 is	 grounded	 in,	 also	 the



Hindoostanee,	 Malay,	 Mahratta,	 Bengali,	 and	 others.	 He	 is	 about	 to
commence	the	Chinese,	but	the	difficulty	of	procuring	books	is	very	great.
It	cost	me	a	large	sum	to	supply	him	from	London,	but	I	hope	the	money
was	 well	 expended.”	 To	 which	 we	 can	 only	 throw	 up	 our	 hands	 and
ejaculate	Good	God!	What	was	the	sense	of	it	all?

By	thirteen	William	was	able	to	brag	that	he	had	mastered	one	language
for	each	year	he	had	lived.	At	fourteen	he	composed	a	flowery	welcome	in
Persian	 to	 the	 Persian	 Ambassador,	 then	 visiting	 Dublin,	 and	 had	 it
transmitted	 to	 the	 astonished	 potentate.	 Wishing	 to	 follow	 up	 his
advantage	 and	 slay	 the	 already	 slain,	 young	 Hamilton	 called	 on	 the
Ambassador,	 but	 that	 wily	 oriental,	 forewarned	 by	 his	 faithful	 secretary,
“much	 regretted	 that	 on	 account	 of	 a	 bad	 headache	 he	 was	 unable	 to
receive	me	[Hamilton]	personally.”	Perhaps	 the	Ambassador	had	not	yet
recovered	 from	 the	 official	 banquet,	 or	 he	may	 have	 read	 the	 letter.	 In
translation	 at	 least	 it	 is	 pretty	 awful—just	 the	 sort	 of	 thing	 a	 boy	 of
fourteen,	taking	himself	with	devastating	seriousness	and	acquainted	with
all	 the	 stickiest	and	most	bombastic	passages	of	 the	Persian	poets,	might
imagine	a	sophisticated	oriental	out	on	a	wild	Irish	spree	would	relish	as	a
pick-me-up	the	morning	after.	Had	young	Hamilton	really	wished	to	view
the	Ambassador	he	should	have	sent	in	a	salt	herring,	not	a	Persian	poem.

Except	for	his	amazing	ability,	the	maturity	of	his	conversation	and	his
poetical	 love	 of	 nature	 in	 all	 her	 moods,	 Hamilton	 was	 like	 any	 other
healthy	 boy.	 He	 delighted	 in	 swimming	 and	 had	 none	 of	 the	 grind’s
interesting	if	somewhat	repulsive	pallor.	His	disposition	was	genial	and	his
temper—rather	 unusually	 so	 for	 a	 sturdy	 Irish	 boy—invariably	 even.	 In
later	life	however	Hamilton	showed	his	Irish	by	challenging	a	detractor—
who	had	called	him	a	liar—to	mortal	combat.	But	the	affair	was	amicably
arranged	 by	 Hamilton’s	 second,	 and	 Sir	 William	 cannot	 be	 legitimately
counted	 as	 one	 of	 the	 great	 mathematical	 duellists.	 In	 other	 respects
young	Hamilton	was	not	a	normal	boy.	The	infliction	of	pain	or	suffering
on	beast	or	man	he	would	not	tolerate.	All	his	life	Hamilton	loved	animals
and,	what	is	regrettably	rarer,	respected	them	as	equals.

Hamilton’s	 redemption	 from	 senseless	 devotion	 to	 useless	 languages
began	when	he	was	twelve	and	was	completed	before	he	was	fourteen.	The
humble	 instrument	 selected	 by	 Providence	 to	 turn	 Hamilton	 from	 the
path	 of	 error	 was	 the	 American	 calculating	 boy,	 Zerah	 Colburn	 (1804-
1839),	 who	 at	 the	 time	 had	 been	 attending	 Westminster	 School	 in



London.	Colburn	and	Hamilton	were	brought	together	in	the	expectation
that	 the	 young	 Irish	genius	would	be	able	 to	penetrate	 the	 secret	of	 the
American’s	methods,	which	Colburn	himself	did	not	fully	understand	(as
was	 seen	 in	 the	 chapter	 on	 Fermat).	 Colburn	 was	 entirely	 frank	 in
exposing	his	tricks	to	Hamilton,	who	in	his	turn	improved	upon	what	he
had	 been	 shown.	 There	 was	 but	 little	 abstruse	 or	 remarkable	 about
Colburn’s	methods.	His	feats	were	largely	a	matter	of	memory.	Hamilton’s
acknowledgment	of	Colburn’s	influence	occurs	in	a	letter	written	when	he
was	seventeen	(August,	1822)	to	his	cousin	Arthur.

By	the	age	of	seventeen	Hamilton	had	mastered	mathematics	through
the	integral	calculus	and	had	acquired	enough	mathematical	astronomy	to
be	able	 to	calculate	eclipses.	He	read	Newton	and	Lagrange.	All	 this	was
his	 recreation;	 the	 classics	 were	 still	 his	 serious	 study,	 although	 only	 a
second	love.	What	is	more	important,	he	had	already	made	“some	curious
discoveries,”	as	he	wrote	to	his	sister	Eliza.

The	discoveries	to	which	Hamilton	refers	are	probably	the	germs	of	his
first	great	work,	that	on	systems	of	rays	in	optics.	Thus	in	his	seventeenth
year	 Hamilton	 had	 already	 begun	 his	 career	 of	 fundamental	 discovery.
Before	 this	 he	 had	 brought	 himself	 to	 the	 attention	 of	 Dr.	 Brinkley,
Professor	 of	 Astronomy	 at	 Dublin,	 by	 the	 detection	 of	 an	 error	 in
Laplace’s	attempted	proof	of	the	parallelogram	of	forces.

*		*		*

Hamilton	never	attended	any	school	before	going	to	the	University	but
received	all	his	preliminary	 training	 from	his	uncle	and	by	private	 study.
His	 forced	 devotion	 to	 the	 classics	 in	 preparation	 for	 the	 entrance
examinations	to	Trinity	College,	Dublin,	did	not	absorb	all	of	his	time,	for
on	May	31,	1823,	he	writes	to	his	cousin	Arthur,	“In	Optics	I	have	made	a
very	curious	discovery—at	least	it	seems	so	to	me	.	.	.	.”

If,	 as	 has	 been	 supposed,	 this	 refers	 to	 the	 “characteristic	 function,”
which	 Hamilton	 will	 presently	 describe	 for	 us,	 the	 discovery	 marks	 its
author	as	the	equal	of	any	mathematician	in	history	for	genuine	precocity.
On	 July	7,	1823,	 young	Hamilton	passed,	easily	 first	out	of	one	hundred
candidates,	 into	Trinity	College.	His	 fame	had	preceded	him,	and	as	was
only	to	be	expected,	he	quickly	became	a	celebrity;	indeed	his	classical	and
mathematical	 prowess,	 while	 he	 was	 yet	 an	 undergraduate,	 excited	 the



curiosity	of	academic	circles	in	England	and	Scotland	as	well	as	in	Ireland,
and	it	was	even	declared	by	some	that	a	second	Newton	had	arrived.	The
tale	 of	 his	 undergraduate	 triumphs	 can	 be	 imagined—he	 carried	 off
practically	all	the	available	prizes	and	obtained	the	highest	honors	in	both
classics	and	mathematics.	But	more	important	than	all	these	triumphs,	he
completed	the	first	draft	of	Part	I	of	his	epoch-making	memoir	on	systems
of	 rays.	 “This	 young	 man,”	 Dr.	 Brinkley	 remarked,	 when	 Hamilton
presented	his	memoir	to	the	Royal	Irish	Academy,	“I	do	not	say	will	be,	but
is,	the	first	mathematician	of	his	age.”

Even	his	 laborious	drudgeries	 to	 sustain	his	 brilliant	 academic	 record
and	 the	 hours	 spent	 more	 profitably	 on	 research	 did	 not	 absorb	 all	 of
young	Hamilton’s	 superabundant	 energies.	 At	 nineteen	 he	 experienced
the	 first	 of	 his	 three	 serious	 love	 affairs.	 Being	 conscious	 of	 his	 own
“unworthiness”—especially	 as	 concerned	his	material	prospects—William
contented	 himself	 with	 writing	 poems	 to	 the	 young	 lady,	 with	 the	 usual
result:	 a	 solider,	more	prosaic	man	married	 the	girl.	Early	 in	May,	1825,
Hamilton	learned	from	his	sweetheart’s	mother	that	his	love	had	married
his	rival.	Some	idea	of	the	shock	he	experienced	can	be	inferred	from	the
fact	 that	Hamilton,	a	deeply	religious	man	to	whom	suicide	was	a	deadly
sin,	 was	 tempted	 to	 drown	 himself.	 Fortunately	 for	 science	 he	 solaced
himself	with	 another	poem.	All	 his	 life	Hamilton	was	 a	prolific	 versifier.
But	 his	 true	 poetry,	 as	 he	 told	 his	 friend	 and	 ardent	 admirer,	 William
Wordsworth,	 was	 his	 mathematics.	 From	 this	 no	 mathematician	 will
dissent.

We	may	dispose	here	 of	Hamilton’s	 lifelong	 friendships	with	 some	of
the	shining	literary	lights	of	his	day—the	poets	Wordsworth,	Southey,	and
Coleridge,	of	the	so-called	Lake	School,	Aubrey	de	Vere,	and	the	didactic
novelist	Maria	Edgeworth—a	litteratrice	after	Hamilton’s	own	pious	heart.
Wordsworth	 and	 Hamilton	 first	 met	 on	 the	 latter’s	 trip	 of	 September,
1827,	to	the	English	Lake	District.	Having	“waited	on	Wordsworth	at	tea,”
Hamilton	 oscillated	 back	 and	 forth	 with	 the	 poet	 all	 night,	 each
desperately	trying	to	see	the	other	home.	The	following	day	Hamilton	sent
Wordsworth	 a	 poem	 of	 ninety	 iron	 lines	 which	 the	 poet	 himself	 might
have	warbled	 in	one	of	his	heavier	 flights.	Naturally	Wordsworth	did	not
relish	the	eager	young	mathematician’s	unconscious	plagiarism,	and	after
damning	 it	 with	 faint	 praise,	 proceeded	 to	 tell	 the	 hopeful	 author—at
great	 length—that	“the	workmanship	(what	else	could	be	expected	from



so	 young	 a	 writer?)	 is	 not	 what	 it	 ought	 to	 be.”	 Two	 years	 later,	 when
Hamilton	was	already	installed	as	astronomer	at	the	Dunsink	Observatory,
Wordsworth	 returned	 the	 visit.	 Hamilton’s	 sister	 Eliza,	 on	 being
introduced	to	the	poet,	felt	herself	“involuntarily	parodying	the	first	lines
of	his	own	poem	Yarrow	Visited—

And	this	is	Wordsworth!	this	the	man
Of	whom	my	fancy	cherished
So	faithfully	a	waking	dream,
An	image	that	hath	perished!”

*		*		*

One	great	benefit	accrued	from	Wordsworth’s	visit:	Hamilton	realized
at	last	that	“his	path	must	be	the	path	of	Science,	and	not	that	of	Poetry;
that	he	must	renounce	 the	hope	of	habitually	cultivating	both,	and	 that,
therefore,	he	must	brace	himself	up	to	bid	a	painful	farewell	to	Poetry.”	In
short,	Hamilton	grasped	 the	obvious	 truth	 that	 there	was	not	 a	 spark	of
poetry	in	him,	in	the	literary	sense.	Nevertheless	he	continued	to	versify	all
his	life.	Wordsworth’s	opinion	of	Hamilton’s	intellect	was	high.	In	fact	he
graciously	said	(in	effect)	that	only	two	men	he	had	ever	known	gave	him
a	feeling	of	inferiority,	Coleridge	and	Hamilton.

Hamilton	 did	 not	 meet	 Coleridge	 till	 1832,	 when	 the	 poet	 had
practically	 ceased	 to	 be	 anything	 but	 a	 spurious	 copy	 of	 a	 mediocre
German	metaphysician.	Nevertheless	each	formed	a	high	estimate	of	 the
other’s	capacity,	as	Hamilton	had	for	long	been	a	devoted	student	of	Kant
in	 the	 original.	 Indeed	 philosophical	 speculation	 always	 fascinated
Hamilton,	and	at	one	time	he	declared	himself	a	wholehearted	believer—
intellectually,	 but	 not	 intestinally—in	 Berkeley’s	 devitalized	 idealism.
Another	 bond	 between	 the	 two	 was	 their	 preoccupation	 with	 the
theological	 side	 of	 philosophy	 (if	 there	 is	 such	 a	 side),	 and	 Coleridge
favored	Hamilton	with	his	half-digested	ruminations	on	the	Holy	Trinity,
by	which	the	devout	mathematician	set	considerable	store.

*		*		*

The	 close	 of	Hamilton’s	 undergraduate	 career	 at	 Trinity	 College	 was
even	 more	 spectacular	 than	 its	 beginning;	 in	 fact	 it	 was	 unique	 in
university	annals.	Dr.	Brinkley	resigned	his	professorship	of	astronomy	to



become	 Bishop	 of	 Cloyne.	 According	 to	 the	 usual	 British	 custom	 the
vacancy	was	advertized,	 and	 several	distinguished	astronomers,	 including
George	Biddell	Airy	(1801-1892),	later	Astronomer	Royal	of	England,	sent	in
their	credentials.	After	some	discussion	the	Governing	Board	passed	over
all	 the	 applicants	 and	 unanimously	 elected	 Hamilton,	 then	 (1827)	 an
undergraduate	 of	 twenty	 two,	 to	 the	 professorship.	 Hamilton	 had	 not
applied.	 “Straight	 for	 him	 was	 the	 path	 of	 gold”	 now,	 and	 Hamilton
resolved	not	to	disappoint	the	hopes	of	his	enthusiastic	electors.	Since	the
age	of	fourteen	he	had	had	a	passion	for	astronomy,	and	once	as	a	boy	he
had	 pointed	 out	 the	Observatory	 on	 its	 hill	 at	 Dunsink,	 commanding	 a
beautiful	view,	as	the	place	of	all	others	where	he	would	like	to	live	were
he	free	to	choose.	He	now,	at	the	age	of	twenty	two,	had	his	ambition	by
the	bit;	all	he	had	to	do	was	to	ride	straight	ahead.

He	started	brilliantly.	Although	Hamilton	was	no	practical	astronomer,
and	 although	 his	 assistant	 observer	 was	 incompetent,	 these	 drawbacks
were	not	serious.	From	its	situation	the	Dunsink	Observatory	could	never
have	 cut	 any	 important	 figure	 in	modern	 astronomy,	 and	Hamilton	 did
wisely	in	putting	his	major	efforts	on	his	mathematics.	At	the	age	of	twenty
three	 he	 published	 the	 completion	 of	 the	 “curious	 discoveries”	 he	 had
made	as	a	boy	of	seventeen,	Part	I	of	A	Theory	of	Systems	of	Rays,	 the	great
classic	which	does	for	optics	what	Lagrange’s	Mécanique	analytique	does	for
mechanics	 and	 which,	 in	Hamilton’s	 own	 hands,	 was	 to	 be	 extended	 to
dynamics,	putting	that	fundamental	science	in	what	is	perhaps	its	ultimate,
perfect	form.

The	techniques	which	Hamilton	 introduced	 into	applied	mathematics
in	 this,	 his	 first	 masterpiece,	 are	 today	 indispensable	 in	 mathematical
physics,	 and	 it	 is	 the	 aim	 of	 many	 workers	 in	 particular	 branches	 of
theoretical	 physics	 to	 sum	 up	 the	 whole	 of	 a	 theory	 in	 a	 Hamiltonian
principle.	 This	 magnificent	 work	 is	 that	 which	 caused	 Jacobi,	 fourteen
years	 later	 at	 the	 British	 Association	meeting	 at	Manchester	 in	 1842,	 to
assert	that	“Hamilton	is	the	Lagrange	of	your	country”—(meaning	of	the
English-speaking	race).	As	Hamilton	himself	took	great	pains	to	describe
the	 essence	 of	 his	 new	 methods	 in	 terms	 comprehensible	 to	 non-
specialists,	 we	 shall	 quote	 from	 his	 own	 abstract	 presented	 to	 the	 Royal
Irish	Academy	on	April	23,	1827.

“A	 Ray,	 in	 Optics,	 is	 to	 be	 considered	 here	 as	 a	 straight	 or	 bent	 or
curved	 line,	 along	 which	 light	 is	 propagated;	 and	 a	 System	 of	 Rays	 as	 a



collection	or	aggregate	of	such	lines,	connected	by	some	common	bond,
some	similarity	of	origin	or	production,	in	short	some	optical	unity.	Thus
the	rays	which	diverge	from	a	luminous	point	compose	one	optical	system,
and,	after	they	have	been	reflected	at	a	mirror,	they	compose	another.	To
investigate	 the	 geometrical	 relations	 of	 the	 rays	 of	 a	 system	of	which	we
know	(as	 in	these	simple	cases)	 the	optical	origin	and	history,	 to	 inquire
how	they	are	disposed	among	themselves,	how	they	diverge	or	converge,
or	 are	 parallel,	 what	 surfaces	 or	 curves	 they	 touch	 or	 cut,	 and	 at	 what
angles	of	 section,	how	they	can	be	combined	 in	partial	pencils,	and	how
each	 ray	 in	 particular	 can	 be	 determined	 and	 distinguished	 from	 every
other,	is	to	study	that	System	of	Rays.	And	to	generalize	this	study	of	one
system	so	as	to	become	able	to	pass,	without	change	of	plan,	to	the	study	of
other	systems,	to	assign	general	rules	and	a	general	method	whereby	these
separate	 optical	 arrangements	 may	 be	 connected	 and	 harmonised
together,	is	to	form	a	Theory	of	Systems	of	Rays.	Finally,	to	do	this	in	such	a
manner	as	to	make	available	the	powers	of	the	modern	mathesis,	replacing
figures	by	functions	and	diagrams	by	formulas,	is	to	construct	an	Algebraic
Theory	of	such	Systems,	or	an	Application	of	Algebra	to	Optics.

“Towards	 constructing	 such	 an	 application	 it	 is	 natural,	 or	 rather
necessary,	 to	 employ	 the	 method	 introduced	 by	 Descartes	 for	 the
application	 of	 Algebra	 to	 Geometry.	 That	 great	 and	 philosophical
mathematician	 conceived	 the	 possibility,	 and	 employed	 the	 plan,	 of
representing	or	expressing	algebraically	the	position	of	any	point	in	space
by	three	co-ordinate	numbers	which	answer	respectively	how	far	the	point
is	 in	 three	 rectangular	 directions	 (such	 as	 north,	 east,	 and	 west),	 from
some	fixed	point	or	origin	selected	or	assumed	for	the	purpose;	the	three
dimensions	 of	 space	 thus	 receiving	 their	 three	 algebraical	 equivalents,
their	 appropriate	 conceptions	 and	 symbols	 in	 the	 general	 science	 of
progression	[order].	A	plane	or	curved	surface	became	thus	algebraically
defined	by	assigning	as	 its	 equation	 the	 relation	 connecting	 the	 three	 co-
ordinates	of	any	point	upon	it,	and	common	to	all	those	points:	and	a	line,
straight	 or	 curved,	was	 expressed	 according	 to	 the	 same	method,	 by	 the
assigning	 two	 such	relations,	 correspondent	 to	 two	 surfaces	of	which	 the
line	 might	 be	 regarded	 as	 the	 intersection.	 In	 this	 manner	 it	 became
possible	to	conduct	general	 investigations	respecting	surfaces	and	curves,
and	to	discover	properties	common	to	all,	through	the	medium	of	general
investigations	respecting	equations	between	three	variable	numbers:	every



geometrical	 problem	 could	 be	 at	 least	 algebraically	 expressed,	 if	 not	 at
once	 resolved,	 and	 every	 improvement	 or	 discovery	 in	 Algebra	 became
susceptible	of	application	or	interpretation	in	Geometry?	The	sciences	of
Space	and	Time	(to	adopt	here	a	view	of	Algebra	which	I	have	elsewhere
ventured	 to	 propose)	 became	 intimately	 intertwined	 and	 indissolubly
connected	 with	 each	 other.	 Henceforth	 it	 was	 almost	 impossible	 to
improve	either	science	without	improving	the	other	also.	The	problem	of
drawing	tangents	to	curves	led	to	the	discovery	of	Fluxions	or	Differentials:
those	 of	 rectification	 and	 quadrature	 to	 the	 inversion	 of	 Fluents	 or
Integrals:	the	investigation	of	curvatures	of	surfaces	required	the	Calculus
of	 Partial	 Differentials:	 the	 isoperimetrical	 problems	 resulted	 in	 the
formation	of	 the	Calculus	of	Variations.	And	 reciprocally,	 all	 these	great
steps	 in	 Algebraic	 Science	 had	 immediately	 their	 applications	 to
Geometry,	 and	 led	 to	 the	 discovery	 of	 new	 relations	 between	 points	 or
lines	or	surfaces.	But	even	if	the	applications	of	the	method	had	not	been
so	manifold	and	 important,	 there	would	 still	have	been	derivable	a	high
intellectual	pleasure	from	the	contemplation	of	it	as	a	method.

“The	 first	 important	 application	 of	 this	 algebraical	 method	 of
coordinates	 to	 the	 study	of	optical	 systems	was	made	by	Malus,	a	French
officer	of	engineers	 in	Napoleon’s	army	 in	Egypt,	 and	who	has	acquired
celebrity	in	the	history	of	Physical	Optics	as	the	discoverer	of	polarization
of	light	by	reflexion.	Malus	presented	to	the	Institute	of	France,	in	1807,	a
profound	mathematical	work	which	is	of	the	kind	above	alluded	to,	and	is
entitled	 Traité	 d’Optique.	 The	 method	 employed	 in	 that	 treatise	 may	 be
thus	described:—The	direction	of	a	straight	ray	of	any	final	optical	system
being	considered	as	dependent	on	the	position	of	some	assigned	point	on
the	 ray,	 according	 to	 some	 law	which	 characterizes	 the	particular	 system
and	distinguishes	it	from	others;	this	law	may	be	algebraically	expressed	by
assigning	three	expressions	for	the	three	co-ordinates	of	some	other	point
of	 the	 ray,	 as	 functions	 of	 the	 three	 co-ordinates	 of	 the	 point	 proposed.
Malus	 accordingly	 introduces	 general	 symbols	 denoting	 three	 such
functions	(or	at	least	three	functions	equivalent	to	these),	and	proceeds	to
draw	 several	 important	 general	 conclusions,	 by	 very	 complicated	 yet
symmetric	 calculations;	 many	 of	 which	 conclusions,	 along	 with	 many
others,	were	also	obtained	afterwards	by	myself,	when,	by	a	method	nearly
similar,	without	knowing	what	Malus	had	done,	I	began	my	own	attempt	to
apply	 Algebra	 to	 Optics.	 But	 my	 researches	 soon	 conducted	 me	 to



substitute,	 for	 this	method	of	Malus,	 a	 very	different,	 and	 (as	 I	 conceive
that	I	have	proved)	a	much	more	appropriate	one,	for	the	study	of	optical
systems;	 by	 which,	 instead	 of	 employing	 the	 three	 functions	 above
mentioned,	or	at	least	their	two	ratios,	it	becomes	sufficient	to	employ	one
function,	which	I	call	characteristic	or	principal.	And	thus,	whereas	he	made
his	deductions	by	setting	out	with	the	two	equations	of	a	ray,	I	on	the	other
hand	establish	and	employ	the	one	equation	of	a	system.

“The	function	which	I	have	introduced	for	this	purpose,	and	made	the
basis	of	my	method	of	deduction	 in	mathematical	Optics,	had,	 in	another
connexion,	presented	itself	to	former	writers	as	expressing	the	result	of	a
very	 high	 and	 extensive	 induction	 in	 that	 science.	 This	 known	 result	 is
usually	 called	 the	 law	 of	 least	 action,	 but	 sometimes	 also	 the	 principle	 of
least	time	[see	chapter	on	Fermat],	and	includes	all	that	has	hitherto	been
discovered	respecting	the	rules	which	determine	the	forms	and	positions
of	the	lines	along	which	light	is	propagated,	and	the	changes	of	direction
of	 those	 lines	 produced	 by	 reflexion	 or	 refraction,	 ordinary	 or
extraordinary	[the	latter	as	in	a	doubly	refracting	crystal,	say	Iceland	spar,
in	 which	 a	 single	 ray	 is	 split	 into	 two,	 both	 refracted,	 on	 entering	 the
crystal].	A	certain	quantity	which	in	one	physical	theory	is	the	action,	and
in	 another	 the	 time,	 expended	 by	 light	 in	 going	 from	 any	 first	 to	 any
second	point,	 is	 found	to	be	 less	 than	 if	 the	 light	had	gone	 in	any	other
than	 its	 actual	 path,	 or	 at	 least	 to	 have	 what	 is	 technically	 called	 its
variation	 null,	 the	 extremities	 of	 the	 path	 being	 unvaried.	 The
mathematical	novelty	of	my	method	consists	in	considering	this	quantity	as
a	function	of	the	co-ordinates	of	these	extremities,	which	varies	when	they
vary,	according	to	a	law	which	I	have	called	the	law	of	varying	action;	and	in
reducing	all	 researches	 respecting	optical	 systems	of	 rays	 to	 the	 study	of	 this	 single
function:	 a	 reduction	 which	 presents	 mathematical	 Optics	 under	 an
entirely	novel	view,	and	one	analogous	(as	it	appears	to	me)	to	the	aspect
under	which	Descartes	presented	the	application	of	Algebra	to	Geometry.”

Nothing	need	be	added	to	this	account	of	Hamilton’s,	except	possibly
the	remark	that	no	science,	no	matter	how	ably	expounded,	is	understood
as	readily	as	any	novel,	no	matter	how	badly	written.	The	whole	extract	will
repay	a	second	reading.

In	this	great	work	on	systems	of	rays	Hamilton	had	builded	better	than
even	he	knew.	Almost	exactly	one	hundred	years	after	the	above	abstract
was	 written	 the	 methods	 which	 Hamilton	 introduced	 into	 optics	 were



found	to	be	just	what	was	required	in	the	wave	mechanics	associated	with
the	modern	quantum	theory	and	the	theory	of	atomic	structure.	It	may	be
recalled	 that	Newton	had	 favored	an	emission,	or	 corpuscular,	 theory	of
light,	while	Huygens	and	his	successors	up	to	almost	our	own	time	sought
to	explain	the	phenomena	of	light	wholly	by	means	of	a	wave	theory.	Both
points	of	view	were	united	and,	in	a	purely	mathematical	sense,	reconciled
in	the	modern	quantum	theory,	which	came	into	being	in	1925-6.	In	1834,
when	 he	 was	 twenty	 eight,	Hamilton	 realized	 his	 ambition	 of	 extending
the	 principles	 which	 he	 had	 introduced	 into	 optics	 to	 the	 whole	 of
dynamics.

Hamilton’s	 theory	of	 rays,	 shortly	after	 its	publication	when	 its	author
was	 but	 twenty	 seven,	 had	 one	 of	 the	 promptest	 and	 most	 spectacular
successes	of	 any	of	 the	 classics	of	mathematics.	The	 theory	purported	 to
deal	with	phenomena	of	 the	 actual	physical	universe	 as	 it	 is	 observed	 in
everyday	 life	and	 in	scientific	 laboratories.	Unless	any	such	mathematical
theory	 is	 capable	 of	 predictions	 which	 experiments	 later	 verify,	 it	 is	 no
better	 than	 a	 concise	 dictionary	 of	 the	 subject	 it	 systematizes,	 and	 it	 is
almost	 certain	 to	 be	 superseded	 shortly	 by	 a	 more	 imaginative	 picture
which	does	not	reveal	its	whole	meaning	at	the	first	glance.	Of	the	famous
predictions	which	have	certified	 the	value	of	 truly	mathematical	 theories
in	 physical	 science,	 we	 may	 recall	 three:	 the	 mathematical	 discovery	 by
John	Couch	Adams	(18191892)	and	Urbain-Jean-Joseph	Leverrier	 (1811-
1877)	of	the	planet	Neptune,	independently	and	almost	simultaneously	in
1845,	from	an	analysis	of	the	perturbations	of	the	planet	Uranus	according
to	 the	 Newtonian	 theory	 of	 gravitation;	 the	 mathematical	 prediction	 of
wireless	 waves	 by	 James	 Clerk	 Maxwell	 (1831-1879)	 in	 1864,	 as	 a
consequence	 of	 his	 own	 electromagnetic	 theory	 of	 light;	 and	 finally,
Einstein’s	 prediction	 in	 1915-16,	 from	his	 theory	 of	 general	 relativity,	 of
the	deflection	of	a	 ray	of	 light	 in	a	gravitational	 field,	 first	 confirmed	by
observations	 of	 the	 solar	 eclipse	 on	 the	 historic	 May	 29,	 1919,	 and	 his
prediction,	 also	 from	 his	 theory,	 that	 the	 spectral	 lines	 in	 light	 issuing
from	a	massive	body	would	be	shifted	by	an	amount,	which	Einstein	stated,
toward	the	red	end	of	the	spectrum—also	confirmed.	The	last	two	of	these
instances—Maxwell’s	 and	 Einstein’s—are	 of	 a	 different	 order	 from	 the
first:	 in	 both,	 totally	 unknown	 and	 unforeseen	 phenomena	 were	 predicted
mathematically;	 that	 is,	 these	 predictions	 were	 qualitative.	 Both	Maxwell
and	 Einstein	 amplified	 their	 qualitative	 foresight	 by	 precise	 quantitative



predictions	 which	 precluded	 any	 charge	 of	 mere	 guessing	 when	 their
prophecies	were	finally	verified	experimentally.

Hamilton’s	prediction	of	what	is	called	conical	refraction	in	optics	was
of	this	same	qualitative	plus	quantitative	order.	From	his	theory	of	systems
of	 rays	 he	 predicted	 mathematically	 that	 a	 wholly	 unexpected
phenomenon	would	be	found	in	connection	with	the	refraction	of	light	in
biaxal	 crystals.	While	polishing	 the	Third	Supplement	 to	his	memoir	on
rays	he	surprised	himself	by	a	discovery	which	he	thus	describes:

“The	 law	of	 the	 reflexion	of	 light	at	ordinary	mirrors	appears	 to	have
been	 known	 to	 Euclid;	 that	 of	 ordinary	 refraction	 at	 a	 surface	 of	 water,
glass,	or	other	uncrystallized	medium,	was	discovered	at	a	much	later	date
by	 Snellius;	 Huygens	 discovered,	 and	 Malus	 confirmed,	 the	 law	 of
extraordinary	 refraction	 produced	 by	 uniaxal	 crystals,	 such	 as	 Iceland
spar;	and	finally	the	law	of	the	extraordinary	double	refraction	at	the	faces
of	biaxal	crystals,	such	as	topaz	or	arragonite,	was	found	in	our	own	time
by	 Fresnel.	 But	 even	 in	 these	 cases	 of	 extraordinary	 or	 crystalline
refraction,	 no	 more	 than	 two	 refracted	 rays	 had	 ever	 been	 observed	 or
even	suspected	to	exist,	if	we	except	a	theory	of	Cauchy,	that	there	might
possibly	 be	 a	 third	 ray,	 though	 probably	 imperceptible	 to	 our	 senses.
Professor	Hamilton,	however,	 in	 investigating	by	his	general	method	 the
consequences	of	the	law	of	Fresnel,	was	led	to	conclude	that	there	ought
to	be	 in	certain	cases,	which	he	assigned,	not	merely	 two,	nor	three,	nor
any	finite	number,	but	an	infinite	number,	or	a	cone	of	refracted	rays	within
a	biaxal	crystal,	corresponding	to	and	resulting	from	a	single	incident	ray;
and	 that	 in	 certain	 other	 cases,	 a	 single	 ray	within	 such	 a	 crystal	 should
give	 rise	 to	 an	 infinite	 number	 of	 emergent	 rays,	 arranged	 in	 a	 certain
other	cone.	He	was	led,	therefore,	to	anticipate	from	theory	two	new	laws
of	 light,	 to	 which	 he	 gave	 the	 names	 of	 Internal	 and	 External	 Conical
Refraction.”

The	 prediction	 and	 its	 experimental	 verification	 by	Humphrey	 Lloyd
evoked	unbounded	admiration	for	young	Hamilton	from	those	who	could
appreciate	what	he	had	done.	Airy,	his	 former	rival	 for	the	professorship
of	astronomy,	estimated	Hamilton’s	achievement	thus:	“Perhaps	the	most
remarkable	 prediction	 that	 has	 ever	 been	 made	 is	 that	 lately	 made	 by
Professor	 Hamilton.”	 Hamilton	 himself	 considered	 this,	 like	 any	 similar
prediction,	 “a	 subordinate	and	 secondary	 result”	 compared	 to	 the	grand
object	 which	 he	 had	 in	 view,	 “to	 introduce	 harmony	 and	 unity	 into	 the



contemplations	 and	 reasonings	 of	 optics,	 regarded	 as	 a	 branch	 of	 pure
science.”

*		*		*

According	to	some	this	spectacular	success	was	the	high-water	mark	in
Hamilton’s	 career;	 after	 the	 great	 work	 on	 optics	 and	 dynamics	 his	 tide
ebbed.	 Others,	 particularly	 members	 of	 what	 has	 been	 styled	 the	 High
Church	 of	 Quaternions,	 hold	 that	 Hamilton’s	 greatest	 work	 was	 still	 to
come—the	creation	of	what	Hamilton	himself	considered	his	masterpiece
and	his	title	to	immortality,	his	theory	of	quaternions.	Leaving	quaternions
out	of	the	indictment	for	the	moment,	we	may	simply	state	that,	from	his
twenty	 seventh	 year	 till	his	death	at	 sixty,	 two	disasters	 raised	havoc	with
Hamilton’s	scientific	career,	marriage	and	alcohol.	The	second	was	partly,
but	not	wholly,	a	consequence	of	the	unfortunate	first.

After	 a	 second	 unhappy	 love	 affair,	 which	 ended	 with	 a	 thoughtless
remark	 that	 meant	 nothing	 but	 which	 the	 hypersensitive	 suitor	 took	 to
heart,	Hamilton	married	his	third	fancy,	Helen	Maria	Bayley,	in	the	spring
of	1833.	He	was	then	in	his	twenty	eighth	year.	The	bride	was	the	daughter
of	a	country	parson’s	widow.	Helen	was	“of	pleasing	ladylike	appearance,
and	 early	 made	 a	 favourable	 impression	 upon	 him	 [Hamilton]	 by	 her
truthful	 nature	 and	 by	 the	 religious	 principles	 which	 he	 knew	 her	 to
possess,	 although	 to	 these	 recommendations	 was	 not	 added	 any	 striking
beauty	of	face	or	force	of	intellect.”	Now,	any	fool	can	tell	the	truth,	and	if
truthfulness	 is	 all	 a	 fool	 has	 to	 recommend	 her,	 whoever	 commits
matrimony	 with	 her	 will	 get	 the	 short	 end	 of	 the	 indiscretion.	 In	 the
summer	of	1832	Miss	Bayley	“passed	through	a	dangerous	illness,	.	.	.	,	and
this	event	doubtless	drew	his	[the	lovelorn	Hamilton’s]	thoughts	especially
toward	her,	in	the	form	of	anxiety	for	her	recovery,	and,	coming	at	a	time
[when	 he	 had	 just	 broken	 with	 the	 girl	 he	 really	 wanted]	 when	 he	 felt
obliged	to	suppress	his	former	passion,	prepared	the	way	for	tenderer	and
warmer	 feelings.”	 Hamilton	 in	 short	 was	 properly	 hooked	 by	 an	 ailing
female	who	was	to	become	a	semi-invalid	for	the	rest	of	her	life	and	who,
either	 through	 incompetence	 or	 ill-health,	 let	 her	 husband’s	 slovenly
servants	 run	 his	 house	 as	 they	 chose,	 which	 at	 least	 in	 some	 quarters—
especially	 his	 study—came	 to	 resemble	 a	 pigsty.	 Hamilton	 needed	 a



sympathetic	woman	with	backbone	to	keep	him	and	his	domestic	affairs	in
some	semblance	of	order;	instead	he	got	a	weakling.

Ten	years	after	his	marriage	Hamilton	tried	to	pull	himself	up	short	on
the	 slippery	 trail	 he	 realized	 with	 a	 brutal	 shock	 he	 was	 treading.	 As	 a
young	man,	 feted	 and	 toasted	 at	 dinners,	 he	 had	 rather	 let	 himself	 go,
especially	 as	 his	 great	 gifts	 for	 eloquence	 and	 conviviality	 were	 naturally
enough	heightened	by	a	drink	or	two.	After	his	marriage,	irregular	meals
or	no	meals	at	all,	and	his	habit	of	working	twelve	or	fourteen	hours	at	a
stretch,	were	compensated	for	by	taking	nourishment	from	a	bottle.

It	 is	a	moot	question	whether	mathematical	 inventiveness	 is	accelerated
or	 retarded	by	moderate	 indulgence	 in	 alcohol,	 and	until	 an	 exhaustive
set	of	controlled	experiments	 is	carried	out	 to	settle	 the	matter,	 the	doubt
must	 remain	a	doubt,	precisely	as	 in	any	other	biological	 research.	 If,	 as
some	maintain,	poetic	and	mathematical	inventiveness	are	akin,	it	is	by	no
means	 obvious	 that	 reasonable	 alcoholic	 indulgence	 (if	 there	 is	 such	 a
thing)	is	destructive	of	mathematical	inventiveness;	in	fact	numerous	well-
attested	 instances	 would	 seem	 to	 indicate	 the	 contrary.	 In	 the	 case	 of
poets,	of	course,	“wine	and	song”	have	often	gone	together,	and	in	at	least
one	 instance—Swinburne—without	 the	 first	 the	 second	 dried	 up	 almost
completely.	 Mathematicians	 have	 frequently	 remarked	 on	 the	 terrific
strain	induced	by	prolonged	concentration	on	a	difficulty,	and	some	have
found	 the	 let-down	 occasioned	 by	 a	 drink	 a	 decided	 relief.	 But	 poor
Hamilton	quickly	passed	beyond	this	stage	and	became	careless,	not	only
in	 the	 untidy	 privacy	 of	 his	 study,	 but	 also	 in	 the	 glaring	 publicity	 of	 a
banquet	 hall.	 He	 got	 drunk	 at	 a	 scientific	 dinner.	 Realizing	 what	 had
overtaken	him,	he	resolved	never	to	touch	alcohol	again,	and	for	two	years
he	kept	his	 resolution.	Then,	during	a	 scientific	meeting	at	 the	estate	of
Lord	 Rosse	 (owner	 of	 the	 largest	 and	 most	 useless	 telescope	 then	 in
existence),	 his	 old	 rival,	 Airy,	 jeered	 at	 him	 for	 drinking	 nothing	 but
water.	 Hamilton	 gave	 in,	 and	 thereafter	 took	 all	 he	 wanted—which	 was
more	than	enough.	Still,	even	this	handicap	could	not	put	him	out	of	the
race,	although	without	 it	he	probably	would	have	gone	 farther	and	have
reached	a	greater	height	than	he	did.	However,	he	got	high	enough,	and
moralizing	may	be	left	to	moralists.

*		*		*



Before	considering	what	Hamilton	regarded	as	his	masterpiece,	we	may
briefly	 summarize	 the	principal	honors	which	came	his	way.	At	 thirty	he
held	an	influential	office	in	the	British	Association	for	the	Advancement	of
Science	at	its	Dublin	meeting,	and	at	the	same	time	the	Lord	Lieutenant
bade	him	to	“Kneel	down,	Professor	Hamilton,”	and	then,	having	dubbed
him	on	both	 shoulders	with	 the	 sword	of	 State,	 to	 “Rise	 up,	 Sir	William
Rowan	Hamilton.”	This	was	one	of	the	few	occasions	in	his	life	on	which
Hamilton	had	nothing	whatever	to	say.	At	thirty	two	he	became	President
of	the	Royal	Irish	Academy,	and	at	thirty	eight	was	awarded	a	Civil	List	life
pension	of	two	hundred	pounds	a	year	from	the	British	Government,	Sir
Robert	Peel,	Ireland’s	reluctant	friend,	being	then	Premier.	Shortly	before
this	Hamilton	had	made	his	capital	invention—quaternions.

An	honor	which	pleased	him	more	than	any	he	had	ever	received	was
the	last,	as	he	lay	on	his	deathbed:	he	was	elected	the	first	foreign	member
of	 the	 National	 Academy	 of	 Sciences	 of	 the	 United	 States,	 which	 was
founded	during	the	Civil	War.	This	honor	was	in	recognition	of	his	work
in	 quaternions,	 principally,	 which	 for	 some	unfathomable	 reason	 stirred
American	 mathematicians	 of	 the	 time	 (there	 were	 only	 one	 or	 two	 in
existence,	Benjamin	Peirce	of	Harvard	being	the	chief)	more	profoundly
than	 had	 any	 other	 British	 mathematics	 since	 Newton’s	 Principia.	 The
early	 popularity	 of	 quaternions	 in	 the	 United	 States	 is	 somewhat	 of	 a
mystery.	 Possibly	 the	 turgid	 eloquence	 of	 the	 Lectures	 on	 Quaternions
captivated	 the	 taste	 of	 a	 young	 and	 vigorous	 nation	 which	 had	 yet	 to
outgrow	 its	 morbid	 addiction	 to	 senatorial	 oratory	 and	 Fourth	 of	 July
verbal	fireworks.

*		*		*

Quaternions	has	too	long	a	history	for	the	whole	story	to	be	told	here.
Even	Gauss	with	his	anticipation	of	1817	was	not	the	first	in	the	field;	Euler
preceded	him	with	an	 isolated	result	which	 is	most	 simply	 interpreted	 in
terms	of	quaternions.	The	origin	of	quaternions	may	go	back	even	farther
than	this,	for	Augustus	de	Morgan	once	half-jokingly	offered	to	trace	their
history	 for	 Hamilton	 from	 the	 ancient	 Hindus	 to	 Queen	 Victoria.
However,	 we	 need	 glance	 here	 only	 at	 the	 lion’s	 share	 in	 the	 invention
and	consider	briefly	what	inspired	Hamilton.



The	 British	 school	 of	 algebraists,	 as	 will	 be	 seen	 in	 the	 chapter	 on
Boole,	 put	 common	 algebra	 on	 its	 own	 feet	 during	 the	 first	 half	 of	 the
nineteenth	 century.	 Anticipating	 the	 currently	 accepted	 procedure	 in
developing	 any	 branch	 of	 mathematics	 carefully	 and	 rigorously	 they
founded	 algebra	 postulationally.	 Before	 this,	 the	 various	 kinds	 of
“numbers”—fractions,	 negatives,	 irrationals—which	 enter	 mathematics
when	 it	 is	 assumed	 that	 all	 algebraic	 equations	 have	 roots,	 had	 been
allowed	to	function	on	precisely	the	same	footing	as	the	common	positive
integers	which	were	so	staled	by	custom	that	all	mathematicians	believed
them	 to	be	 “natural”	 and	 in	 some	 vague	 sense	 completely	understood—
they	are	not,	even	today,	as	will	be	seen	when	the	work	of	Georg	Cantor	is
discussed.	This	naîve	 faith	 in	 the	self-consistency	of	a	 system	founded	on
the	 blind,	 formal	 juggling	 of	 mathematical	 symbols	 may	 have	 been
sublime	 but	 it	 was	 also	 slightly	 idiotic.	 The	 climax	 of	 this	 credulity	 was
reached	 in	 the	 notorious	 principle	 of	 permanence	 of	 form,	 which	 stated	 in
effect	 that	 a	 set	 of	 rules	 which	 yield	 consistent	 results	 for	 one	 kind	 of
numbers—say	 the	 positive	 integers—will	 continue	 to	 yield	 consistency
when	 applied	 to	 any	 other	 kind—say	 the	 imaginaries—even	 when	 no
interpretation	of	the	results	is	evident.	It	does	not	seem	surprising	that	this
faith	in	the	integrity	of	meaningless	symbols	frequently	led	to	absurdity.

The	British	school	changed	all	this,	although	they	were	unable	to	take
the	final	step	and	prove	that	their	postulates	for	common	algebra	will	never
lead	to	a	contradiction.	That	step	was	taken	only	in	our	own	generation	by
the	 German	 workers	 in	 the	 foundations	 of	 mathematics.	 In	 this
connection	 it	 must	 be	 kept	 in	 mind	 that	 algebra	 deals	 only	 with	 finite
processes;	 when	 infinite	 processes	 enter,	 as	 for	 example	 in	 summing	 an
infinite	 series,	we	are	 thrust	out	of	 algebra	 into	another	domain.	This	 is
emphasized	because	the	usual	elementary	text	labelled	“Algebra”	contains
a	 great	 deal—infinite	 geometric	 progressions,	 for	 instance—that	 is	 not
algebra	in	the	modern	meaning	of	the	word.

The	 nature	 of	 what	 Hamilton	 did	 in	 his	 creation	 of	 quaternions	 will
show	up	more	clearly	against	the	background	of	a	set	of	postulates	(taken
from	 L.	 E.	 Dickson’s	 Algebras	 and	 Their	 Arithmetics,	 Chicago,	 1923)	 for
common	 algebra	 or,	 as	 it	 is	 technically	 called,	 a	 field	 (English	 writers
sometimes	 use	 corpus	 as	 the	 equivalent	 of	 the	German	Körper	 or	 French
corps).



“A	field	F	is	a	system	consisting	of	a	set	S	of	elements	a,	b,	c,	.	.	.	and	two
operations,	 called	 addition	 and	multiplication	 which	may	 be	 performed
upon	 any	 two	 (equal	 or	 distinct)	 elements	 a	 and	 b	 of	 S,	 taken	 in	 that
order,	 to	 produce	uniquely	 determined	 elements	a	⊕	b	 and	a	⊙	 b	 of	 S,
such	that	postulates	I-V	are	satisfied.	For	simplicity	we	shall	write	a	+	b	for	a
⊕	b,	and	ab	for	a	⊙	b,	and	call	them	the	sum	and	product,	respectively,	of	a
and	b.	Moreover,	elements	of	S	will	be	called	elements	of	F.

“I.	 If	 a	 and	 b	 are	 any	 two	 elements	 of	 F,	 a	 +	 b	 and	 ab	 are	 uniquely
determined	elements	of	F,	and

b	+	a	=	a	+	b,	ba	=	ab.

“II.	If	a,	b,	c	are	any	three	elements	of	F,

(a	+	b)	+	c	=	a	+	(b	+	c),	(ab)c	=	a(bc),	a(b	+	c)	=	ab	+	ac.

“III.	There	exist	in	F	two	distinct	elements,	denoted	by	0,	1,	such	that	if
a	is	any	element	of	F,	a	+	0	=	a,	a1	=	a	(whence	0	+	a	=	a,	1a	=	a,	by	I).

“IV.	Whatever	be	the	element	a	of	F,	there	exists	in	Fan	element	x	such
that	a	+	x	=	0	(whence	x	+	a	=	0	by	I).

“V.	Whatever	be	the	element	a	(distinct	from	0)	of	F,	there	exists	in	F	an
element	y	such	that	ay	=	1	(whence	=	ya,	by	I).”

From	these	simple	postulates	the	whole	of	common	algebra	follows.	A
word	or	 two	 about	 some	of	 the	 statements	may	be	helpful	 to	 those	who
have	not	seen	algebra	for	years.	In	II,	the	statement	(a	+	b)	+	c	=	a	+	(b	+	c),
called	the	associative	law	of	addition,	says	that	if	a	and	b	are	added,	and	to
this	sum	is	added	c,	the	result	is	the	same	as	if	a	and	the	sum	of	b	and	c	are
added.	Similarly,	with	respect	to	multiplication,	for	the	second	statement
in	II.	The	third	statement	in	II	is	called	the	distributive	law.	In	III	a	“zero”
and	“unity”	are	postulated;	in	IV,	the	postulated	x	gives	the	negative	of	a;
and	 the	 first	 parenthetical	 remark	 in	 V	 forbids	 “division	 by	 zero.”	 The
demands	 in	 Postulate	 I	 are	 called	 the	 commutative	 laws	 of	 addition	 and
multiplication	respectively.

Such	a	set	of	postulates	may	be	regarded	as	a	distillation	of	experience.
Centuries	of	working	with	numbers	and	getting	useful	results	according	to
the	 rules	 of	 arithmetic—empirically	 arrived	 at—suggested	 most	 of	 the
rules	 embodied	 in	 these	 precise	 postulates,	 but	 once	 the	 suggestions	 of
experience	 are	 understood,	 the	 interpretation	 (here	 common	 arithmetic)



furnished	by	 experience	 is	deliberately	 suppressed	or	 forgotten,	 and	 the
system	defined	by	 the	postulates	 is	developed	abstractly,	on	 its	own	merits,
by	common	logic	plus	mathematical	tact.

Notice	in	particular	IV,	which	postulates	the	existence	of	negatives.	We	do
not	 attempt	 to	 deduce	 the	 existence	 of	 negatives	 from	 the	 behavior	 of
positives.	 When	 negative	 numbers	 first	 appeared	 in	 experience,	 as	 in
debits	 instead	 of	 credits,	 they,	 as	 numbers,	 were	 held	 in	 the	 same
abhorrence	 as	 “unnatural”	 monstrosities	 as	 were	 later	 the	 “imaginary”
numbers	 	 etc.,	 arising	 from	 the	 formal	 solution	 of	 equations
such	as	x2	 +	1	=	0,	x2	 +	2	=	0,	etc.	 If	 the	 reader	will	glance	back	at	what
Gauss	 did	 for	 complex	 numbers	 he	 will	 appreciate	 more	 fully	 the
complete	 simplicity	 of	 the	 following	 partial	 statement	 of	 Hamilton’s
original	 way	 of	 stripping	 “imaginaries”	 of	 their	 silly,	 purely	 imaginary
mystery.	This	simple	thing	was	one	of	the	steps	which	led	Hamilton	to	his
quaternions,	 although	 strictly	 it	 has	 nothing	 to	 do	 with	 them.	 It	 is	 the
method	and	the	point	of	view	behind	this	ingenious	recasting	of	the	algebra
of	complex	numbers	which	are	of	importance	for	the	sequel.

If	as	usual	i	denotes	 ,	a	“complex	number”	is	a	number	of	the	type
a	+	bi,	where	a,	b	are	“real	numbers”	or,	if	preferred,	and	more	generally,
elements	 of	 the	 field	 F	 defined	 by	 the	 above	 postulates.	 Instead	 of
regarding	 a	 +	 bi	 as	 one	 “number,”	 Hamilton	 conceived	 it	 as	 an	 ordered
couple	of	“numbers,”	and	he	designated	this	couple	by	writing	it	(a,	b).	He
then	proceeded	to	impose	definitions	of	sum	and	product	on	these	couples,
as	 suggested	 by	 the	 formal	 rules	 of	 combination	 sublimated	 from	 the
experience	of	algebraists	in	manipulating	complex	numbers	as	if	the	laws
of	common	algebra	did	in	fact	hold	for	them.	One	advantage	of	this	new
way	 of	 approaching	 complex	 numbers	 was	 this:	 the	 definitions	 for	 sum
and	product	of	couples	were	 seen	 to	be	 instances	of	 the	general,	abstract
definitions	of	sum	and	product	as	 in	a	field.	Hence,	 if	 the	consistency	of
the	system	defined	by	the	postulates	for	a	field	is	proved,	the	like	follows,
without	further	proof,	for	complex	numbers	and	the	usual	rules	by	which
they	are	combined.	It	will	be	sufficient	to	state	the	definitions	of	sum	and
product	in	Hamilton’s	theory	of	complex	numbers	considered	as	couples
(a,	b)	(c,	d),	etc.

The	sum	of	(a,	b)	and	(c,	d)	is	(a	+	b,	c	+	d);	their	product	is	(ac	–	bd,	ad	+
be).	 In	 the	 last,	 the	 minus	 sign	 is	 as	 in	 a	 field;	 namely,	 the	 element	 x
postulated	in	IV	is	denoted	by	–	a.	To	the	0,	1	of	a	field	correspond	here



the	 couples	 (0,	 0),	 (1,	 0).	With	 these	 definitions	 it	 is	 easily	 verified	 that
Hamilton’s	couples	satisfy	all	the	stated	postulates	for	a	field.	But	they	also
accord	with	the	formal	rules	for	manipulating	complex	numbers.	Thus,	to
(a,	b),	(c,	d)	-correspond	respectively	a	+	bi,	c	+	di,	and	the	formal	“sum”	of
these	two	is	(a	+	c)	+	i(b	+	d),	to	which	corresponds	the	couple	(a	+	c,	b	+	d).
Again,	formal	multiplication	of	a	+	bi,	c	+	id	gives	(ac	–	bd)	+	i(ad	+	be),	 to
which	corresponds	the	couple	(ac	–	bd,	ad	+	be).	If	this	sort	of	thing	is	new
to	any	reader,	it	will	repay	a	second	inspection,	as	it	is	an	example	of	the
way	in	which	modern	mathematics	eliminates	mystery.	So	long	as	there	is	a
shred	 of	 mystery	 attached	 to	 any	 concept	 that	 concept	 is	 not
mathematical.

Having	 disposed	 of	 complex	 numbers	 by	 couples,	 Hamilton	 sought	 to
extend	his	device	to	ordered	 triples	and	quadruples.	Without	some	idea	of
what	 is	 sought	 to	 be	 accomplished	 such	 an	 undertaking	 is	 of	 course	 so
vague	 as	 to	 be	meaningless.	 Hamilton’s	 object	 was	 to	 invent	 an	 algebra
which	would	do	 for	 rotations	 in	 space	of	 three	 dimensions	what	 complex
numbers,	or	his	couples,	do	for	rotations	in	space	of	two	dimensions,	both
spaces	 being	 Euclidean	 as	 in	 elementary	 geometry.	 Now,	 a	 complex
number	a	 +	 bi	 can	 be	 thought	 of	 as	 representing	 a	 vector,	 that	 is,	 a	 line
segment	having	both	length	and	direction,	as	is	evident	from	the	diagram,	in
which	the	directed	segment	(indicated	by	the	arrow)	represents	the	vector
OP.



But	 on	 attempting	 to	 symbolize	 the	 behavior	 of	 vectors	 in	 three
dimensional	space	so	as	to	preserve	those	properties	of	vectors	which	are
of	use	 in	physics,	 particularly	 in	 the	 combination	of	 rotations,	Hamilton
was	held	up	for	years	by	an	unforeseen	difficulty	whose	very	nature	he	for
long	did	not	even	suspect.	We	may	glance	in	passing	at	one	of	the	clues	he
followed.	 That	 this	 led	 him	 anywhere—as	 he	 insisted	 it	 did—is	 all	 the
more	remarkable	as	it	is	now	almost	universally	regarded	as	an	absurdity,
or	at	best	a	metaphysical	 speculation	without	 foundation	 in	history	or	 in
mathematical	experience.

Objecting	 to	 the	 purely	 abstract,	 postulational	 formulation	 of	 algebra
advocated	 by	 his	 British	 contemporaries,	 Hamilton	 sought	 to	 found
algebra	 on	 something	 “more	 real,”	 and	 for	 this	 strictly	 meaningless
enterprise	 he	 drew	 on	 his	 knowledge	 of	 Kant’s	 mistaken	 notions—
exploded	by	the	creation	of	non-Euclidean	geometry—of	space	as	“a	pure
form	of	 sensuous	 intuition.”	 Indeed	Hamilton,	 who	 seems	 to	 have	 been
unacquainted	 with	 non-Euclidean	 geometry,	 followed	 Kant	 in	 believing
that	“Time	and	space	are	two	sources	of	knowledge	from	which	various	a
priori	 synthetical	 cognitions	 can	 be	 derived.	 Of	 this,	 pure	 mathematics
gives	 a	 splendid	 example	 in	 the	 case	 of	 our	 cognition	 of	 space	 and	 its
various	relations.	As	they	are	both	pure	forms	of	sensuous	intuition,	they
render	synthetic	propositions	a	priori	possible.”	Of	course	any	not	utterly
illiterate	 mathematician	 today	 knows	 that	 Kant	 was	 mistaken	 in	 this
conception	of	mathematics,	but	in	the	1840’s,	when	Hamilton	was	on	his
way	 to	 quaternions,	 the	 Kantian	 philosophy	 of	 mathematics	 still	 made
sense	 to	 those—and	 they	 were	 nearly	 all—who	 had	 never	 heard	 of
Lobatchewsky.	 By	 what	 looks	 like	 a	 bad	 mathematical	 pun,	 Hamilton
applied	 the	 Kantian	 doctrine	 to	 algebra	 and	 drew	 the	 remarkable
conclusion	that,	since	geometry	is	the	science	of	space,	and	since	time	and
space	 are	 “pure	 sensuous	 forms	 of	 intuition,”	 therefore	 the	 rest	 of
mathematics	must	belong	to	time,	and	he	wasted	much	of	his	own	time	in
elaborating	the	bizarre	doctrine	that	algebra	is	the	science	of	pure	time.

This	 queer	 crotchet	 has	 attracted	 many	 philosophers,	 and	 quite
recently	 it	 has	 been	 exhumed	 and	 solemnly	 dissected	 by	 owlish
metaphysicians	 seeking	 the	 philosopher’s	 stone	 in	 the	 gall	 bladder	 of
mathematics.	 Just	because	 “algebra	 as	 the	 science	of	pure	 time”	 is	of	no
earthly	 mathematical	 significance,	 it	 will	 continue	 to	 be	 discussed	 with
animation	 till	 time	 itself	ends.	The	opinion	of	a	great	mathematician	on



the	 “pure	 time”	 aspect	 of	 algebra	 may	 be	 of	 interest.	 “I	 cannot	 myself
recognize	 the	 connection	 of	 algebra	 with	 the	 notion	 of	 time,”	 Cayley
confessed;	 “granting	 that	 the	 notion	 of	 continuous	 progression	 presents
itself	 and	 is	 of	 importance,	 I	 do	 not	 see	 that	 it	 is	 in	 anywise	 the
fundamental	notion	of	the	science.”

Hamilton’s	difficulties	 in	 trying	to	construct	an	algebra	of	vectors	and
rotations	 for	 three-dimensional	 space	 were	 rooted	 in	 his	 subconscious
conviction	that	 the	most	 important	 laws	of	common	algebra	must	persist
in	 the	 algebra	 he	 was	 seeking.	 How	 were	 vectors	 in	 three-dimensional
space	to	be	multiplied	together?

To	sense	the	difficulty	of	the	problem	it	is	essential	to	bear	in	mind	(see
Chapter	on	Gauss)	that	ordinary	complex	numbers	a	+	bi	(i	=	 )	had	been
given	a	 simple	 interpretation	 in	 terms	of	 rotations	 in	a	plane,	 and	 further
that	 complex	 numbers	 obey	 all	 the	 rules	 of	 common	 algebra,	 in	 particular	 the
commutative	law	of	multiplication:	if	A,	B	are	any	complex	numbers,	then	A	×
B	=	B	×	A,	whether	A,	B	are	interpreted	algebraically,	or	in	terms	of	rotations	in
a	plane.	 It	was	but	human	then	to	anticipate	that	 the	 same	commutative	 law
would	 hold	 for	 the	 generalizations	 of	 complex	 numbers	 which	 represent
rotations	in	space	of	three	dimensions.

Hamilton’s	 great	discovery—or	 invention—was	 an	 algebra,	one	of	 the
“natural”	algebras	of	rotations	in	space	of	three	dimensions,	in	which	the
commutative	 law	 of	 multiplication	 does	 not	 hold.	 In	 this	 Hamiltonian
algebra	of	quaternions	(as	he	called	his	invention),	a	multiplication	appears
in	which	A	×	B	is	not	equal	to	B	×	A	but	to	minus	B	×	A,	that	is,	A	×	B	=	-B	×
A.

That	 a	 consistent,	 practically	 useful	 system	 of	 algebra	 could	 be
constructed	 in	 defiance	 of	 the	 commutative	 law	 of	 multiplication	 was	 a
discovery	 of	 the	 first	 order,	 comparable,	 perhaps,	 to	 the	 conception	 of
non-Euclidean	 geometry.	 Hamilton	 himself	 was	 so	 impressed	 by	 the
magnitude	 of	 what	 suddenly	 dawned	 on	his	mind	 (after	 fifteen	 years	 of
fruitless	thought)	one	day	(October	16,	1843)	when	he	was	out	walking	with
his	wife	that	he	carved	the	fundamental	formulas	of	the	new	algebra	in	the
stone	of	the	bridge	on	which	he	found	himself	at	the	moment.	His	great
invention	 showed	 algebraists	 the	 way	 to	 other	 algebras	 until	 today,
following	 Hamilton’s	 lead,	 mathematicians	 manufacture	 algebras
practically	at	will	by	negating	one	or	more	of	the	postulates	for	a	field	and
developing	 the	 consequences.	 Some	 of	 these	 “algebras”	 are	 extremely



useful;	the	general	theories	embracing	swarms	of	them	include	Hamilton’s
great	invention	as	a	mere	detail,	although	a	highly	important	one.

In	 line	 with	 Hamilton’s	 quaternions	 the	 numerous	 brands	 of	 vector
analysis	favored	by	physicists	of	the	past	two	generations	sprang	into	being.
Today	all	of	these,	 including	quaternions,	so	 far	as	physical	applications	are
concerned,	 are	 being	 swept	 aside	 by	 the	 incomparably	 simpler	 and	more
general	tensor	analysis	which	came	into	vogue	with	general	relativity	in	1915.
Something	will	be	said	about	this	later.

In	 the	 meantime	 it	 is	 sufficient	 to	 remark	 that	 Hamilton’s	 deepest
tragedy	 was	 neither	 alcohol	 nor	 marriage	 but	 his	 obstinate	 belief	 that
quaternions	 held	 the	 key	 to	 the	 mathematics	 of	 the	 physical	 universe.
History	 has	 shown	 that	 Hamilton	 tragically	 deceived	 himself	 when	 he
insisted	“.	 .	 .	 I	 still	must	assert	 that	 this	discovery	appears	 to	me	 to	be	as
important	 for	 the	middle	 of	 the	 nineteenth	 century	 as	 the	 discovery	 of
fluxions	[the	calculus]	was	for	the	close	of	the	seventeenth.”	Never	was	a
great	mathematician	so	hopelessly	wrong.

*		*		*

The	 last	 twenty	 two	 years	 of	 Hamilton’s	 life	 were	 devoted	 almost
exclusively	 to	 the	elaboration	of	quaternions,	 including	 their	application
to	dynamics,	astronomy,	and	the	wave	theory	of	light,	and	his	voluminous
correspondence.	 The	 style	 of	 the	 overdeveloped	 Elements	 of	 Quaternions,
published	the	year	after	Hamilton’s	death,	shows	plainly	the	effects	of	the
author’s	mode	of	life.	After	his	death	from	gout	on	September	2,	1865	in
the	sixty	first	year	of	his	age,	it	was	found	that	Hamilton	had	left	behind	a
mass	 of	 papers	 in	 indescribable	 confusion	 and	 about	 sixty	 huge
manuscript	books	full	of	mathematics.	An	adequate	edition	of	his	works	is
now	 in	 progress.	 The	 state	 of	 his	 papers	 testified	 to	 the	 domestic
difficulties	 under	 which	 the	 last	 third	 of	 his	 life	 had	 been	 lived:
innumerable	 dinner	 plates	 with	 the	 remains	 of	 desiccated,	 unviolated
chops	were	found	buried	in	the	mountainous	piles	of	papers,	and	dishes
enough	 to	 supply	 a	 large	 household	 were	 dug	 out	 from	 the	 confusion.
During	 his	 last	 period	 Hamilton	 lived	 as	 a	 recluse,	 ignoring	 the	 meals
shoved	 at	 him	 as	 he	 worked,	 obsessed	 by	 the	 dream	 that	 the	 last
tremendous	 effort	 of	 his	 magnificent	 genius	 would	 immortalize	 both
himself	 and	 his	 beloved	 Ireland,	 and	 stand	 forever	 unshaken	 as	 the



greatest	 mathematical	 contribution	 to	 science	 since	 the	 Principia	 of
Newton.

His	early	work,	on	which	his	imperishable	glory	rests,	he	came	to	regard
as	a	thing	of	but	little	moment	in	the	shadow	of	what	he	believed	was	his
masterpiece.	To	 the	end	he	was	humble	and	devout,	and	wholly	without
anxiety	 for	his	 scientific	 reputation.	 “I	have	 very	 long	admired	Ptolemy’s
description	 of	 his	 great	 astronomical	 master,	 Hipparchus,	 as	

	 a	 labor-loving	 and	 truth-loving	 man.	 Be
such	my	epitaph.”

I.	The	date	on	his	 tombstone	 is	August	 4,	 1805.	Actually	he	was	born	 at	midnight;	hence	 the
confusion	in	dates.	Hamilton,	who	had	a	passion	for	accuracy	in	such	trifles,	chose	August	3rd	until
in	later	life	he	shifted	to	August	4th	for	sentimental	reasons.



CHAPTER	TWENTY

Genius	and	Stupidity

GALOIS

Against	stupidity	the	gods	themselves	fight	unvictorious.—SCHILLER

ABEL	WAS	DONE	TO	DEATH	by	poverty,	Galois	by	stupidity.	In	all	the	history	of
science	 there	 is	 no	 completer	 example	 of	 the	 triumph	of	 crass	 stupidity
over	untamable	genius	than	is	afforded	by	the	all	too	brief	life	of	Évariste
Galois.	 The	 record	 of	 his	 misfortunes	 might	 well	 stand	 as	 a	 sinister
monument	 to	 all	 self-assured	 pedagogues,	 unscrupulous	 politicians,	 and
conceited	 academicians.	 Galois	 was	 no	 “ineffectual	 angel,”	 but	 even	 his
magnificent	 powers	 were	 shattered	 before	 the	 massed	 stupidity	 aligned
against	him,	and	he	beat	his	life	out	fighting	one	unconquerable	fool	after
another.

The	first	eleven	years	of	Galois’	life	were	happy.	His	parents	lived	in	the
little	village	of	Bourg-la-Reine,	just	outside	Paris,	where	Évariste	was	born
on	October	25,	1811.	Nicolas-Gabriel	Galois,	 the	father	of	Évariste,	was	a
relic	 of	 the	 eighteenth	 century,	 cultivated,	 intellectual,	 saturated	 with
philosophy,	 a	 passionate	 hater	 of	 royalty	 and	 an	 ardent	 lover	 of	 liberty.
During	the	Hundred	Days	after	Napoleon’s	escape	from	Elba,	Galois	was
elected	 mayor	 of	 the	 village.	 After	 Waterloo	 he	 retained	 his	 office	 and
served	 faithfully	 under	 the	 King,	 backing	 the	 villagers	 against	 the	 priest
and	delighting	social	gatherings	with	 the	old-fashioned	rhymes	which	he
composed	 himself.	 These	 harmless	 activities	 were	 later	 to	 prove	 the
amiable	 man’s	 undoing.	 From	 his	 father,	 Évariste	 acquired	 the	 trick	 of
rhyming	and	a	hatred	of	tyranny	and	baseness.

Until	the	age	of	twelve	Galois	had	no	teacher	but	his	mother,	Adélaïde-
Marie	Demante.	 Several	 of	 the	 traits	 of	Galois’	 character	were	 inherited
from	his	mother,	who	came	from	a	long	line	of	distinguished	jurists.	Her
father	appears	to	have	been	somewhat	of	a	Tartar.	He	gave	his	daughter	a



thorough	classical	and	religious	education,	which	she	in	turn	passed	on	to
her	eldest	son,	not	as	she	had	received	it,	but	fused	into	a	virile	stoicism	in
her	 own	 independent	mind.	 She	 had	 not	 rejected	Christianity,	 nor	 had
she	accepted	it	without	question;	she	had	merely	contrasted	its	teachings
with	those	of	Seneca	and	Cicero,	reducing	all	to	their	basic	morality.	Her
friends	 remembered	her	as	a	woman	of	 strong	character	with	a	mind	of
her	 own,	 generous,	 with	 a	 marked	 vein	 of	 originality,	 quizzical,	 and,	 at
times,	 inclined	 to	 be	 paradoxical.	 She	 died	 in	 1872	 at	 the	 age	 of	 eighty
four.	 To	 the	 last	 she	 retained	 the	 full	 vigor	 of	 her	mind.	 She,	 like	 her
husband,	hated	tyranny.

There	 is	 no	 record	 of	 mathematical	 talent	 on	 either	 side	 of	 Galois’
family.	 His	 own	 mathematical	 genius	 came	 on	 him	 like	 an	 explosion,
probably	 at	 early	 adolescence.	As	 a	 child	 he	was	 affectionate	 and	 rather
serious,	 although	 he	 entered	 readily	 enough	 into	 the	 gaiety	 of	 the
recurrent	celebrations	in	his	father’s	honor,	even	composing	rhymes	and
dialogues	to	entertain	the	guests.	All	this	changed	under	the	first	stings	of
petty	persecution	and	stupid	misunderstanding,	not	by	his	parents,	but	by
his	teachers.

In	1823,	at	the	age	of	twelve,	Galois	entered	the	lycée	of	Louis-le-Grand
in	Paris.	It	was	his	first	school.	The	place	was	a	dismal	horror.	Barred	and
grilled,	 and	dominated	by	 a	provisor	who	was	more	of	 a	 political	 gaoler
than	a	 teacher,	 the	place	 looked	 like	a	prison,	and	 it	was.	The	France	of
1823	 still	 remembered	 the	 Revolution.	 It	 was	 a	 time	 of	 plots	 and
counterplots,	of	riots	and	rumors	of	revolution.	All	this	was	echoed	in	the
school.	Suspecting	the	provisor	of	scheming	to	bring	back	the	Jesuits,	the
students	struck,	refusing	to	chant	in	chapel.	Without	even	notifying	their
parents	 the	provisor	 expelled	 those	whom	he	 thought	most	 guilty.	They
found	themselves	 in	the	street.	Galois	was	not	among	them,	but	 it	would
have	been	better	for	him	if	he	had	been.

Till	now	 tyranny	had	been	a	mere	word	 to	 the	boy	of	 twelve.	Now	he
saw	it	 in	action,	and	the	experience	warped	one	side	of	his	character	for
life.	 He	 was	 shocked	 into	 unappeasable	 rage.	 His	 studies,	 owing	 to	 his
mother’s	excellent	 instruction	 in	 the	classics,	went	 very	well	 and	he	won
prizes.	But	he	had	also	gained	something	more	lasting	than	any	prize,	the
stubborn	 conviction,	 right	 or	 wrong,	 that	 neither	 fear	 nor	 the	 utmost
severity	of	discipline	can	extinguish	the	sense	of	justice	and	fair	dealing	in
young	minds	 experiencing	 their	 first	 unselfish	 devotion.	 This	 his	 fellow



students	 had	 taught	 him	 by	 their	 courage.	 Galois	 never	 forgot	 their
example.	He	was	too	young	not	to	be	embittered.

The	following	year	marked	another	crisis	in	the	young	boy’s	life.	Docile
interest	 in	 literature	 and	 the	 classics	 gave	 way	 to	 boredom;	 his
mathematical	genius	was	already	stirring.	His	teachers	advised	that	he	be
demoted.	 Évariste’s	 father	 objected,	 and	 the	 boy	 continued	 with	 his
interminable	 exercises	 in	 rhetoric,	 Latin,	 and	 Greek.	 His	 work	 was
reported	as	mediocre,	his	conduct	“dissipated,”	and	the	teachers	had	their
way.	Galois	was	demoted.	He	was	forced	to	lick	up	the	stale	leavings	which
his	genius	had	rejected.	Bored	and	disgusted	he	gave	his	work	perfunctory
attention	and	passed	it	without	effort	or	interest.	Mathematics	was	taught
more	or	 less	 as	 an	 aside	 to	 the	 serious	business	 of	digesting	 the	 classics,
and	 the	 pupils	 of	 various	 grades	 and	 assorted	 ages	 took	 the	 elementary
mathematical	course	at	the	convenience	of	their	other	studies.

It	was	during	this	year	of	acute	boredom	that	Galois	began	mathematics
in	the	regular	school	course.	The	splendid	geometry	of	Legendre	came	his
way.	It	is	said	that	two	years	was	the	usual	time	required	by	even	the	better
mathematicians	 among	 the	 boys	 to	 master	 Legendre.	 Galois	 read	 the
geometry	 from	 cover	 to	 cover	 as	 easily	 as	 other	 boys	 read	 a	 pirate	 yarn.
The	book	 aroused	his	 enthusiasm;	 it	was	no	 textbook	written	by	 a	hack,
but	a	work	of	art	composed	by	a	creative	mathematician.	A	single	reading
sufficed	 to	 reveal	 the	 whole	 structure	 of	 elementary	 geometry	 in	 crystal
clarity	to	the	fascinated	boy.	He	had	mastered	it.

His	reaction	to	algebra	is	illuminating.	It	disgusted	him,	and	for	a	very
good	reason	when	we	consider	what	sort	of	mind	Galois	had.	Here	was	no
master	like	Legendre	to	inspire	him.	The	text	in	algebra	was	a	schoolbook
and	 nothing	 more.	 Galois	 contemptuously	 tossed	 it	 aside.	 It	 lacked,	 he
said,	 the	 creator’s	 touch	 that	 only	 a	 creative	 mathematician	 can	 give.
Having	made	 the	 acquaintance	 of	 one	 great	mathematician	 through	his
work,	 Galois	 took	 matters	 into	 his	 own	 hands.	 Ignoring	 the	 meticulous
pettifogging	 of	 his	 teacher,	 Galois	 went	 directly	 for	 his	 algebra	 to	 the
greatest	 master	 of	 the	 age,	 Lagrange.	 Later	 he	 read	 Abel.	 The	 boy	 of
fourteen	or	fifteen	absorbed	masterpieces	of	algebraical	analysis	addressed
to	mature	 professional	mathematicians—the	memoirs	 on	 the	 numerical
solution	of	equations,	the	theory	of	analytical	functions,	and	the	calculus
of	functions.	His	class	work	in	mathematics	was	mediocre:	the	traditional



course	 was	 trivial	 to	 a	 mathematical	 genius	 and	 not	 necessary	 for	 the
mastering	of	real	mathematics.

Galois’	 peculiar	 gift	 of	 being	 able	 to	 carry	 on	 the	 most	 difficult
mathematical	 investigations	 almost	 entirely	 in	 his	 head	helped	him	with
neither	 teachers	 nor	 examiners.	 Their	 insistence	 upon	 details	 which	 to
him	were	 obvious	 or	 trivial	 exasperated	 him	beyond	 endurance,	 and	he
frequently	 lost	 his	 temper.	 Nevertheless	 he	 carried	 off	 the	 prize	 in	 the
general	 examination.	 To	 the	 amazement	 of	 teachers	 and	 students	 alike
Galois	 had	 taken	 his	 own	 kingdom	 by	 assault	 while	 their	 backs	 were
turned.

With	 this	 first	 realization	 of	 his	 tremendous	 power,	 Galois’	 character
underwent	a	profound	change.	Knowing	his	kinship	to	the	great	masters
of	algebraical	analysis	he	felt	an	immense	pride	and	longed	to	rush	on	to
the	 front	 rank	 to	 match	 his	 strength	 with	 theirs.	 His	 family—even	 his
unconventional	mother—found	him	strange.	At	school	he	seems	to	have
inspired	a	curious	mixture	of	fear	and	anger	in	the	minds	of	his	teachers
and	 fellow	 students.	 His	 teachers	 were	 good	men	 and	 patient,	 but	 they
were	 stupid,	 and	 to	 Galois	 stupidity	 was	 the	 unpardonable	 sin.	 At	 the
beginning	 of	 the	 year	 they	 had	 reported	 him	 as	 “very	 gentle,	 full	 of
innocence	and	good	qualities,	but—”	And	they	went	on	to	say	that	“there	is
something	strange	about	him.”	No	doubt	there	was.	The	boy	had	unusual
brains.	A	little	later	they	admit	that	he	is	not	“wicked,”	but	merely	“original
and	queer,”	“argumentative,”	and	they	complain	that	he	delights	to	tease
his	comrades.	All	very	reprehensible,	no	doubt,	but	they	might	have	used
their	eyes.	The	boy	had	discovered	mathematics	and	he	was	already	being
driven	by	his	daemon.	By	the	end	of	the	year	of	awakening	we	learn	that
“his	 queerness	 has	 alienated	 him	 from	 all	 his	 companions,”	 and	 his
teachers	observe	 “something	 secret	 in	his	 character.”	Worse,	 they	 accuse
him	of	“affecting	ambition	and	originality.”	But	it	is	admitted	by	some	that
Galois	 is	 good	 in	 mathematics.	 His	 rhetoric	 teachers	 indulge	 in	 a	 little
classical	 sarcasm:	 “His	 cleverness	 is	now	a	 legend	 that	we	cannot	 credit.”
They	 rail	 that	 there	 is	 only	 slovenliness	 and	 eccentricity	 in	 his	 assigned
tasks—when	he	deigns	to	pay	any	attention	to	them—and	that	he	goes	out
of	his	way	 to	weary	his	 teachers	 by	 incessant	 “dissipation.”	The	 last	 does
not	refer	to	vice,	because	Galois	had	no	viciousness	in	him.	It	is	merely	a
strong	word	to	describe	the	heinous	inability	of	a	mathematical	genius	of



the	 first	 rank	 to	 squander	 his	 intellect	 on	 the	 futilities	 of	 rhetoric	 as
expounded	by	pedants.

One	man,	to	the	everlasting	credit	of	his	pedagogical	insight,	declared
that	Galois	was	as	able	in	literary	studies	as	he	was	in	mathematics.	Galois
appears	to	have	been	touched	by	this	man’s	kindness.	He	promised	to	give
rhetoric	a	chance.	But	his	mathematical	devil	was	now	 fully	aroused	and
raging	 to	 get	 out,	 and	 poor	 Galois	 fell	 from	 grace.	 In	 a	 short	 time	 the
dissenting	 teacher	 joined	 the	 majority	 and	 made	 the	 vote	 unanimous.
Galois,	 he	 sadly	 admitted,	 was	 beyond	 salvation,	 “conceited,	 with	 an
insufferable	 affectation	 of	 originality.”	 But	 the	 pedagogue	 redeemed
himself	 by	 one	 excellent,	 exasperated	 suggestion.	Had	 it	 been	 followed,
Galois	might	have	lived	to	eighty.	“The	mathematical	madness	dominates
this	boy.	I	think	his	parents	had	better	let	him	take	only	mathematics.	He
is	wasting	his	time	here,	and	all	he	does	is	to	torment	his	teachers	and	get
into	trouble.”

At	the	age	of	sixteen	Galois	made	a	curious	mistake.	Unaware	that	Abel
at	the	beginning	of	his	career	had	convinced	himself	that	he	had	done	the
impossible	and	had	solved	the	general	equation	of	the	fifth	degree,	Galois
repeated	 the	error.	For	a	 time—a	very	 short	 time,	however—he	believed
that	 he	 had	 done	 what	 cannot	 be	 done.	 This	 is	 merely	 one	 of	 several
extraordinary	similarities	in	the	careers	of	Abel	and	Galois.

While	Galois	at	the	age	of	sixteen	was	already	well	started	on	his	career
of	 fundamental	 discovery,	 his	 mathematical	 teacher—Vernier—kept
fussing	over	him	like	a	hen	that	has	hatched	an	eaglet	and	does	not	know
how	to	keep	the	unruly	creature’s	 feet	on	the	good	dirt	of	the	barnyard.
Vernier	 implored	 Galois	 to	 work	 systematically.	 The	 advice	 was	 ignored
and	 Galois,	 without	 preparation,	 took	 the	 competitive	 examinations	 for
entrance	 to	 the	 École	 Polytechnique.	 This	 great	 school,	 the	 mother	 of
French	mathematicians,	founded	during	the	French	Revolution	(some	say
by	 Monge),	 to	 give	 civil	 and	 military	 engineers	 the	 best	 scientific	 and
mathematical	education	available	anywhere	 in	 the	world,	made	a	double
appeal	 to	 the	 ambitious	 Galois.	 At	 the	 Polytechnique	 his	 mathematical
talent	would	be	recognized	and	encouraged	to	the	utmost.	And	his	craving
for	liberty	and	freedom	of	utterance	would	be	gratified;	for	were	not	the
virile,	audacious	young	Polytechnicians,	among	them	the	future	leaders	of
the	 army,	 always	 a	 thorn	 in	 the	 side	of	 reactionary	 schemers	who	would
undo	 the	 glorious	 work	 of	 the	 Revolution	 and	 bring	 back	 the	 corrupt



priesthood	and	the	divine	right	of	kings?	The	fearless	Polytechnicians,	at
least	 in	Galois’	 boyish	 eyes,	 were	 no	 race	 of	 puling	 rhetoricians	 like	 the
browbeaten	 nonentities	 at	 Louis-le-Grand,	 but	 a	 consecrated	 band	 of
young	patriots.	Events	were	presently	to	prove	him	at	least	partly	right	in
his	estimate.

Galois	 failed	 in	 the	 examinations.	 He	 was	 not	 alone	 in	 believing	 his
failure	 the	 result	 of	 a	 stupid	 injustice.	 The	 comrades	 he	 had	 teased
unmercifully	 were	 stunned.	 They	 believed	 that	Galois	 had	mathematical
genius	 of	 the	 highest	 order	 and	 they	 suspected	 his	 examiners	 of
incompetence	in	their	office.	Nearly	a	quarter	of	a	century	later	Terquem,
editor	of	the	Nouvelles	Annales	de	Mathématiques,	the	mathematical	journal
devoted	to	the	interests	of	candidates	for	the	Polytechnique	and	Normale
schools,	 reminded	 his	 readers	 that	 the	 controversy	 was	 not	 yet	 dead.
Commenting	 on	 the	 failure	 of	Galois	 and	 on	 the	 inscrutable	 decrees	 of
the	 examiners	 in	 another	 instance,	 Terquem	 remarks,	 “A	 candidate	 of
superior	intelligence	is	 lost	with	an	examiner	of	inferior	intelligence.	Hic
ego	barbarus	sum	quia	non	intelligor	illis	[Because	they	don’t	understand	me,	I
am	a	barbarian.]	.	.	.	Examinations	are	mysteries	before	which	I	bow.	Like
the	 mysteries	 of	 theology,	 the	 reason	 must	 admit	 them	 with	 humility,
without	seeking	to	understand	them.”	As	for	Galois,	the	failure	was	almost
the	finishing	touch.	It	drove	him	in	upon	himself	and	embittered	him	for
life.

In	1828	Galois	was	seventeen.	It	was	his	great	year.	For	the	first	time	he
met	 a	 man	 who	 had	 the	 capacity	 to	 understand	 his	 genius,	 Louis-Paul-
Émile	Richard	(1795-1849),	 teacher	of	advanced	mathematics	(mathématiques
spéciales)	at	Louis-le-Grand.	Richard	was	no	conventional	pedagogue,	but	a
man	 of	 talent	 who	 followed	 the	 advanced	 lectures	 on	 geometry	 at	 the
Sorbonne	 in	 his	 spare	 time	 and	 kept	 himself	 abreast	 of	 the	 progress	 of
living	mathematicians	 to	pass	 it	on	to	his	pupils.	Timid	and	unambitious
on	his	own	account,	he	threw	all	his	talent	on	the	side	of	his	pupils.	The
man	who	would	not	go	a	step	out	of	his	way	to	advance	his	own	interests
counted	no	sacrifice	too	great	where	the	future	of	one	of	his	students	was
at	 stake.	 In	 his	 zeal	 to	 advance	mathematics	 through	 the	 work	 of	 abler
men	 he	 forgot	 himself	 completely,	 although	 his	 scientific	 friends	 urged
him	 to	 write,	 and	 to	 his	 inspired	 teaching	 more	 than	 one	 outstanding
French	mathematician	of	the	nineteenth	century	has	paid	grateful	tribute:
Leverrier,	 codiscoverer	with	Adams	by	pure	mathematical	 analysis	of	 the



planet	Neptune;	Serret,	 a	geometer	of	 repute	and	author	of	a	 classic	on
higher	algebra	 in	which	he	gave	 the	 first	 systematic	exposition	of	Galois’
theory	of	 equations;	Hermite,	master	 algebraist	 and	arithmetician	of	 the
first	rank;	and	last,	Galois.

Richard	recognized	instantly	what	had	fallen	into	his	hands—“the	Abel
of	 France.”	 The	 original	 solutions	 to	 difficult	 problems	 which	 Galois
handed	 in	 were	 proudly	 explained	 to	 the	 class,	 with	 just	 praise	 for	 the
young	 author,	 and	 Richard	 shouted	 from	 the	 housetops	 that	 this
extraordinary	 pupil	 should	 be	 admitted	 to	 the	 Polytechnique	 without
examination.	He	gave	Galois	the	first	prize	and	wrote	in	his	 term	report,
“This	pupil	has	a	marked	superiority	above	all	his	fellow	students;	he	works
only	 at	 the	 most	 advanced	 parts	 of	 mathematics.”	 All	 of	 which	 was	 the
literal	 truth.	 Galois	 at	 seventeen	 was	 making	 discoveries	 of	 epochal
significance	 in	 the	 theory	 of	 equations,	 discoveries	 whose	 consequences
are	not	 yet	 exhausted	 after	more	 than	 a	 century.	On	 the	 first	 of	March,
1829,	Galois	published	his	first	paper,	on	continued	fractions.	This	contains
no	hint	of	the	great	things	he	had	done,	but	it	served	to	announce	him	to
his	fellow	students	as	no	mere	scholar	but	an	inventive	mathematician.

The	leading	French	mathematician	of	the	time	was	Cauchy.	In	fertility
of	 invention	Cauchy	has	been	equalled	by	but	 few;	and	as	we	have	 seen,
the	mass	of	his	collected	works	is	exceeded	in	bulk	only	by	the	outputs	of
Euler	and	Cayley,I	the	most	prolific	mathematicians	of	history.	Whenever
the	Academy	of	Sciences	wished	an	authoritative	opinion	on	the	merits	of
a	 mathematical	 work	 submitted	 for	 its	 consideration	 it	 called	 upon
Cauchy.	As	a	 rule	he	was	a	prompt	and	 just	 referee.	But	occasionally	he
lapsed.	Unfortunately	the	occasions	of	his	lapses	were	the	most	important
of	 all.	 To	 Cauchy’s	 carelessness	 mathematics	 is	 indebted	 for	 two	 of	 the
major	 disasters	 in	 its	 history:	 the	 neglect	 of	 Galois	 and	 the	 shabby
treatment	of	Abel.	For	the	latter	Cauchy	was	only	partly	to	blame,	but	for
the	inexcusable	laxity	in	Galois’	case	Cauchy	alone	is	responsible.

Galois	had	 saved	 the	 fundamental	discoveries	he	had	made	up	 to	 the
age	of	 seventeen	 for	a	memoir	 to	be	 submitted	 to	 the	Academy.	Cauchy
promised	to	present	this,	but	he	forgot.	To	put	the	finishing	touch	to	his
ineptitude	he	lost	the	author’s	abstract.	That	was	the	last	Galois	ever	heard
of	Cauchy’s	generous	promise.	This	was	only	the	first	of	a	series	of	similar
disasters	which	 fanned	 the	 thwarted	boy’s	 sullen	 contempt	of	 academies



and	academicians	into	a	fierce	hate	against	the	whole	of	the	stupid	society
in	which	he	was	condemned	to	live.

In	spite	of	his	demonstrated	genius	the	harassed	boy	was	not	even	now
left	to	himself	at	school.	The	authorities	gave	him	no	peace	to	harvest	the
rich	field	of	his	discoveries,	but	pestered	him	to	distraction	with	petty	tasks
and	 goaded	 him	 to	 open	 revolt	 by	 their	 everlasting	 preachings	 and
punishments.	Still	they	could	find	nothing	in	him	but	conceit	and	an	iron
determination	 to	 be	 a	mathematician.	He	 already	was	 one,	 but	 they	did
not	know	it.

Two	 further	 disasters	 in	 his	 eighteenth	 year	 put	 the	 last	 touches	 to
Galois’	 character.	He	 presented	 himself	 a	 second	 time	 for	 the	 entrance
examinations	at	the	Polytechnique.	Men	who	were	not	worthy	to	sharpen
his	pencils	sat	in	judgment	on	him.	The	result	was	what	might	have	been
anticipated.	 Galois	 failed.	 It	 was	 his	 last	 chance;	 the	 doors	 of	 the
Polytechnique	were	closed	forever	against	him.

That	examination	has	become	a	legend.	Galois’	habit	of	working	almost
entirely	in	his	head	put	him	at	a	serious	disadvantage	before	a	blackboard.
Chalk	and	erasers	embarrassed	him—till	he	found	a	proper	use	for	one	of
them.	 During	 the	 oral	 part	 of	 the	 examination	 one	 of	 the	 inquisitors
ventured	to	argue	a	mathematical	difficulty	with	Galois.	The	man	was	both
wrong	 and	 obstinate.	 Seeing	 all	 his	 hopes	 and	 his	 whole	 life	 as	 a
mathematician	 and	polytechnic	 champion	of	 democratic	 liberty	 slipping
away	 from	 him,	 Galois	 lost	 all	 patience.	 He	 knew	 that	 he	 had	 officially
failed.	In	a	fit	of	rage	and	despair	he	hurled	the	eraser	at	his	tormentor’s
face.	It	was	a	hit.

The	final	touch	was	the	tragic	death	of	Galois’	father.	As	the	mayor	of
Bourg-la-Reine	the	elder	Galois	was	a	target	for	the	clerical	intrigues	of	the
times,	 especially	 as	 he	 had	 always	 championed	 the	 villagers	 against	 the
priest.	 After	 the	 stormy	 elections	 of	 1827	 a	 resourceful	 young	 priest
organized	 a	 scurrilous	 campaign	 against	 the	 mayor.	 Capitalizing	 the
mayor’s	well-known	gift	for	versifying,	the	ingenious	priest	composed	a	set
of	filthy	and	stupid	verses	against	a	member	of	the	mayor’s	family,	signed
them	 with	 Mayor	 Galois’	 name,	 and	 circulated	 them	 freely	 among	 the
citizens.	 The	 thoroughly	 decent	 mayor	 developed	 a	 persecution	 mania.
During	 his	 wife’s	 absence	 one	 day	 he	 slipped	 off	 to	 Paris	 and,	 in	 an
apartment	 but	 a	 stone’s	 throw	 from	 the	 school	 where	 his	 son	 sat	 at	 his
studies,	 committed	 suicide.	 At	 the	 funeral	 serious	 disorder	 broke	 out.



Stones	 were	 hurled	 by	 the	 enraged	 citizens;	 a	 priest	 was	 gashed	 on	 the
forehead.	Galois	saw	his	father’s	coffin	lowered	into	the	grave	in	the	midst
of	an	unseemly	riot.	Thereafter,	suspecting	everywhere	the	injustice	which
he	hated,	he	could	see	no	good	in	anything.

After	his	second	failure	at	the	Polytechnique,	Galois	returned	to	school
to	prepare	 for	 a	 teaching	 career.	The	 school	now	had	 a	new	director,	 a
timeserving,	 somewhat	 cowardly	 stoolpigeon	 for	 the	 royalists	 and	 clerics.
This	 man’s	 shilly-shally	 temporizing	 in	 the	 political	 upheaval	 which	 was
presently	 to	 shake	 France	 to	 its	 foundations	 had	 a	 tragic	 influence	 on
Galois’	last	years.

Still	 persecuted	 and	 maliciously	 misunderstood	 by	 his	 preceptors,
Galois	prepared	himself	for	the	final	examinations.	The	comments	of	his
examiners	are	interesting.	In	mathematics	and	physics	he	got	“very	good.”
The	 final	 oral	 examination	drew	 the	 following	 comments:	 “This	 pupil	 is
sometimes	obscure	in	expressing	his	ideas,	but	he	is	intelligent	and	shows
a	 remarkable	 spirit	 of	 research.	He	has	 communicated	 to	me	 some	new
results	in	applied	analysis.”	In	literature:	“This	is	the	only	student	who	has
answered	 me	 poorly;	 he	 knows	 absolutely	 nothing.	 I	 was	 told	 that	 this
student	has	an	extraordinary	capacity	for	mathematics.	This	astonishes	me
greatly;	 for,	 after	 his	 examination,	 I	 believed	 him	 to	 have	 but	 little
intelligence.	He	succeeded	in	hiding	such	as	he	had	from	me.	If	this	pupil
is	really	what	he	has	seemed	to	me	to	be,	I	seriously	doubt	whether	he	will
ever	make	 a	 good	 teacher.”	 To	which	Galois,	 remembering	 some	 of	 his
own	good	teachers,	might	have	replied,	“God	forbid.”

In	February,	1830,	at	the	age	of	nineteen,	Galois	was	definitely	admitted
to	university	standing.	Again	his	sure	knowledge	of	his	own	transcendent
ability	was	reflected	in	a	withering	contempt	for	his	plodding	teachers	and
he	 continued	 to	work	 in	 solitude	 on	his	 own	 ideas.	During	 this	 year	 he
composed	 three	 papers	 in	 which	 he	 broke	 new	 ground.	 These	 papers
contain	some	of	his	great	work	on	the	theory	of	algebraic	equations.	It	was
far	in	advance	of	anything	that	had	been	done,	and	Galois	had	hopefully
submitted	 it	 all	 (with	 further	 results)	 in	 a	 memoir	 to	 the	 Academy	 of
Sciences,	 in	 competition	 for	 the	Grand	Prize	 in	Mathematics.	This	prize
was	 still	 the	 blue	 ribbon	 in	 mathematical	 research;	 only	 the	 foremost
mathematicians	 of	 the	 day	 could	 sensibly	 compete.	 Experts	 agree	 that
Galois’	 memoir	 was	 more	 than	 worthy	 of	 the	 prize.	 It	 was	 work	 of	 the



highest	originality.	As	Galois	said	with	perfect	 justice,	“I	have	carried	out
researches	which	will	halt	many	savants	in	theirs.”

The	 manuscript	 reached	 the	 Secretary	 safely.	 The	 Secretary	 took	 it
home	with	him	for	examination,	but	died	before	he	had	time	to	look	at	it.
When	his	papers	were	searched	after	his	death	no	trace	of	the	manuscript
was	found,	and	that	was	the	last	Galois	ever	heard	of	it.	He	can	scarcely	be
blamed	 for	 ascribing	 his	 misfortunes	 to	 something	 less	 uncertain	 than
blind	chance.	After	Cauchy’s	 lapse	a	repetition	of	 the	same	sort	of	 thing
looked	 too	 providential	 to	 be	 a	 mere	 accident.	 “Genius,”	 he	 said,	 “is
condemned	 by	 a	 malicious	 social	 organization	 to	 an	 eternal	 denial	 of
justice	 in	 favor	 of	 fawning	 mediocrity.”	 His	 hatred	 grew,	 and	 he	 flung
himself	 into	 politics	 on	 the	 side	 of	 republicanism,	 then	 a	 forbidden
radicalism.

*		*		*

The	first	shots	of	the	revolution	of	1830	filled	Galois	with	joy.	He	tried
to	 lead	 his	 fellow	 students	 into	 the	 fray,	 but	 they	 hung	 back,	 and	 the
temporizing	 director	 put	 them	 on	 their	 honor	 not	 to	 quit	 the	 school.
Galois	refused	to	pledge	his	word,	and	the	director	begged	him	to	stay	in
till	the	following	day.	In	his	speech	the	director	displayed	a	singular	lack	of
tact	and	a	total	absence	of	common	sense.	Enraged,	Galois	tried	to	escape
during	 the	 night,	 but	 the	 wall	 was	 too	 high	 for	 him.	 Thereafter,	 all
through	“the	glorious	three	days”	while	the	heroic	young	Polytechnicians
were	 out	 in	 the	 streets	 making	 history,	 the	 director	 prudently	 kept	 his
charges	 under	 lock	 and	 key.	 Whichever	 way	 the	 cat	 should	 jump	 the
director	 was	 prepared	 to	 jump	 with	 it.	 The	 revolt	 successfully
accomplished,	the	astute	director	very	generously	placed	his	pupils	at	the
disposal	 of	 the	 temporary	 government.	 This	 put	 the	 finishing	 touch	 to
Galois’	 political	 creed.	 During	 the	 vacation	 he	 shocked	 his	 family	 and
boyhood	friends	with	his	fierce	championship	of	the	rights	of	the	masses.

The	last	months	of	1830	were	as	turbulent	as	is	usual	after	a	thorough
political	stir-up.	The	dregs	sank	to	the	bottom,	the	scum	rose	to	the	top,
and	suspended	between	the	two	the	moderate	element	of	the	population
hung	 in	 indecision.	 Galois,	 back	 at	 college,	 contrasted	 the	 timeserving
vacillations	of	the	director	and	the	wishy-washy	loyalty	of	the	students	with
their	 exact	 opposites	 at	 the	 Polytechnique.	 Unable	 to	 endure	 the



humiliation	of	inaction	longer	he	wrote	a	blistering	letter	to	the	Gazette	des
Écoles	in	which	he	let	both	students	and	director	have	what	he	thought	was
their	due.	The	students	could	have	saved	him.	But	they	lacked	backbone,
and	 Galois	 was	 expelled.	 Incensed,	 Galois	 wrote	 a	 second	 letter	 to	 the
Gazette,	 addressed	 to	 the	 students.	 “I	 ask	 nothing	 of	 you	 for	myself,”	 he
wrote;	“but	speak	out	for	your	honor	and	according	to	your	conscience.”
The	 letter	was	unanswered,	 for	 the	 apparent	 reason	 that	 those	 to	whom
Galois	appealed	had	neither	honor	nor	conscience.

Footloose	now,	Galois	announced	a	private	class	 in	higher	algebra,	 to
meet	once	a	week.	Here	he	was	at	nineteen,	a	creative	mathematician	of
the	very	first	rank,	peddling	lessons	to	no	takers.	The	course	was	to	have
included	“a	new	theory	of	imaginaries	[what	is	now	known	as	the	theory	of
’Galois	 Imaginaries/	 of	 great	 importance	 in	 algebra	 and	 the	 theory	 of
numbers];	 the	 theory	 of	 the	 solution	 of	 equations	 by	 radicals,	 and	 the
theory	of	numbers	and	elliptic	functions	treated	by	pure	algebra”—all	his
own	work.

Finding	 no	 students,	 Galois	 temporarily	 abandoned	mathematics	 and
joined	 the	 artillery	 of	 the	National	 Guard,	 two	 of	 whose	 four	 battalions
were	 composed	 almost	 wholly	 of	 the	 liberal	 group	 calling	 themselves
“Friends	of	the	People.”	He	had	not	yet	given	up	mathematics	entirely.	In
one	 last	desperate	effort	 to	gain	 recognition,	 encouraged	by	Poisson,	he
had	sent	a	memoir	on	the	general	solution	of	equations—now	called	the
“Galois	 theory”—to	 the	 Academy	 of	 Sciences.	 Poisson,	 whose	 name	 is
remembered	 wherever	 the	 mathematical	 theories	 of	 gravitation,
electricity,	 and	magnetism	 are	 studied,	 was	 the	 referee.	He	 submitted	 a
perfunctory	report.	The	memoir,	he	said	was	“incomprehensible,”	but	he
did	 not	 state	 how	 long	 it	 had	 taken	 him	 to	 reach	 his	 remarkable
conclusion.	 This	 was	 the	 last	 straw.	 Galois	 devoted	 all	 his	 energies	 to
revolutionary	 politics.	 “If	 a	 carcase	 is	 needed	 to	 stir	 up	 the	 people,”	 he
wrote,	“I	will	donate	mine.”

The	ninth	of	May,	1831,	marked	the	beginning	of	the	end.	About	two
hundred	 young	 republicans	 held	 a	 banquet	 to	 protest	 against	 the	 royal
order	disbanding	the	artillery	which	Galois	had	joined.	Toasts	were	drunk
to	 the	 Revolutions	 of	 1789	 and	 1793,	 to	 Robespierre,	 and	 to	 the
Revolution	 of	 1830.	 The	 whole	 atmosphere	 of	 the	 gathering	 was
revolutionary	and	defiant.	Galois	rose	to	propose	a	toast,	his	glass	 in	one
hand,	his	open	pocket	knife	in	the	other:	“To	Louis	Philippe”—the	King.



His	companions	misunderstood	the	purpose	of	the	toast	and	whistled	him
down.	Then	they	saw	the	open	knife.	Interpreting	this	as	a	threat	against
the	life	of	the	King	they	howled	their	approval.	A	friend	of	Galois,	seeing
the	 great	 Alexander	 Dumas	 and	 other	 notables	 passing	 by	 the	 open
windows,	 implored	Galois	 to	 sit	 down,	 but	 the	 uproar	 continued.	Galois
was	the	hero	of	the	moment,	and	the	artillerists	adjourned	to	the	street	to
celebrate	their	exuberance	by	dancing	all	night.	The	following	day	Galois
was	arrested	at	his	mother’s	house	and	thrown	into	 the	prison	of	Sainte-
Pélagie.

A	 clever	 lawyer,	 with	 the	 help	 of	 Galois’	 loyal	 friends,	 devised	 an
ingenious	 defence,	 to	 the	 effect	 that	 Galois	 had	 really	 said:	 “To	 Louis
Philippe,	 if	 he	 turns	 traitor.”	 The	 open	 knife	 was	 easily	 explained;	 Galois
had	been	using	it	to	cut	his	chicken.	This	was	the	fact.	The	saving	clause	in
his	 toast,	 according	 to	 his	 friends	 who	 swore	 they	 had	 heard	 it,	 was
drowned	by	the	whistling,	and	only	those	close	to	the	speaker	caught	what
was	said.	Galois	would	not	claim	the	saving	clause.

During	the	trial	Galois’	demeanor	was	one	of	haughty	contempt	for	the
court	and	his	accusers.	Caring	nothing	for	the	outcome,	he	launched	into
an	impassioned	tirade	against	all	the	forces	of	political	injustice.	The	judge
was	a	human	being	with	children	of	his	own.	He	warned	the	accused	that
he	 was	 not	 helping	 his	 own	 case	 and	 sharply	 silenced	 him.	 The
prosecution	 quibbled	 over	 the	 point	 whether	 the	 restaurant	 where	 the
incident	 occurred	 was	 or	 was	 not	 a	 “public	 place”	 when	 used	 for	 a
semiprivate	banquet.	On	this	nice	point	of	law	hung	the	liberty	of	Galois.
But	it	was	evident	that	both	court	and	jury	were	moved	by	the	youth	of	the
accused.	After	only	ten	minutes’	deliberation	the	jury	returned	a	verdict	of
not	 guilty.	Galois	picked	up	his	 knife	 from	 the	 evidence	 table,	 closed	 it,
slipped	it	in	his	pocket,	and	left	the	courtroom	without	a	word.

He	did	not	 keep	his	 freedom	 long.	 In	 less	 than	 a	month,	 on	 July	 14,
1831,	 he	 was	 arrested	 again,	 this	 time	 as	 a	 precautionary	measure.	 The
republicans	 were	 about	 to	 hold	 a	 celebration,	 and	 Galois,	 being	 a
“dangerous	 radical”	 in	 the	 eyes	 of	 the	 authorities,	 was	 locked	 up	 on	 no
charge	 whatever.	 The	 government	 papers	 of	 all	 France	 played	 up	 this
brilliant	 coup	 of	 the	 police.	 They	 now	 had	 “the	 dangerous	 republican,
Évariste	Galois,”	where	he	could	not	possibly	 start	 a	 revolution.	But	 they
were	 hard	 put	 to	 it	 to	 find	 a	 legal	 accusation	 under	 which	 he	 could	 be
brought	to	trial.	True,	he	had	been	armed	to	the	teeth	when	arrested,	but



he	had	not	resisted	arrest.	Galois	was	no	fool.	Should	they	accuse	him	of
plotting	against	the	government?	Too	strong;	it	wouldn’t	go;	no	jury	would
convict.	 Ah!	 After	 two	 months	 of	 incessant	 thought	 they	 succeeded	 in
trumping	 up	 a	 charge.	 When	 arrested	 Galois	 had	 been	 wearing	 his
artillery	uniform.	But	the	artillery	had	been	disbanded.	Therefore	Galois
was	guilty	of	illegally	wearing	a	uniform.	This	time	they	convicted	him.	A
friend,	arrested	with	him,	got	three	months;	Galois	got	six.	He	was	to	be
incarcerated	in	Sainte-Pélagie	till	April	29,	1832.	His	sister	said	he	looked
about	fifty	years	old	at	the	prospect	of	the	sunless	days	ahead	of	him.	Why
not?	“Let	justice	prevail	though	the	heavens	fall.”

*		*		*

Discipline	 in	 the	 jail	 for	 political	 prisoners	 was	 light,	 and	 they	 were
treated	with	reasonable	humanity.	The	majority	spent	their	waking	hours
promenading	 in	 the	 courtyard	 reserved	 for	 their	 use,	 or	 boozing	 in	 the
canteen—the	private	graft	of	the	governor	of	the	prison.	Soon	Galois,	with
his	 somber	 visage,	 abstemious	 habits,	 and	 perpetual	 air	 of	 intense
concentration,	became	the	butt	of	the	jovial	swillers.	He	was	concentrating
on	his	mathematics,	 but	he	 could	not	help	hearing	 the	 taunts	hurled	at
him.

“What!	You	drink	only	water?	Quit	the	Republican	Party	and	go	back	to
your	mathematics.”—“Without	wine	 and	women	 you’ll	 never	 be	 a	man.”
Goaded	beyond	endurance	Galois	seized	a	bottle	of	brandy,	not	knowing
or	 caring	what	 it	was,	 and	drank	 it	 down.	A	decent	 fellow	prisoner	 took
care	of	him	 till	he	 recovered.	His	humiliation	when	he	 realized	what	he
had	done	devastated	him.

At	 last	 he	 escaped	 from	what	 one	 French	writer	 of	 the	 time	 calls	 the
foulest	sewer	in	Paris.	The	cholera	epidemic	of	1832	caused	the	solicitous
authorities	to	transfer	Galois	to	a	hospital	on	the	sixteenth	of	March.	The
“important	 political	 prisoner”	 who	 had	 threatened	 the	 life	 of	 Louis
Philippe	was	too	precious	to	be	exposed	to	the	epidemic.

Galois	 was	 put	 on	 parole,	 so	 he	 had	 only	 too	many	 occasions	 to	 see
outsiders.	 Thus	 it	 happened	 that	 he	 experienced	 his	 one	 and	 only	 love
affair.	 In	 this,	 as	 in	 everything	 else,	 he	was	 unfortunate.	 Some	worthless
girl	(“quelque	coquette	de	bas	étage”)	initiated	him.	Galois	took	it	violently	and
was	 disgusted	 with	 love,	 with	 himself,	 and	 with	 his	 girl.	 To	 his	 devoted



friend	Auguste	Chevalier	he	wrote,	“Your	letter,	full	of	apostolic	unction,
has	brought	me	a	little	peace.	But	how	obliterate	the	mark	of	emotions	as
violent	as	those	which	I	have	experienced?	.	.	.	On	re-reading	your	letter,	I
note	a	phrase	in	which	you	accuse	me	of	being	inebriated	by	the	putrefied
slime	 of	 a	 rotten	 world	 which	 has	 defiled	 my	 heart,	 my	 head,	 and	 my
hands.	 .	 .	 .	 Inebriation!	 I	 am	 disillusioned	 of	 everything,	 even	 love	 and
fame.	How	can	a	world	which	 I	detest	defile	me?”	This	 is	dated	May	25,
1832.	 Four	 days	 later	 he	 was	 at	 liberty.	 He	 had	 planned	 to	 go	 into	 the
country	to	rest	and	meditate.

*		*		*

What	happened	on	May	29th	is	not	definitely	known.	Extracts	from	two
letters	suggest	what	is	usually	accepted	as	the	truth:	Galois	had	run	foul	of
political	 enemies	 immediately	 after	 his	 release.	 These	 “patriots”	 were
always	 spoiling	 for	 a	 fight,	 and	 it	 fell	 to	 the	 unfortunate	 Galois’	 lot	 to
accommodate	 them	 in	 an	 affair	 of	 “honor.”	 In	 a	 “Letter	 to	 All
Republicans,”	dated	29	May,	1832,	Galois	writes:

“I	beg	patriots	and	my	friends	not	to	reproach	me	for	dying	otherwise	than	for	my	country.	I
die	the	victim	of	an	infamous	coquette.	It	is	in	a	miserable	brawl	that	my	life	is	extinguished.	Oh!
why	die	 for	so	 trivial	a	 thing,	die	 for	something	so	despicable!	 .	 .	 .	Pardon	for	 those	who	have
killed	 me,	 they	 are	 of	 good	 faith.”	 In	 another	 letter	 to	 two	 unnamed	 friends:	 “I	 have	 been
challenged	 by	 two	 patriots—it	 was	 impossible	 for	me	 to	 refuse.	 I	 beg	 your	 pardon	 for	 having
advised	neither	of	you.	But	my	opponents	had	put	me	on	my	honor	not	to	warn	any	patriot.	Your
task	 is	 very	 simple:	prove	 that	 I	 fought	 in	 spite	of	myself,	 that	 is	 to	 say	after	having	exhausted
every	means	of	accommodation.	.	.	.	Preserve	my	memory	since	fate	has	not	given	me	life	enough
for	my	country	to	know	my	name.	I	die	your	friend

E.	GALOIS.”

*		*		*

These	 were	 the	 last	 words	 he	 wrote.	 All	 night,	 before	 writing	 these
letters,	he	had	spent	the	fleeting	hours	feverishly	dashing	off	his	scientific
last	 will	 and	 testament,	 writing	 against	 time	 to	 glean	 a	 few	 of	 the	 great
things	 in	 his	 teeming	 mind	 before	 the	 death	 which	 he	 foresaw	 could
overtake	him.	Time	 after	 time	he	 broke	 off	 to	 scribble	 in	 the	margin	 “I
have	 not	 time;	 I	 have	 not	 time,”	 and	 passed	 on	 to	 the	 next	 frantically
scrawled	outline.	What	he	wrote	 in	those	desperate	 last	hours	before	the
dawn	will	keep	generations	of	mathematicians	busy	for	hundreds	of	years.
He	had	 found,	once	and	 for	all,	 the	 true	 solution	of	a	 riddle	which	had



tormented	mathematicians	 for	 centuries:	 under	 what	 conditions	 can	 an
equation	 be	 solved?	 But	 this	 was	 only	 one	 thing	 of	 many.	 In	 this	 great
work,	 Galois	 used	 the	 theory	 of	 groups	 (see	 chapter	 on	 Cauchy)	 with
brilliant	 success.	 Galois	 was	 indeed	 one	 of	 the	 great	 pioneers	 in	 this
abstract	theory,	today	of	fundamental	importance	in	all	mathematics.

*		*		*

In	 addition	 to	 this	 distracted	 letter	 Galois	 entrusted	 his	 scientific
executor	with	some	of	the	manuscripts	which	had	been	intended	for	the
Academy	of	Sciences.	Fourteen	years	later,	in	1846,	Joseph	Liouville	edited
some	of	the	manuscripts	for	the	Journal	de	Mathématiques	pures	et	appliquées.
Liouville,	himself	a	distinguished	and	original	mathematician,	and	editor
of	the	great	Journal,	writes	as	follows	in	his	introduction:

“The	principal	work	of	Évariste	Galois	has	as	its	object	the	conditions	of
solvability	of	 equations	by	 radicals.	The	 author	 lays	 the	 foundations	of	 a
general	 theory	which	he	applies	 in	detail	 to	equations	whose	degree	 is	a
prime	number.	At	the	age	of	sixteen,	and	while	a	student	at	the	college	of
Louis-le-Grand	 .	 .	 .	 Galois	 occupied	 himself	 with	 this	 difficult	 subject.”
Liouville	then	states	that	the	referees	at	the	Academy	had	rejected	Galois’
memoirs	 on	 account	 of	 their	 obscurity.	 He	 continues:	 “An	 exaggerated
desire	for	conciseness	was	the	cause	of	this	defect	which	one	should	strive
above	all	else	to	avoid	when	treating	the	abstract	and	mysterious	matters	of
pure	Algebra.	Clarity	is,	indeed,	all	the	more	necessary	when	one	essays	to
lead	the	reader	farther	from	the	beaten	path	and	into	wilder	territory.	As
Descartes	 said,	 ’When	 transcendental	 questions	 are	 under	 discussion	 be
transcendentally	 clear.’	 Too	often	Galois	 neglected	 this	 precept;	 and	we
can	understand	how	illustrious	mathematicians	may	have	judged	it	proper
to	 try,	 by	 the	 harshness	 of	 their	 sage	 advice,	 to	 turn	 a	 beginner,	 full	 of
genius	 but	 inexperienced,	 back	 on	 the	 right	 road.	 The	 author	 they
censured	was	before	them,	ardent,	active;	he	could	profit	by	their	advice.

“But	now	everything	is	changed.	Galois	is	no	more!	Let	us	not	indulge
in	useless	criticisms;	let	us	leave	the	defects	there	and	look	at	the	merits.”
Continuing,	Liouville	tells	how	he	studied	the	manuscripts,	and	singles	out
one	perfect	gem	for	special	mention.

“My	 zeal	was	well	 rewarded,	 and	 I	 experienced	an	 intense	pleasure	at
the	moment	when,	having	 filled	 in	 some	 slight	gaps,	 I	 saw	 the	complete



correctness	 of	 the	 method	 by	 which	 Galois	 proves,	 in	 particular,	 this
beautiful	 theorem:	 In	 order	 that	 an	 irreducible	 equation	 of	 prime	 degree	 be
solvable	 by	 radicals	 it	 is	 necessary	 and	 sufficient	 that	 all	 its	 roots	 be	 rational
functions	of	any	two	of	them”II

*		*		*

Galois	 addressed	 his	 will	 to	 his	 faithful	 friend	 Auguste	 Chevalier,	 to
whom	the	world	owes	its	preservation.	“My	dear	friend,”	he	began,	“I	have
made	some	new	discoveries	in	analysis.”	He	then	proceeds	to	outline	such
as	he	has	time	for.	They	were	epoch-making.	He	concludes:	“Ask	Jacobi	or
Gauss	 publicly	 to	 give	 their	 opinion,	 not	 as	 to	 the	 truth,	 but	 as	 to	 the
importance	of	 these	 theorems.	Later	 there	will	 be,	 I	 hope,	 some	people
who	will	 find	 it	 to	 their	 advantage	 to	 decipher	 all	 this	mess.	 Je	 t’embrasse
avec	effusion.	E.	Galois.”

Confiding	 Galois!	 Jacobi	 was	 generous;	 what	 would	 Gauss	 have	 said?
What	 did	 he	 say	 of	 Abel?	 What	 did	 he	 omit	 to	 say	 of	 Cauchy,	 or	 of
Lobatchewsky?	For	all	his	bitter	experience	Galois	was	still	a	hopeful	boy.

At	a	very	early	hour	on	the	thirtieth	of	May,	1832,	Galois	confronted	his
adversary	on	the	“field	of	honor.”	The	duel	was	with	pistols	at	twenty	five
paces.	Galois	fell,	shot	through	the	intestines.	No	surgeon	was	present.	He
was	left	lying	where	he	had	fallen.	At	nine	o’clock	a	passing	peasant	took
him	to	the	Cochin	Hospital.	Galois	knew	he	was	about	to	die.	Before	the
inevitable	 peritonitis	 set	 in,	 and	 while	 still	 in	 the	 full	 possession	 of	 his
faculties,	 he	 refused	 the	 offices	 of	 a	 priest.	 Perhaps	 he	 remembered	 his
father.	 His	 young	 brother,	 the	 only	 one	 of	 his	 family	 who	 had	 been
warned,	 arrived	 in	 tears.	 Galois	 tried	 to	 comfort	 him	 with	 a	 show	 of
stoicism.	“Don’t	cry,”	he	said,	“I	need	all	my	courage	to	die	at	twenty.”

Early	 in	 the	 morning	 of	 May	 31,	 1832,	 Galois	 died,	 being	 then	 in	 the
twenty	 first	 year	 of	 his	 age.	He	 was	 buried	 in	 the	 common	 ditch	 of	 the
South	 Cemetery,	 so	 that	 today	 there	 remains	 no	 trace	 of	 the	 grave	 of
Évariste	Galois.	His	 enduring	monument	 is	his	 collected	works.	They	 fill
sixty	pages.

I.	 That	 is,	 so	 far	 as	 actually	 published	 work	 is	 concerned	 up	 to	 the	 present	 (1936).	 Euler
undoubtedly	will	surpass	Cayley	in	bulk	when	the	full	edition	of	his	works	is	finally	printed.



II.	The	significance	of	 this	 theorem	will	be	clear	 if	 the	reader	will	glance	 through	the	extracts
from	Abel	in	Chapter	17.



CHAPTER	TWENTY	ONE

Invariant	Twins

CAYLEY	AND	SYLVESTER

The	theory	of	Invariants	sprang	into	existence	under	the	strong	hand	of	Cayley,	but	that	it	emerged	finally	a
complete	 work	 of	 art,	 for	 the	 admiration	 of	 future	 generations	 of	 mathematicians,	 was	 largely	 owing	 to	 the
flashes	of	inspiration	with	which	Sylvester’s	intellect	illuminated	it.—P.	A.	MACMAHON

“IT	IS	DIFFICULT	to	give	an	idea	of	the	vast	extent	of	modern	mathematics.
The	 word	 ’extent’	 is	 not	 the	 right	 one:	 I	 mean	 extent	 crowded	 with
beautiful	 detail—not	 an	 extent	 of	mere	uniformity	 such	 as	 an	objectless
plain,	but	of	a	 tract	of	beautiful	country	seen	at	 first	 in	 the	distance,	but
which	 will	 bear	 to	 be	 rambled	 through	 and	 studied	 in	 every	 detail	 of
hillside	and	valley,	stream,	rock,	wood,	and	flower.	But,	as	for	every	thing
else,	 so	 for	 a	 mathematical	 theory—beauty	 can	 be	 perceived	 but	 not
explained.”

These	 words	 from	 Cayley’s	 presidential	 address	 in	 1883	 to	 the	 British
Association	for	the	Advancement	of	Science	might	well	be	applied	to	his
own	colossal	output.	For	prolific	 inventiveness	Euler,	Cauchy,	and	Cayley
are	in	a	class	by	themselves,	with	Poincaré	(who	died	younger	than	any	of
the	others)	a	far	second.	This	applies	only	to	the	bulk	of	these	men’s	work;
its	 quality	 is	 another	 matter,	 to	 be	 judged	 partly	 by	 the	 frequency	 with
which	the	ideas	originated	by	these	giants	recur	in	mathematical	research,
partly	by	mere	personal	opinion,	and	partly	by	national	prejudice.

Cayley’s	remarks	about	the	vast	extent	of	modern	mathematics	suggest
that	we	confine	our	attention	 to	 some	of	 those	 features	of	his	own	work
which	 introduced	 distinctly	 new	 and	 far-reaching	 ideas.	 The	 work	 on
which	his	greatest	fame	rests	 is	 in	the	theory	of	 invariants	and	what	grew
naturally	 out	 of	 that	 vast	 theory	 of	 which	 he,	 brilliantly	 sustained	 by	 his
friend	 Sylvester,	 was	 the	 originator	 and	 unsurpassed	 developer.	 The
concept	 of	 invariance	 is	 of	 great	 importance	 for	 modern	 physics,
particularly	 in	 the	 theory	 of	 relativity,	 but	 this	 is	 not	 its	 chief	 claim	 to



attention.	 Physical	 theories	 are	 notoriously	 subject	 to	 revision	 and
rejection;	 the	 theory	 of	 invariance	 as	 a	 permanent	 addition	 to	 pure
mathematical	thought	appears	to	rest	on	firmer	ground.

Another	 of	 the	 ideas	 originated	 by	 Cayley,	 that	 of	 the	 geometry	 of
“higher	 space”	 (space	 of	 n	 dimensions)	 is	 likewise	 of	 present	 scientific
significance	but	of	incomparably	greater	importance	as	pure	mathematics.
Similarly	for	the	theory	of	matrices,	again	an	invention	of	Cayley’s.	In	non-
Euclidean	 geometry	 Cayley	 prepared	 the	 way	 for	 Klein’s	 splendid
discovery	 that	 the	geometry	of	Euclid	and	 the	non-Euclidean	geometries
of	Lobatchewsky	and	Riemann	are,	all	three,	merely	different	aspects	of	a
more	general	kind	of	geometry	which	includes	them	as	special	cases.	The
nature	of	these	contributions	of	Cayley’s	will	be	briefly	indicated	after	we
have	sketched	his	life	and	that	of	his	friend	Sylvester.

The	 lives	 of	 Cayley	 and	 Sylvester	 should	 be	 written	 simultaneously,	 if
that	were	possible.	Each	is	a	perfect	foil	to	the	other,	and	the	life	of	each,
in	large	measure,	supplies	what	is	lacking	in	that	of	the	other.	Cayley’s	life
was	 serene;	 Sylvester,	 as	 he	 himself	 bitterly	 remarks,	 spent	 much	 of	 his
spirit	and	energy	“fighting	the	world.”	Sylvester’s	 thought	was	at	 times	as
turbulent	as	a	millrace;	Cayley’s	was	always	 strong,	 steady,	and	unruffled.
Only	rarely	did	Cayley	permit	himself	the	printed	expression	of	anything
less	 severe	 than	 a	 precise	mathematical	 statement—the	 simile	 quoted	 at
the	beginning	of	this	chapter	is	one	of	the	rare	exceptions;	Sylvester	could
hardly	talk	about	mathematics	without	at	once	becoming	almost	orientally
poetic,	and	his	unquenchable	enthusiasm	frequently	caused	him	to	go	off
half-cocked.	Yet	these	two	became	close	friends	and	inspired	one	another
to	 some	 of	 the	 best	 work	 that	 either	 of	 them	 did,	 for	 example	 in	 the
theories	of	invariants	and	matrices	(described	later).

With	 two	 such	 temperaments	 it	 is	 not	 surprising	 that	 the	 course	 of
friendship	 did	 not	 always	 run	 smoothly.	 Sylvester	 was	 frequently	 on	 the
point	of	exploding;	Cayley	sat	serenely	on	the	safety	valve,	confident	that
his	 excitable	 friend	 would	 presently	 cool	 down,	 when	 he	 would	 calmly
resume	whatever	they	had	been	discussing	as	if	Sylvester	had	never	blown
off,	while	Sylvester	for	his	part	ignored	his	hotheaded	indiscretion—till	he
got	 himself	 all	 steamed	 up	 for	 another.	 In	 many	 ways	 this	 strangely
congenial	pair	were	like	a	honeymoon	couple,	except	that	one	party	to	the
friendship	never	lost	his	temper.	Although	Sylvester	was	Cayley’s	senior	by
seven	years,	we	shall	begin	with	Cayley.	Sylvester’s	life	breaks	naturally	into



the	 calm	 stream	 of	 Cayley’s	 like	 a	 jagged	 rock	 in	 the	middle	 of	 a	 deep
river.

*		*		*

Arthur	Cayley	was	born	on	August	16,	1821,	at	Richmond,	Surrey,	 the
second	 son	of	his	parents,	 then	 residing	 temporarily	 in	England.	On	his
father’s	 side	 Cayley	 traced	 his	 descent	 back	 to	 the	 days	 of	 the	 Norman
Conquest	(1066)	and	even	before,	to	a	baronial	estate	in	Normandy.	The
family	 was	 a	 talented	 one	which,	 like	 the	Darwin	 family,	 should	 provide
much	suggestive	material	 for	 students	of	heredity.	His	mother	was	Maria
Antonia	Doughty,	 by	 some	 said	 to	 have	 been	 of	Russian	 origin.	Cayley’s
father	was	an	English	merchant	engaged	in	the	Russian	trade;	Arthur	was
born	during	one	of	the	periodical	visits	of	his	parents	to	England.

In	 1829,	 when	 Arthur	 was	 eight,	 the	 merchant	 retired,	 to	 live
thenceforth	in	England.	Arthur	was	sent	to	a	private	school	at	Black-heath
and	later,	at	the	age	of	fourteen,	to	King’s	College	School	in	London.	His
mathematical	 genius	 showed	 itself	 very	 early.	 The	 first	manifestations	 of
superior	 talent	 were	 like	 those	 of	 Gauss;	 young	 Cayley	 developed	 an
amazing	 skill	 in	 long	 numerical	 calculations	 which	 he	 undertook	 for
amusement.	 On	 beginning	 the	 formal	 study	 of	 mathematics	 he	 quickly
outstripped	the	rest	of	the	school.	Presently	he	was	in	a	class	by	himself,	as
he	was	 later	when	he	went	up	 to	 the	University,	and	his	 teachers	agreed
that	the	boy	was	a	born	mathematician	who	should	make	mathematics	his
career.	 In	 grateful	 contrast	 to	 Galois’	 teachers,	 Cayley’s	 recognized	 his
ability	from	the	beginning	and	gave	him	every	encouragement.	At	first	the
retired	merchant	objected	strongly	to	his	son’s	becoming	a	mathematician
but	finally,	won	over	by	the	Principal	of	 the	school,	gave	his	consent,	his
blessing,	and	his	money.	He	decided	to	send	his	son	to	Cambridge.

Cayley	 began	 his	 university	 career	 at	 the	 age	 of	 seventeen	 at	 Trinity
College,	 Cambridge.	 Among	 his	 fellow	 students	 he	 passed	 as	 “a	 mere
mathematician”	with	a	queer	passion	for	novel-reading.	Cayley	was	indeed
a	lifelong	devotee	of	the	somewhat	stilted	fiction,	now	considered	classical,
which	charmed	readers	of	the	1840’s	and	’50’s.	Scott	appears	to	have	been
his	favorite,	with	Jane	Austen	a	close	second.	Later	he	read	Thackeray	and
disliked	him;	Dickens	he	could	never	bring	himself	to	read.	Byron’s	tales
in	 verse	 excited	 his	 admiration,	 although	 his	 somewhat	 puritanical



Victorian	 taste	 rebelled	 at	 the	 best	 of	 the	 lot	 and	 he	 never	 made	 the
acquaintance	of	that	diverting	scapegrace	Don	Juan.	Shakespeare’s	plays,
especially	 the	 comedies	 were	 a	 perpetual	 delight	 to	 him.	 On	 the	 more
solid—or	 stodgier—side	he	 read	and	reread	Grote’s	 interminable	History
of	 Greece	 and	 Macaulay’s	 rhetorical	 History	 of	 England.	 Classical	 Greek,
acquired	 at	 school,	 remained	 a	 reading-language	 for	 him	 all	 his	 life;
French	 he	 read	 and	 wrote	 as	 easily	 as	 English,	 and	 his	 knowledge	 of
German	and	 Italian	gave	him	plenty	 to	 read	after	he	had	exhausted	 the
Victorian	 classics	 (or	 they	 had	 exhausted	 him).	 The	 enjoyment	 of	 solid
fiction	was	only	one	of	his	diversions;	others	will	be	noted	as	we	go.

By	the	end	of	his	third	year	at	Cambridge	Cayley	was	so	far	in	front	of
the	 rest	 in	 mathematics	 that	 the	 head	 examiner	 drew	 a	 line	 under	 his
name,	 putting	 the	 young	man	 in	 a	 class	 by	 himself	 “above	 the	 first.”	 In
1842,	 at	 the	 age	 of	 twenty	 one,	 Cayley	 was	 senior	 wrangler	 in	 the
mathematical	 tripos,	 and	 in	 the	 same	 year	he	was	placed	 first	 in	 the	 yet
more	difficult	test	for	the	Smith’s	prize.

Under	an	excellent	plan	Cayley	was	now	in	line	for	a	fellowship	which
would	 enable	 him	 to	 do	 as	 he	 pleased	 for	 a	 few	 years.	 He	 was	 elected
Fellow	 of	 Trinity	 and	 assistant	 tutor	 for	 a	 period	 of	 three	 years.	 His
appointment	might	have	been	renewed	had	he	cared	to	take	holy	orders,
but	 although	 Cayley	 was	 an	 orthodox	 Church	 of	 England	 Christian	 he
could	not	quite	stomach	the	thought	of	becoming	a	parson	to	hang	onto
his	 job	or	to	obtain	a	better	one—as	many	did,	without	disturbing	either
their	faith	or	their	conscience.

His	duties	were	light	almost	to	the	point	of	nonexistence.	He	took	a	few
pupils,	but	not	enough	to	hurt	either	himself	or	his	work.	Making	the	best
possible	use	of	his	liberty	he	continued	the	mathematical	researches	which
he	had	begun	 as	 an	undergraduate.	 Like	Abel,	Galois,	 and	many	others
who	 have	 risen	 high	 in	mathematics,	 Cayley	 went	 to	 the	masters	 for	 his
inspiration.	 His	 first	 work,	 published	 in	 1841	 when	 he	 was	 an
undergraduate	of	twenty,	grew	out	of	his	study	of	Lagrange	and	Laplace.

With	nothing	 to	do	but	what	he	wanted	 to	do	after	 taking	his	degree
Cayley	published	eight	papers	the	first	year,	four	the	second,	and	thirteen
the	third.	These	early	papers	by	the	young	man	who	was	not	yet	twenty	five
when	 the	 last	 of	 them	 appeared	 map	 out	 much	 of	 the	 work	 that	 is	 to
occupy	 him	 for	 the	 next	 fifty	 years.	 Already	 he	 has	 begun	 the	 study	 of
geometry	of	n	dimensions	(which	he	originated),	the	theory	of	invariants,



the	 enumerative	 geometry	 of	 plane	 curves,	 and	 his	 distinctive
contributions	to	the	theory	of	elliptic	functions.

During	 this	 extremely	 fruitful	 period	 he	 was	 no	 mere	 grind.	 In	 1843,
when	he	was	twenty	two,	and	occasionally	thereafter	till	he	left	Cambridge
at	 the	 age	 of	 twenty	 five,	 he	 escaped	 to	 the	 Continent	 for	 delightful
vacations	 of	 tramping,	 mountaineering,	 and	 water-color	 sketching.
Although	he	was	slight	and	frail	in	appearance	he	was	tough	and	wiry,	and
often	after	a	 long	night	spent	 in	tramping	over	hilly	country,	would	turn
up	as	fresh	as	the	dew	for	breakfast	and	ready	to	put	in	a	few	hours	at	his
mathematics.	During	his	 first	 trip	he	 visited	Switzerland	and	did	a	 lot	of
mountaineering.	Thus	began	another	lifelong	passion.	His	description	of
the	 “extent	 of	modern	mathematics”	 is	 no	mere	 academic	 exercise	 by	 a
professor	who	had	never	climbed	a	mountain	or	rambled	lovingly	over	a
tract	 of	 beautiful	 country,	 but	 the	 accurate	 simile	 of	 a	 man	 who	 had
known	nature	intimately	at	first	hand.

During	 the	 last	 four	 months	 of	 his	 first	 vacation	 abroad	 he	 became
acquainted	with	northern	 Italy.	There	began	 two	 further	 interests	which
were	to	solace	him	for	the	rest	of	his	life:	an	understanding	appreciation
of	architecture	and	a	love	of	good	painting.	He	himself	delighted	in	water-
colors,	in	which	he	showed	marked	talent.	With	his	love	of	good	literature,
travel,	 painting,	 and	 architecture,	 and	 with	 his	 deep	 understanding	 of
natural	 beauty,	 he	 had	 plenty	 to	 keep	 him	 from	 degenerating	 into	 the
“mere	 mathematician”	 of	 conventional	 literature—written,	 for	 the	 most
part,	 by	 people	 who	 may	 indeed	 have	 known	 some	 pedantic	 college
professor	 of	 mathematics,	 but	 who	 never	 in	 their	 lives	 saw	 a	 real
mathematician	in	the	flesh.

In	1846,	when	he	was	twenty	five,	Cayley	left	Cambridge.	No	position	as	a
mathematician	 was	 open	 to	 him	 unless	 possibly	 he	 could	 square	 his
conscience	 to	 the	 formality	 of	 “holy	 orders.”	 As	 a	mathematician	Cayley
felt	no	doubt	that	it	would	be	easier	to	square	the	circle.	Anyhow,	he	left.
The	 law,	 which	 with	 the	 India	 Civil	 Service	 has	 absorbed	 much	 of
England’s	most	promising	intellectual	capital	at	one	time	or	another,	now
attracted	Cayley.	It	is	somewhat	astonishing	to	see	how	many	of	England’s
leading	 barristers	 and	 judges	 in	 the	 nineteenth	 century	 were	 high
wranglers	 in	 the	Cambridge	 tripos,	 but	 it	 does	 not	 follow,	 as	 some	have
claimed,	 that	 a	mathematical	 training	 is	 a	 good	preparation	 for	 the	 law.
What	seems	less	doubtful	is	that	it	may	be	a	social	imbecility	to	put	a	young



man	of	Cayley’s	 demonstrated	mathematical	 genius	 to	 drawing	 up	 wills,
transfers,	and	leases.

Following	 the	 usual	 custom	 of	 those	 looking	 toward	 an	 English	 legal
career	 of	 the	 more	 gentlemanly	 grade	 (that	 is,	 above	 the	 trade	 of
solicitor),	 Cayley	 entered	 Lincoln’s	 Inn	 to	 prepare	 himself	 for	 the	 Bar.
After	three	years	as	a	pupil	of	a	Mr.	Christie,	Cayley	was	called	to	the	Bar
in	1849.	He	was	 then	 twenty	 eight.	On	being	 admitted	 to	 the	Bar,	Cayley
made	a	wise	resolve	not	to	let	the	law	run	off	with	his	brains.	Determined
not	 to	 rot,	 he	 rejected	 more	 business	 than	 he	 accepted.	 For	 fourteen
mortal	years	he	stuck	it,	making	an	ample	living	and	deliberately	turning
away	 the	 opportunity	 to	 smother	 himself	 in	 money	 and	 the	 somewhat
blathery	sort	of	renown	that	comes	to	prominent	barristers,	in	order	that
he	might	earn	enough,	but	no	more	than	enough,	to	enable	him	to	get	on
with	his	work.

His	patience	under	the	deadening	routine	of	dreary	legal	business	was
exemplary,	 almost	 saintly,	 and	 his	 reputation	 in	 his	 branch	 of	 the
profession	(conveyancing)	rose	steadily.	It	is	even	recorded	that	his	name
has	 passed	 into	 one	 of	 the	 law	 books	 in	 connection	 with	 an	 exemplary
piece	of	legal	work	he	did.	But	it	is	extremely	gratifying	to	record	also	that
Cayley	was	no	milk-and-water	saint	but	a	normal	human	being	who	could,
when	 the	occasion	called	 for	 it,	 lose	his	 temper.	Once	he	and	his	 friend
Sylvester	were	animatedly	discussing	some	point	in	the	theory	of	invariants
in	Cayley’s	office	when	the	boy	entered	and	handed	Cayley	a	large	batch
of	legal	papers	for	his	perusal.	A	glance	at	what	was	in	his	hands	brought
him	down	to	earth	with	a	jolt.	The	prospect	of	spending	days	straightening
out	some	petty	muddle	to	save	a	few	pounds	to	some	comfortable	client’s
already	plethoric	income	was	too	much	for	the	man	with	real	brains	in	his
head.	With	 an	 exclamation	 of	 disgust	 and	 a	 contemptuous	 reference	 to
the	“wretched	rubbish”	in	his	hands,	he	hurled	the	stuff	to	the	floor	and
went	 on	 talking	 mathematics.	 This,	 apparently,	 is	 the	 only	 instance	 on
record	when	Cayley	 lost	his	 temper.	Cayley	got	out	of	 the	 law	at	 the	first
opportunity—after	fourteen	years	of	it.	But	during	his	period	of	servitude
he	had	published	between	 two	and	 three	hundred	mathematical	papers,
many	of	which	are	now	classic.

*		*		*



As	 Sylvester	 entered	 Cayley’s	 life	 during	 the	 legal	 phase	 we	 shall
introduce	him	here.

James	Joseph—to	give	him	first	the	name	with	which	he	was	born—was
the	youngest	of	several	brothers	and	sisters,	and	was	born	of	Jewish	parents
on	September	3,	1814,	in	London.	Very	little	is	known	of	his	childhood,	as
Sylvester	 appears	 to	 have	 been	 reticent	 about	 his	 early	 years.	 His	 eldest
brother	 emigrated	 to	 the	 United	 States,	 where	 he	 took	 the	 name	 of
Sylvester,	 an	 example	 followed	 by	 the	 rest	 of	 the	 family.	 But	 why	 an
orthodox	 Jew	 should	 have	 decorated	 himself	 with	 a	 name	 favored	 by
Christian	 popes	 hostile	 to	 Jews	 is	 a	mystery.	 Possibly	 that	 eldest	 brother
had	 a	 sense	 of	 humor;	 anyhow,	 plain	 James	 Joseph,	 son	 of	 Abraham
Joseph,	became	henceforth	and	for-evermore	James	Joseph	Sylvester.

Like	 Cayley’s,	 Sylvester’s	 mathematical	 genius	 showed	 itself	 early.
Between	the	ages	of	six	and	fourteen	he	attended	private	schools.	The	last
five	months	of	his	fourteenth	year	were	spent	at	the	University	of	London,
where	he	studied	under	De	Morgan.	In	a	paper	written	 in	1840	with	the
somewhat	mystical	title	On	the	Derivation	of	Coexistence,	Sylvester	says	“I	am
indebted	for	this	term	[recurrents]	to	Professor	De	Morgan,	whose	pupil	I
may	boast	to	have	been.”

In	1829,	at	the	age	of	fifteen,	Sylvester	entered	the	Royal	Institution	at
Liverpool,	where	he	stayed	less	than	two	years.	At	the	end	of	his	first	year
he	won	the	prize	in	mathematics.	By	this	time	he	was	so	far	ahead	of	his
fellow	 students	 in	 mathematics	 that	 he	 was	 placed	 in	 a	 special	 class	 by
himself.	While	at	the	Royal	Institution	he	also	won	another	prize.	This	is	of
particular	 interest	 as	 it	 establishes	 the	 first	 contact	 of	 Sylvester	 with	 the
United	States	of	America	where	 some	of	 the	happiest—also	 some	of	 the
most	wretched—days	of	his	 life	were	to	be	spent.	The	American	brother,
by	profession	an	actuary,	had	 suggested	 to	 the	Directors	of	 the	Lotteries
Contractors	 of	 the	United	 States	 that	 they	 submit	 a	 difficult	 problem	 in
arrangements	 to	 young	Sylvester.	The	budding	mathematician’s	 solution
was	 complete	 and	 practically	 most	 satisfying	 to	 the	 Directors,	 who	 gave
Sylvester	a	prize	of	five	hundred	dollars	for	his	efforts.

The	 years	 at	 Liverpool	 were	 far	 from	 happy.	 Always	 courageous	 and
open,	 Sylvester	 made	 no	 bones	 about	 his	 Jewish	 faith,	 but	 proudly
proclaimed	it	 in	the	face	of	more	than	petty	persecution	at	 the	hands	of
the	 sturdy	 young	 barbarians	 at	 the	 Institution	 who	 humorously	 called
themselves	Christians.	But	 there	 is	 a	 limit	 to	what	one	 lone	peacock	can



stand	from	a	pack	of	dull	jays,	and	Sylvester	finally	fled	to	Dublin	with	only
a	few	shillings	in	his	pocket.	Luckily	he	was	recognized	on	the	street	by	a
distant	 relative	who	 took	him	 in,	 straightened	him	out,	and	paid	his	way
back	to	Liverpool.

Here	we	note	another	curious	coincidence:	Dublin,	or	at	least	one	of	its
citizens,	 accorded	 the	 religious	 refugee	 from	 Liverpool	 decent	 human
treatment	on	his	first	visit;	on	his	second,	some	eleven	years	later,	Trinity
College,	Dublin	granted	him	the	academic	degrees	(B.A.	and	M.A.)	which
his	own	alma	mater,	Cambridge	University,	had	 refused	him	because	he
could	 not,	 being	 a	 Jew,	 subscribe	 to	 that	 remarkable	 compost	 of
nonsensical	 statements	 known	 as	 the	 Thirty-Nine	 Articles	 prescribed	 by
the	Church	of	England	as	the	minimum	of	religious	belief	permissible	to	a
rational	mind.	 It	may	 be	 added	here	however	 that	when	English	 higher
education	finally	unclutched	itself	from	the	stranglehold	of	the	dead	hand
of	 the	 Church	 in	 1871	 Sylvester	 was	 promptly	 given	 his	 degrees	 honoris
causa.	 And	 it	 should	 be	 remarked	 that	 in	 this	 as	 in	 other	 difficulties
Sylvester	was	no	meek,	long-suffering	martyr.	He	was	full	of	strength	and
courage,	both	physical	and	moral,	and	he	knew	how	to	put	up	a	devil	of	a
fight	to	get	justice	for	himself—and	frequently	did.	He	was	in	fact	a	born
fighter	with	the	untamed	courage	of	a	lion.

In	1831,	when	he	was	 just	over	 seventeen,	Sylvester	entered	St.	 John’s
College,	 Cambridge.	 Owing	 to	 severe	 illnesses	 his	 university	 career	 was
interrupted,	and	he	did	not	take	the	mathematical	tripos	till	1837.	He	was
placed	 second.	 The	 man	 who	 beat	 him	 was	 never	 heard	 of	 again	 as	 a
mathematician.	Not	being	a	Christian,	Sylvester	was	ineligible	to	compete
for	the	Smith’s	prizes.

In	 the	 breadth	 of	 his	 intellectual	 interests	 Sylvester	 resembles	 Cayley.
Physically	the	two	men	were	nothing	alike.	Cayley,	though	wiry	and	full	of
physical	endurance	as	we	have	seen,	was	frail	 in	appearance	and	shy	and
retiring	in	manner.	Sylvester,	short	and	stocky,	with	a	magnificent	head	set
firmly	above	broad	shoulders,	gave	the	impression	of	tremendous	strength
and	vitality,	 and	 indeed	he	had	both.	One	of	his	 students	 said	he	might
have	posed	 for	 the	portrait	of	Here-ward	 the	Wake	 in	Charles	Kingsley’s
novel	of	the	same	name.	As	to	interests	outside	of	mathematics,	Sylvester
was	much	less	restricted	and	far	more	liberal	than	Cayley.	His	knowledge
of	the	Greek	and	Latin	classics	 in	the	originals	was	broad	and	exact,	and
he	retained	his	love	of	them	right	up	to	his	last	illness.	Many	of	his	papers



are	enlivened	by	quotations	from	these	classics.	The	quotations	are	always
singularly	apt	and	really	do	illuminate	the	matter	in	hand.

The	same	may	be	said	for	his	allusions	from	other	literatures.	It	might
amuse	 some	 literary	 scholar	 to	 go	 through	 the	 four	 volumes	 of	 the
collected	 Mathematical	 Papers	 and	 reconstruct	 Sylvester’s	 wide	 range	 of
reading	 from	 the	 credited	 quotations	 and	 the	 curious	 hints	 thrown	 out
without	 explicit	 reference.	 In	 addition	 to	 the	 English	 and	 classical
literatures	he	was	well	acquainted	with	the	French,	German,	and	Italian	in
the	 originals.	 His	 interest	 in	 language	 and	 literary	 form	 was	 keen	 and
penetrating.	To	him	is	due	most	of	the	graphic	terminology	of	the	theory
of	invariants.	Commenting	on	his	extensive	coinage	of	new	mathematical
terms	 from	the	mint	of	Greek	and	Latin,	Sylvester	 referred	 to	himself	as
the	“mathematical	Adam.”

On	the	literary	side	it	is	quite	possible	that	had	he	not	been	a	very	great
mathematician	he	might	have	been	something	a	little	better	than	a	merely
passable	poet.	Verse,	and	the	“laws”	of	its	construction,	fascinated	him	all
his	life.	On	his	own	account	he	left	much	verse	(some	of	which	has	been
published),	a	sheaf	of	it	in	the	form	of	sonnets.	The	subject	matter	of	his
verse	 is	 sometimes	 rather	 apt	 to	 raise	 a	 smile,	 but	 he	 frequently	 showed
that	he	understood	what	poetry	is.	Another	interest	on	the	artistic	side	was
music,	 in	which	he	was	an	accomplished	amateur.	 It	 is	 said	 that	he	once
took	 singing	 lessons	 from	 Gounod	 and	 that	 he	 used	 to	 entertain
workingmen’s	gatherings	with	his	 songs.	He	was	prouder	of	his	 “high	C”
than	he	was	of	his	invariants.

One	of	the	many	marked	differences	between	Cayley	and	Sylvester	may
be	noted	here:	Cayley	was	an	omnivorous	reader	of	other	mathematicians’
work;	 Sylvester	 found	 it	 intolerably	 irksome	 to	 attempt	 to	 master	 what
others	 had	 done.	Once,	 in	 later	 life,	 he	 engaged	 a	 young	man	 to	 teach
him	something	about	elliptic	functions	as	he	wished	to	apply	them	to	the
theory	of	numbers	 (in	particular	 to	 the	 theory	of	partitions,	which	deals
with	 the	 number	 of	 ways	 a	 given	 number	 can	 be	 made	 up	 by	 adding
together	 numbers	 of	 a	 given	 kind,	 say	 all	 odd,	 or	 some	 odd	 and	 some
even).	After	about	the	third	lesson	Sylvester	had	abandoned	his	attempt	to
learn	and	was	lecturing	to	the	young	man	on	his	own	latest	discoveries	in
algebra.	 But	 Cayley	 seemed	 to	 know	 everything,	 even	 about	 subjects	 in
which	he	seldom	worked,	and	his	advice	as	a	referee	was	sought	by	authors
and	 editors	 from	 all	 over	 Europe.	 Cayley	 never	 forgot	 anything	 he	 had



seen;	Sylvester	had	difficulty	in	remembering	his	own	inventions	and	once
even	disputed	 that	 a	 certain	 theorem	of	 his	 own	 could	possibly	 be	 true.
Even	comparatively	trivial	things	that	every	working	mathematician	knows
were	 sources	 of	 perpetual	 wonder	 and	 delight	 to	 Sylvester.	 As	 a
consequence	almost	any	field	of	mathematics	offered	an	enchanting	world
for	 discovery	 to	 Sylvester,	 while	 Cayley	 glanced	 serenely	 over	 it	 all,	 saw
what	he	wanted,	took	it,	and	went	on	to	something	fresh.

In	1838,	at	the	age	of	twenty	four,	Sylvester	got	his	first	regular	job,	that
of	 Professor	 of	 Natural	 Philosophy	 (science	 in	 general,	 physics	 in
particular)	 at	 University	 College,	 London,	 where	 his	 old	 teacher	 De
Morgan	was	one	of	his	colleagues.	Although	he	had	studied	chemistry	at
Cambridge,	 and	 retained	 a	 lifelong	 interest	 in	 it,	 Sylvester	 found	 the
teaching	 of	 science	 thoroughly	 uncongenial	 and,	 after	 about	 two	 years,
abandoned	it.	In	the	meantime	he	had	been	elected	a	Fellow	of	the	Royal
Society	at	 the	unusually	early	age	of	 twenty	 five.	Sylvester’s	mathematical
merits	 were	 so	 conspicuous	 that	 they	 could	 not	 escape	 recognition,	 but
they	did	not	help	him	into	a	suitable	position.

At	this	point	in	his	career	Sylvester	set	out	on	one	of	the	most	singular
misadventures	of	his	life.	Depending	upon	how	we	look	at	it,	this	mishap	is
silly,	ludicrous,	or	tragic.	Sanguine	and	filled	with	his	usual	enthusiasm,	he
crossed	the	Atlantic	to	become	Professor	of	Mathematics	at	the	University
of	 Virginia	 in	 1841—the	 year	 in	 which	Boole	 published	 his	 discovery	 of
invariants.

Sylvester	endured	the	University	only	about	three	months.	The	refusal
of	 the	 University	 authorities	 to	 discipline	 a	 young	 gentleman	 who	 had
insulted	 him	 caused	 the	 professor	 to	 resign.	 For	 over	 a	 year	 after	 this
disastrous	 experience	 Sylvester	 tried	 vainly	 to	 secure	 a	 suitable	 position,
soliciting—unsuccessfully—both	 Harvard	 and	 Columbia	 Universities.
Failing,	he	returned	to	England.

Sylvester’s	experiences	in	America	gave	him	his	fill	of	teaching	for	the
next	 ten	years.	On	returning	to	London	he	became	an	energetic	actuary
for	 a	 life	 insurance	 company.	 Such	work	 for	 a	 creative	mathematician	 is
poisonous	drudgery,	 and	Sylvester	 almost	 ceased	 to	be	 a	mathematician.
However,	he	kept	alive	by	taking	a	few	private	pupils,	one	of	whom	was	to
leave	 a	 name	 that	 is	 known	 and	 revered	 in	 every	 country	 of	 the	 world
today.	This	was	in	the	early	1850’s,	the	“potatoes,	prunes,	and	prisms”	era
of	 female	 propriety	 when	 young	 women	 were	 not	 supposed	 to	 think	 of



much	beyond	dabbling	in	paints	and	piety.	So	it	is	rather	surprising	to	find
that	 Sylvester’s	 most	 distinguished	 pupil	 was	 a	 young	 woman,	 Florence
Nightingale,	 the	 first	human	 being	 to	 get	 some	decency	 and	 cleanliness
into	military	hospitals—over	the	outraged	protests	of	bull-headed	military
officialdom.	Sylvester	at	the	time	was	in	his	 late	thirties,	Miss	Nightingale
six	 years	 younger	 than	her	 teacher.	Sylvester	escaped	 from	his	makeshift
ways	of	earning	a	living	in	the	same	year	(1854)	that.	Miss	Nightingale	went
out	to	the	Crimean	War.

Before	 this	 however	he	had	 taken	 another	 false	 step	 that	 landed	him
nowhere.	 In	 1846,	 at	 the	 age	 of	 thirty	 two,	 he	 entered	 the	 Inner	Temple
(where	 he	 coyly	 refers	 to	 himself	 as	 “a	 dove	 nestling	 among	 hawks”)	 to
prepare	for	a	legal	career,	and	in	1850	was	called	to	the	Bar.	Thus	he	and
Cayley	came	together	at	last.

Cayley	was	twenty	nine,	Sylvester	thirty	six	at	the	time;	both	were	out	of
the	real	jobs	to	which	nature	had	called	them.	Lecturing	at	Oxford	thirty
five	 years	 later	 Sylvester	 paid	 grateful	 tribute	 to	 “Cayley,	 who,	 though
younger	than	myself	is	my	spiritual	progenitor—who	first	opened	my	eyes
and	purged	 them	of	dross	 so	 that	 they	 could	 see	 and	 accept	 the	higher
mysteries	of	our	common	Mathematical	 faith.”	 In	 1852,	 shortly	after	 their
acquaintance	 began,	 Sylvester	 refers	 to	 “Mr.	 Cayley,	 who	 habitually
discourses	pearls	and	rubies.”	Mr.	Cayley	for	his	part	frequently	mentions
Mr.	 Sylvester,	 but	 always	 in	 cold	 blood,	 as	 it	 were.	 Sylvester’s	 earliest
outburst	of	gratitude	in	print	occurs	in	a	paper	of	1851	where	he	says,	“The
theorem	 above	 enunciated	 [it	 is	 his	 relation	 between	 the	 minor
determinants	of	linearly	equivalent	quadratic	forms]	was	in	part	suggested
in	the	course	of	a	conversation	with	Mr.	Cayley	(to	whom	I	am	indebted
for	my	restoration	to	the	enjoyment	of	mathematical	life)	.	.	..”

Perhaps	 Sylvester	 overstated	 the	 case,	 but	 there	 was	 a	 lot	 in	 what	 he
said.	If	he	did	not	exactly	rise	from	the	dead	he	at	least	got	a	new	pair	of
lungs:	 from	 the	 hour	 of	 his	meeting	 with	 Cayley	 he	 breathed	 and	 lived
mathematics	to	the	end	of	his	days.	The	two	friends	used	to	tramp	round
the	Courts	of	Lincoln’s	Inn	discussing	the	theory	of	invariants	which	both
of	 them	 were	 creating	 and	 later,	 when	 Sylvester	 moved	 away,	 they
continued	 their	 mathematical	 rambles,	 meeting	 about	 halfway	 between
their	respective	lodgings.	Both	were	bachelors	at	the	time.

*		*		*



The	theory	of	algebraic	invariants	from	which	the	various	extensions	of
the	concept	of	invariance	have	grown	naturally	originated	in	an	extremely
simple	observation.	As	will	be	noted	in	the	chapter	on	Boole,	the	earliest
instance	of	 the	 idea	 appears	 in	Lagrange,	 from	whom	 it	passed	 into	 the
arithmetical	 works	 of	 Gauss.	 But	 neither	 of	 these	men	 noticed	 that	 the
simple	 but	 remarkable	 algebraical	 phenomenon	 before	 them	 was	 the
germ	of	a	vast	theory.	Nor	does	Boole	seem	to	have	fully	realized	what	he
had	 found	 when	 he	 carried	 on	 and	 greatly	 extended	 the	 work	 of
Lagrange.	Except	for	one	slight	tiff,	Sylvester	was	always	just	and	generous
to	Boole	in	the	matter	of	priority,	and	Cayley,	of	course,	was	always	fair.

The	simple	observation	mentioned	above	can	be	understood	by	anyone
who	 has	 ever	 seen	 a	 quadratic	 equation	 solved,	 and	 is	 merely	 this.	 A
necessary	and	sufficient	condition	that	the	equation	ax2	+	2bx	+	c	=	0	shall
have	two	equal	roots	is	that	b2	–	ac	shall	be	zero.	Let	us	replace	the	variable
x	by	its	value	in	terms	of	y	obtained	by	the	transformation	y	=	(px	+	q)/(rx	+
s).	Thus	x	is	to	be	replaced	by	the	result	of	solving	this	for	x,	namely	x	=	(q
–	sy)/(ry	–	p).	This	transforms	the	given	equation	into	another	in	y;	say	the
new	equation	is	Ay2	+	2By	+	C	=	0.	Carrying	out	the	algebra	we	find	that	the
new	coefficients	A,	B,	C	are	expressed	in	terms	of	the	old	a,	b,	c	as	follows,

A	=	as2	–	2bsr	+	cr2,
B	=	–aqs	+	b(qr	-f	sp)	–	cpr,
C	=	aq2	-	2bpq	+	cp2.

From	 these	 it	 is	 easy	 to	 show	 (by	 brute-force	 reductions,	 if	 necessary,
although	 there	 is	 a	 simpler	 way	 of	 reasoning	 the	 result	 out,	 without
actually	calculating	A,	B,	C)	that

B2	-	AC	=	(ps	-	qr)2	(b2	-	ac).

Now	b2	–	ac	is	called	the	discriminant	of	the	quadratic	equation	in	x;	hence
the	discriminant	of	 the	quadratic	 in	y	 is	B2	 –	AC,	 and	 it	has	been	 shown
that	the	discriminant	of	the	transformed	equation	is	equal	to	the	discriminant	of	the
original	 equation,	 times	 the	 factor	 (ps	 –	 qr)2	 which	 depends	 only	 upon	 the
coefficients	p,	q,	r,	s	in	the	transformation	y	=	(px	+	q)/(rx	+	s)	by	means	of	which	x
was	expressed	in	terms	of	y.

Boole	was	the	first	(in	1841)	to	observe	something	worth	looking	at	in
this	particular	trifle.	Every	algebraic	equation	has	a	discriminant,	that	is,	a
certain	expression	(such	as	b2—ac	for	the	quadratic)	which	is	equal	to	zero



if,	 and	 only	 if,	 two	 or	more	 roots	 of	 the	 equation	 are	 equal.	 Boole	 first
asked,	does	 the	discriminant	of	 every	 equation	when	 its	x	 is	 replaced	by
the	related	y	(as	was	done	for	the	quadratic)	come	back	unchanged	except
for	a	factor	depending	only	on	the	coefficients	of	the	transformation?	He
found	 that	 this	 was	 true.	 Next	 he	 asked	 whether	 there	 might	 not	 be
expressions	 other	 than	 discriminants	 constructed	 from	 the	 coefficients
having	this	same	property	of	invariance	under	transformation.	He	found	two
such	 for	 the	general	 equation	of	 the	 fourth	degree.	Then	another	man,
the	 brilliant	 young	 German	 mathematician,	 F.	 M.	 G.	 Eisenstein	 (1823-
1852)	 following	 up	 a	 result	 of	 Boole’s,	 in	 1844,	 discovered	 that	 certain
expressions	involving	both	the	coefficients	and	the	x	of	the	original	equations
exhibit	 the	 same	 sort	 of	 invariance:	 the	 original	 coefficients	 and	 the
original	 x	 pass	 into	 the	 transformed	 coefficients	 and	 y	 (as	 for	 the
quadratic),	and	the	expressions	in	question	constructed	from	the	originals
differ	from	those	constructed	from	the	transforms	only	by	a	factor	which
depends	solely	on	the	coefficients	of	the	transformation.

Neither	Boole	nor	Eisenstein	had	any	general	method	for	finding	such
invariant	expressions.	At	this	point	Cayley	entered	the	field	in	1845	with	his
pathbreaking	memoir,	On	the	Theory	of	Linear	Transformations.	At	the	time
he	 was	 twenty	 four.	 He	 set	 himself	 the	 problem	 of	 finding	 uniform
methods	which	would	 give	him	all	 the	 invariant	 expressions	 of	 the	 kind
described.	To	avoid	lengthy	explanations	the	problem	has	been	stated	in
terms	 of	 equations;	 actually	 it	 was	 attacked	 otherwise,	 but	 this	 is	 of	 no
importance	here.

As	 this	 question	 of	 invariance	 is	 fundamental	 in	 modern	 scientific
thought	we	shall	give	three	further	illustrations	of	what	it	means,	none	of
which	 involves	 any	 symbols	 or	 algebra.	 Imagine	 any	 figure	 consisting	 of
intersecting	straight	lines	and	curves	drawn	on	a	sheet	of	paper.	Crumple
the	paper	in	any	way	you	please	without	tearing	it,	and	try	to	think	what	is
the	most	obvious	property	of	the	figure	that	is	the	same	before	and	after
crumpling.	 Do	 the	 same	 for	 any	 figure	 drawn	 on	 a	 sheet	 of	 rubber,
stretching	but	not	tearing	the	rubber	in	any	complicated	manner	dictated
by	 whim.	 In	 this	 case	 it	 is	 obvious	 that	 sizes	 of	 areas	 and	 angles,	 and
lengths	of	 lines,	have	not	 remained	“invariant.”	By	 suitably	 stretching	 the
rubber	 the	 straight	 lines	 may	 be	 distorted	 into	 curves	 of	 almost	 any
tortuosity	 you	 like,	 and	 at	 the	 same	 time	 the	original	 curves—or	 at	 least
some	of	them—may	be	transformed	into	straight	lines.	Yet	something	about



the	 whole	 figure	 has	 remained	 unchanged;	 its	 very	 simplicity	 and
obviousness	might	well	cause	it	to	be	overlooked.	This	is	the	order	of	the
points	on	any	one	of	the	lines	of	the	figure	which	mark	the	places	where
other	 lines	 intersect	 the	 given	 one.	 Thus,	 if	 moving	 the	 pencil	 along	 a
given	line	from	A	to	C,	we	had	to	pass	over	the	point	B	on	the	line	before
the	figure	was	distorted,	we	shall	have	to	pass	over	B	in	going	from	A	to	C
after	 distortion.	 The	 order	 (as	 described)	 is	 an	 invariant	 under	 the
particular	transformations	which	crumpled	the	sheet	of	paper	into	a	crinkly
ball,	say,	or	which	stretched	the	sheet	of	rubber.

This	 illustration	 may	 seem	 trivial,	 but	 anyone	 who	 has	 read	 a	 non-
mathematical	 description	 of	 the	 intersections	 of	 “world-lines”	 in	 general
relativity,	 and	who	 recalls	 that	 an	 intersection	of	 two	 such	 lines	marks	 a
physical	“point-event”	 will	 see	 that	what	we	have	been	discussing	 is	 of	 the
same	 stuff	 as	 one	 of	 our	 pictures	 of	 the	 physical	 universe.	 The
mathematical	 machinery	 powerful	 enough	 to	 handle	 such	 complicated
“transformations”	and	actually	to	produce	the	invariants	was	the	creation
of	many	 workers,	 including	 Riemann,	 Christoffel,	 Ricci,	 Levi-Civita,	 Lie,
and	 Einstein—all	 names	 well	 known	 to	 readers	 of	 popular	 accounts	 of
relativity;	 the	whole	 vast	 program	was	 originated	by	 the	 early	workers	 in
the	theory	of	algebraic	 invariants,	of	which	Cayley	and	Sylvester	were	the
true	founders.

As	 a	 second	 example,	 imagine	 a	 knot	 to	 be	 looped	 in	 a	 string	whose
ends	are	then	tied	together.	Pulling	at	the	knot,	and	running	it	along	the
string,	we	distort	it	into	any	number	of	“shapes.”	What	remains	“invariant,”
what	is	“conserved,”	under	all	these	distortions	which,	in	this	case,	are	our
transformations?	Obviously	neither	 the	 shape	nor	 the	 size	of	 the	knot	 is
invariant.	But	the	“style”	of	the	knot	itself	is	invariant;	in	a	sense	that	need
not	be	elaborated,	it	is	the	same	sort	of	a	knot	whatever	we	do	to	the	string
provided	we	do	not	untie	its	ends.	Again,	in	the	older	physics,	energy	was
“conserved”;	the	total	amount	of	energy	in	the	universe	was	assumed	to	be
an	 invariant,	 the	same	under	all	 transformations	 from	one	 form,	 such	as
electrical	energy,	into	others,	such	as	heat	and	light.

Our	third	illustration	of	invariance	need	be	little	more	than	an	allusion
to	physical	science.	An	observer	fixes	his	“position”	in	space	and	time	with
reference	to	three	mutually	perpendicular	axes	and	a	standard	timepiece.
Another	 observer,	 moving	 relatively	 to	 the	 first,	 wishes	 to	 describe	 the
same	 physical	 event	 that	 the	 first	 describes.	 He	 also	 has	 his	 space-time



reference	 system;	 his	 movement	 relatively	 to	 the	 first-observer	 can	 be
expressed	 as	 a	 transformation	 of	 his	 own	 coordinates	 (or	 of	 the	 other
observer’s).	 The	 descriptions	 given	 by	 the	 two	may	 or	may	 not	 differ	 in
mathematical	 form,	 according	 to	 the	 particular	 kind	 of	 transformation
concerned.	If	their	descriptions	do	differ,	the	difference	is	not,	obviously,
inherent	 in	 the	 physical	 event	 they	 are	 both	 observing,	 but	 in	 their
reference	 systems	 and	 the	 transformation.	 The	 problem	 then	 arises	 to
formulate	 only	 those	 mathematical	 expressions	 of	 natural	 phenomena
which	 shall	 be	 independent,	 mathematically,	 of	 any	 particular	 reference
system	and	therefore	be	expressed	by	all	observers	in	the	same	form.	This
is	 equivalent	 to	 finding	 the	 invariants	 of	 the	 transformation	 which
expresses	 the	most	 general	 shift	 in	 “space-time”	of	 one	 reference	 system
with	respect	to	any	other.	Thus	the	problem	of	finding	the	mathematical
expressions	for	the	intrinsic	laws	of	nature	is	replaced	by	an	attackable	one
in	 the	 theory	 of	 invariants.	More	 will	 be	 said	 on	 this	 when	 we	 come	 to
Riemann.

*		*		*

In	 1863	 Cambridge	 University	 established	 a	 new	 professorship	 of
mathematics	(the	Sadlerian)	and	offered	the	post	to	Cayley,	who	promptly
accepted.	The	same	year,	at	the	age	of	forty	two,	he	married	Susan	Moline.
Although	he	made	less	money	as	a	professor	of	mathematics	than	he	had
at	the	law,	Cayley	did	not	regret	the	change.	Some	years	later	the	affairs	of
the	University	were	reorganized	and	Cayley’s	salary	was	raised.	His	duties
also	were	 increased	from	one	course	of	 lectures	during	one	term	to	two.
His	 life	 was	 now	 devoted	 almost	 entirely	 to	 mathematical	 research	 and
university	 administration.	 In	 the	 latter	 his	 sound	 business	 training,	 even
temper,	impersonal	judgment,	and	legal	experience	proved	invaluable.	He
never	 had	 a	 great	 deal	 to	 say,	 but	 what	 he	 said	 was	 usually	 accepted	 as
final,	 for	 he	 never	 gave	 an	 opinion	without	 having	 reasoned	 the	matter
through.	His	marriage	and	home	life	were	happy;	he	had	two	children,	a
son	and	a	daughter.	As	he	gradually	aged	his	mind	remained	as	vigorous
as	 ever	 and	his	 nature	 became,	 if	 anything,	 gentler.	No	harsh	 judgment
uttered	 in	 his	 presence	 was	 allowed	 to	 pass	 without	 a	 quiet	 protest.	 To
younger	 men	 and	 beginners	 in	 mathematical	 careers	 he	 was	 always
generous	with	his	help,	encouragement,	and	sound	advice.



During	 his	 professorship	 the	 higher	 education	 of	 women	 was	 a	 hotly
contested	issue.	Cayley	threw	all	his	quiet,	persuasive	influence	on	the	side
of	civilization	and	largely	through	his	efforts	women	were	at	last	admitted
as	students	(in	their	own	nunneries	of	course)to	the	monkish	seclusion	of
medieval	Cambridge.

While	 Cayley	 was	 serenely	 mathematicizing	 at	 Cambridge	 his	 friend
Sylvester	was	 still	 fighting	 the	world.	Sylvester	never	married.	 In	1854,	 at
the	 age	 of	 forty,	 he	 applied	 for	 the	 professorship	 of	mathematics	 at	 the
Royal	 Military	 Academy,	 Woolwich.	 He	 did	 not	 get	 it.	 Nor	 did	 he	 get
another	position	 for	which	he	applied	at	Gresham	College,	London.	His
trial	lecture	was	too	good	for	the	governing	board.	However,	the	successful
Woolwich	candidate	died	the	following	year	and	Sylvester	was	appointed.
Among	his	 not	 too	 generous	 emoluments	was	 the	 right	 of	 pasturage	on
the	common.	As	Sylvester	kept	neither	horse,	cow,	nor	goat,	and	did	not
eat	grass	himself,	it	is	difficult	to	see	what	particular	benefit	he	got	out	of
this	inestimable	boon.

Sylvester	 held	 the	 position	 at	 Woolwich	 for	 sixteen	 years,	 till	 he	 was
forcibly	retired	as	“superannuated”	in	1870	at	the	age	of	fifty	six.	He	was
still	full	of	vigor	but	could	do	nothing	against	the	hidebound	officialdom
against	 him.	 Much	 of	 his	 great	 work	 was	 still	 in	 the	 future,	 but	 his
superiors	took	it	for	granted	that	a	man	of	his	age	must	be	through.

Another	aspect	of	his	forced	retirement	roused	all	his	fighting	instincts.
To	put	 the	matter	plainly,	 the	 authorities	 attempted	 to	 swindle	 Sylvester
out	of	part	of	the	pension	which	was	legitimately	his.	Sylvester	did	not	take
it	 lying	 down.	 To	 their	 chagrin	 the	 would-be	 gyppers	 learned	 that	 they
were	not	browbeating	some	meek	old	professor	but	a	man	who	could	give
them	 a	 little	 better	 than	 he	 took.	 They	 came	 through	 with	 the	 full
pension.

While	 all	 these	 disagreeable	 things	 were	 happening	 in	 his	 material
affairs	 Sylvester	had	no	cause	 to	 complain	on	 the	 scientific	 side.	Honors
frequently	came	his	way,	among	them	one	of	those	most	highly	prized	by
scientific	men,	foreign	correspondent	of	the	French	Academy	of	Sciences.
Sylvester	 was	 elected	 in	 1863	 to	 the	 vacancy	 in	 the	 section	 of	 geometry
caused	by	the	death	of	Steiner.

After	 his	 retirement	 from	 Woolwich	 Sylvester	 lived	 in	 London,
versifying,	 reading	 the	 classics,	 playing	 chess,	 and	 enjoying	 himself
generally,	 but	 not	 doing	 much	 mathematics.	 In	 1870	 he	 published	 his



pamphlet,	The	Laws	of	Verse,	by	which	he	set	great	store.	Then,	in	1876,	he
suddenly	came	to	mathematical	life	again	at	the	age	of	sixty	two.	The	“old”
man	was	simple	inextinguishable.

The	Johns	Hopkins	University	had	been	founded	at	Baltimore	in	1875
under	 the	 brilliant	 leadership	 of	 President	 Gilman.	 Gilman	 had	 been
advised	 to	 start	 off	 with	 an	 outstanding	 classicist	 and	 the	 best
mathematician	he	 could	afford	as	 the	nucleus	of	his	 faculty.	All	 the	 rest
would	follow,	he	was	 told,	and	 it	did.	Sylvester	at	 last	got	a	 job	where	he
might	 do	 practically	 as	 he	 pleased	 and	 in	 which	 he	 could	 do	 himself
justice.	 In	 1876	 he	 again	 crossed	 the	 Atlantic	 and	 took	 up	 his
professorship	 at	 Johns	Hopkins.	 His	 salary	 was	 generous	 for	 those	 days,
five	 thousand	 dollars	 a	 year.	 In	 accepting	 the	 call	 Sylvester	 made	 one
curious	 stipulation;	 his	 salary	 was	 “to	 be	 paid	 in	 gold.”	 Perhaps	 he	 was
thinking	 of	Woolwich,	 which	 gave	 him	 the	 equivalent	 of	 $2750.00	 (plus
pasturage),	 and	 wished	 to	 be	 sure	 that	 this	 time	 he	 really	 got	 what	 was
coming	to	him,	pension	or	no	pension.

The	years	from	1876	to	1883	spent	at	Johns	Hopkins	were	probably	the
happiest	and	most	tranquil	Sylvester	had	thus	far	known.	Although	he	did
not	have	to	“fight	the	world”	any	longer	he	did	not	recline	on	his	honors
and	 go	 to	 sleep.	 Forty	 years	 seemed	 to	 fall	 from	 his	 shoulders	 and	 he
became	 a	 vigorous	 young	 man	 again,	 blazing	 with	 enthusiasm	 and
scintillating	 with	 new	 ideas.	 He	 was	 deeply	 grateful	 for	 the	 opportunity
Johns	Hopkins	gave	him	 to	begin	his	 second	mathematical	 career	at	 the
age	 of	 sixty	 three,	 and	 he	 was	 not	 backward	 in	 expressing	 his	 gratitude
publicly,	in	his	address	at	the	Commemoration	Day	Exercises	of	1877.

In	 this	 Address	 he	 outlined	 what	 he	 hoped	 to	 do	 (he	 did	 it)	 in	 his
lectures	and	researches.

“There	are	things	called	Algebraical	Forms.	Professor	Cayley	calls	them
Quantics.	 [Examples:	 ax2	 +	 2bxy	 +	 cy2,	 ax3	 +	 3bx2y	 +	 3cxy2	 +	 dy3;	 the
numerical	 coefficients	 1,	 2,	 1	 in	 the	 first,	 1,	 3,	 3,	 1	 in	 the	 second,	 are
binomial	coefficients,	as	 in	 the	 third	and	 fourth	 lines	of	Pascal’s	 triangle
(Chapter	5);	the	next	in	order	would	be	x4	+	4x3y	+	6x2y2	+	4xy3	+	y4].	They
are	not,	properly	speaking,	Geometrical	Forms,	although	capable,	to	some
extent,	of	being	embodied	in	them,	but	rather	schemes	of	process,	or	of
operations	 for	 forming,	 for	 calling	 into	 existence,	 as	 it	 were,	 Algebraic
quantities.



“To	every	 such	Quantic	 is	associated	an	 infinite	variety	of	other	 forms
that	 may	 be	 regarded	 as	 engendered	 from	 and	 floating,	 like	 an
atmosphere,	 around	 it—but	 infinite	 as	 were	 these	 derived	 existences,
these	 emanations	 from	 the	 parent	 form,	 it	 is	 found	 that	 they	 admit	 of
being	obtained	by	composition,	by	mixture,	so	to	say,	of	a	certain	limited
number	of	fundamental	forms,	standard	rays,	as	they	might	be	termed	in
the	Algebraic	Spectrum	of	the	Quantic	to	which	they	belong.	And,	as	it	is	a
leading	pursuit	of	the	Physicists	of	the	present	day	[1877,	and	even	today]	to
ascertain	the	fixed	lines	in	the	spectrum	of	every	chemical	substance,	so	it
is	the	aim	and	object	of	a	great	school	of	mathematicians	to	make	out	the
fundamental	 derived	 forms,	 the	 Covariants	 [that	 kind	 of	 ’invariant’
expression,	 already	 described,	 which	 involves	 both	 the	 variables	 and	 the
coefficients	of	 the	 form	or	quantic]	and	 Invariants,	 as	 they	are	called,	of
these	Quantics.”

To	mathematical	readers	it	will	be	evident	that	Sylvester	is	here	giving	a
very	beautiful	 analogy	 for	 the	 fundamental	 system	and	 the	 syzygies	 for	 a
given	form;	the	nonmathematical	reader	may	be	recommended	to	reread
the	passage	to	catch	the	spirit	of	the	algebra	Sylvester	is	talking	about,	as
the	analogy	is	really	a	close	one	and	as	fine	an	example	of	“popularized”
mathematics	as	one	is	likely	to	find	in	a	year’s	marching.

In	 a	 footnote	 Sylvester	 presently	 remarks	 “I	 have	 at	 present	 a	 class	 of
from	eight	 to	 ten	 students	attending	my	 lectures	on	 the	Modern	Higher
Algebra.	 One	 of	 them,	 a	 young	 engineer,	 engaged	 from	 eight	 in	 the
morning	 to	 six	at	night	 in	 the	duties	of	his	office,	with	an	 interval	of	an
hour	and	a	half	for	his	dinner	or	lectures,	has	furnished	me	with	the	best
proof,	 and	 the	best	 expressed,	 I	 have	 ever	 seen	of	what	 I	 call	 [a	 certain
theorem].	 .	 .	 .”	 Sylvester’s	 enthusiasm—he	 was	 past	 sixty—was	 that	 of	 a
prophet	 inspiring	 others	 to	 see	 the	 promised	 land	 which	 he	 had
discovered	or	was	about	 to	discover.	Here	was	 teaching	at	 its	best,	at	 the
only	level,	in	fact,	which	justifies	advanced	teaching	at	all.

He	had	complimentary	things	to	say	(in	footnotes)	about	the	country	of
his	adoption:	“.	 .	 .	 I	believe	 there	 is	no	nation	 in	 the	world	where	ability
with	character	counts	for	so	much,	and	the	mere	possession	of	wealth	(in
spite	 of	 all	 that	 we	 hear	 about	 the	 Almighty	 dollar),	 for	 so	 little	 as	 in
America.	.	.	.”

He	 also	 tells	 how	 his	 dormant	 mathematical	 instincts	 were	 again
aroused	to	full	creative	power.	“But	for	the	persistence	of	a	student	of	this



University	[Johns	Hopkins]	in	urging	upon	me	his	desire	to	study	with	me
the	 modern	 Algebra,	 I	 should	 never	 have	 been	 led	 into	 this
investigation.	.	.	.	He	stuck	with	perfect	respectfulness,	but	with	invincible
pertinacity,	to	his	point.	He	would	have	the	New	Algebra	(Heaven	knows
where	he	had	heard	about	it,	for	it	is	almost	unknown	on	this	continent),
that	or	nothing.	I	was	obliged	to	yield,	and	what	was	the	consequence?	In
trying	to	throw	light	on	an	obscure	explanation	in	our	text-book,	my	brain
took	fire,	I	plunged	with	re-quickened	zeal	into	a	subject	which	I	had	for
years	 abandoned,	 and	 found	 food	 for	 thoughts	 which	 have	 engaged	my
attention	 for	 a	 considerable	 time	 past,	 and	 will	 probably	 occupy	 all	 my
powers	of	contemplation	advantageously	for	several	months	to	come.”

Almost	any	public	speech	or	longer	paper	of	Sylvester’s	contains	much
that	 is	 quotable	 about	 mathematics	 in	 addition	 to	 technicalities.	 A
refreshing	anthology	for	beginners	and	even	for	seasoned	mathematicians
could	 be	 gathered	 from	 the	 pages	 of	 his	 collected	 works.	 Probably	 no
other	mathematician	has	so	transparently	revealed	his	personality	through
his	writings	as	has	Sylvester.	He	liked	meeting	people	and	infecting	them
with	his	own	contagious	enthusiasm	for	mathematics.	Thus	he	says,	truly	in
his	own	case,	“So	long	as	a	man	remains	a	gregarious	and	sociable	being,
he	 cannot	 cut	 himself	 off	 from	 the	 gratification	 of	 the	 instinct	 of
imparting	 what	 he	 is	 learning,	 of	 propagating	 through	 others	 the	 ideas
and	 impressions	 seething	 in	 his	 own	 brain,	 without	 stunting	 and
atrophying	his	moral	nature	and	drying	up	the	surest	sources	of	his	future
intellectual	replenishment.”

As	 a	 pendant	 to	 Cayley’s	 description	 of	 the	 extent	 of	 modern
mathematics,	 we	 may	 hang	 Sylvester’s	 beside	 it.	 “I	 should	 be	 sorry	 to
suppose	that	I	was	to	be	left	for	long	in	sole	possession	of	so	vast	a	field	as
is	occupied	by	modern	mathematics.	Mathematics	is	not	a	book	confined
within	a	cover	and	bound	between	brazen	clasps,	whose	contents	it	needs
only	patience	to	ransack;	it	is	not	a	mine,	whose	treasures	may	take	long	to
reduce	into	possession,	but	which	fill	only	a	limited	number	of	veins	and
lodes;	 it	 is	 not	 a	 soil,	 whose	 fertility	 can	 be	 exhausted	 by	 the	 yield	 of
successive	harvests;	 it	 is	not	 a	 continent	or	 an	ocean,	whose	 area	 can	be
mapped	out	and	 its	contour	defined:	 it	 is	 limitless	as	 that	 space	which	 it
finds	 too	 narrow	 for	 its	 aspirations;	 its	 possibilities	 are	 as	 infinite	 as	 the
worlds	 which	 are	 forever	 crowding	 in	 and	 multiplying	 upon	 the
astronomer’s	 gaze;	 it	 is	 as	 incapable	 of	 being	 restricted	 within	 assigned



boundaries	or	being	reduced	 to	definitions	of	permanent	validity,	as	 the
consciousness,	 the	 life,	which	 seems	 to	 slumber	 in	each	monad,	 in	every
atom	of	matter,	in	each	leaf	and	bud	and	cell,	and	is	forever	ready	to	burst
forth	into	new	forms	of	vegetable	and	animal	existence.”

In	1878	the	American	Journal	of	Mathematics	was	founded	by	Sylvester	and
placed	under	his	editorship	by	Johns	Hopkins	University.

The	Journal	gave	mathematics	 in	the	United	States	a	 tremendous	urge
in	 the	 right	 direction—research.	 Today	 it	 is	 still	 flourishing
mathematically	but	hard	pressed	financially.

Two	 years	 later	 occurred	 one	 of	 the	 classic	 incidents	 in	 Sylvester’s
career.	We	tell	it	in	the	words	of	Dr.	Fabian	Franklin,	Sylvester’s	successor
in	 the	 chair	 of	mathematics	 at	 Johns	Hopkins	 for	 a	 few	 years	 and	 later
editor	of	the	Baltimore	American,	who	was	an	eye	(and	ear)	witness.

“He	 [Sylvester]	 made	 some	 excellent	 translations	 from	 Horace	 and
from	German	poets,	besides	writing	a	number	of	pieces	of	original	verse.
The	 tours	de	 force	 in	 the	way	of	 rhyming,	which	he	performed	while	 in
Baltimore,	were	designed	to	illustrate	the	theories	of	versification	of	which
he	 gives	 illustrations	 in	 his	 little	 book	 called	 ’The	 Laws	 of	 Verse.’	 The
reading	of	the	Rosalind	poem	at	the	Peabody	Institute	was	the	occasion	of
an	amusing	exhibition	of	absence	of	mind.	The	poem	consisted	of	no	less
than	 four	 hundred	 lines,	 all	 rhyming	with	 the	 name	Rosalind	 (the	 long
and	 short	 sound	of	 the	 i	 both	being	allowed).	The	audience	quite	 filled
the	hall,	and	expected	to	find	much	interest	or	amusement	in	listening	to
this	 unique	 experiment	 in	 verse.	 But	 Professor	 Sylvester	 had	 found	 it
necessary	 to	 write	 a	 large	 number	 of	 explanatory	 footnotes,	 and	 he
announced	 that	 in	 order	 not	 to	 interrupt	 the	 poem	 he	 would	 read	 the
footnotes	in	a	body	first.	Nearly	every	footnote	suggested	some	additional
extempore	remark,	and	the	reader	was	so	interested	in	each	one	that	he
was	not	in	the	least	aware	of	the	flight	of	time,	or	of	the	amusement	of	the
audience.	When	he	had	dispatched	the	last	of	the	notes,	he	looked	up	at
the	clock,	and	was	horrified	to	find	that	he	had	kept	the	audience	an	hour
and	a	half	before	beginning	to	read	the	poem	they	had	come	to	hear.	The
astonishment	 on	 his	 face	 was	 answered	 by	 a	 burst	 of	 good-humored
laughter	from	the	audience;	and	then,	after	begging	all	his	hearers	to	feel
at	perfect	 liberty	 to	 leave	 if	 they	had	engagements,	he	read	 the	Rosalind
poem.”



Doctor	Franklin’s	estimate	of	his	 teacher	sums	the	man	up	admirably:
“Sylvester	was	quick-tempered	and	impatient,	but	generous,	charitable	and
tender-hearted.	He	was	always	extremely	appreciative	of	the	work	of	others
and	gave	the	warmest	recognition	to	any	talent	or	ability	displayed	by	his
pupils.	He	was	capable	of	flying	into	a	passion	on	slight	provocation,	but
he	did	not	harbor	resentment,	and	was	always	glad	to	forget	the	cause	of
quarrel	at	the	earliest	opportunity.”

Before	taking	up	the	thread	of	Cayley’s	life	where	it	crossed	Sylvester’s
again,	we	shall	let	the	author	of	Rosalind	describe	how	he	made	one	of	his
most	beautiful	discoveries,	that	of	what	are	called	“canonical	forms.”	[This
means	merely	the	reduction	of	a	given	“quantic”	to	a	“standard”	form.	For
example	ax2	+	2bxy	+	cy2	can	be	expressed	as	the	sum	of	two	squares,	say	X2

+	Y2;	ax5	+	5bx4y	+	10cx3y2	+	10dx2y3	+	5exy4	+	fy5	can	be	expressed	as	a	sum
of	three	fifth	powers,	X5	+	Y5	+	Z5.]

“I	discovered	and	developed	the	whole	theory	of	canonical	binary	forms
for	odd	degrees,	and,	so	far	as	yet	made	out,	for	even	degreesI	too,	at	one
sitting,	with	a	decanter	of	port	wine	to	sustain	nature’s	flagging	energies,
in	a	back	office	in	Lincoln’s	Inn	Fields.	The	work	was	done,	and	well	done,
but	at	the	usual	cost	of	racking	thought—a	brain	on	fire,	and	feet	feeling,
or	 feelingless,	 as	 if	 plunged	 in	 an	 ice-pail.	 That	 night	 we	 slept	 no	 more.”
Experts	agree	that	the	symptoms	are	unmistakable.	But	it	must	have	been
ripe	port,	to	judge	by	what	Sylvester	got	out	of	the	decanter.

*		*		*

Cayley	 and	 Sylvester	 came	 together	 again	 professionally	 when	 Cayley
accepted	an	invitation	to	lecture	at	Johns	Hopkins	for	half	a	year	in	1881-
82.	He	chose	Abelian	functions,	in	which	he	was	researching	at	the	time,
as	his	topic,	and	the	67-year-old	Sylvester	faithfully	attended	every	lecture
of	his	famous	friend.	Sylvester	had	still	several	prolific	years	ahead	of	him,
Cayley	not	quite	so	many.

We	 shall	 now	 briefly	 describe	 three	 of	 Cayley’s	 outstanding
contributions	 to	 mathematics	 in	 addition	 to	 his	 work	 on	 the	 theory	 of
algebraic	 invariants.	 It	has	already	been	mentioned	 that	he	 invented	 the
theory	of	matrices,	the	geometry	of	space	of	n	dimensions,	and	that	one	of
his	 ideas	 in	 geometry	 threw	 a	 new	 light	 (in	 Klein’s	 hands)	 on	 non-
Euclidean	geometry.	We	shall	begin	with	the	last	because	it	is	the	hardest.



Desargues,	Pascal,	Poncelet,	and	others	had	created	projective	geometry
(see	chapters	5,	13)	in	which	the	object	is	to	discover	those	properties	of
figures	 which	 are	 invariant	 under	 projection.	 Measurements—sizes	 of
angles,	lengths	of	lines—and	theorems	which	depend	upon	measurement,
as	for	example	the	Pythagorean	proposition	that	the	square	on	the	longest
side	of	a	right	triangle	is	equal	to	the	sum	of	the	squares	on	the	other	two
sides,	 are	 not	 projective	 but	 metrical,	 and	 are	 not	 handled	 by	 ordinary
projective	 geometry.	 It	 was	 one	 of	 Cayley’s	 greatest	 achievements	 in
geometry	to	transcend	the	barrier	which,	before	he	leapt	it,	had	separated
projective	 from	metrical	 properties	 of	 figures.	 From	his	 higher	 point	 of
view	metrical	geometry	also	became	projective,	 and	 the	great	power	and
flexibility	 of	 projective	 methods	 were	 shown	 to	 be	 applicable,	 by	 the
introduction	 of	 “imaginary”	 elements	 (for	 instance	 points	 whose
coordinates	 involve	 )	 to	 metrical	 properties.	 Anyone	 who	 has	 done
any	 analytic	 geometry	will	 recall	 that	 two	 circles	 intersect	 in	 four	points,
two	 of	 which	 are	 always	 “imaginary.”	 (There	 are	 cases	 of	 apparent
exception,	for	example	concentric	circles,	but	this	is	close	enough	for	our
purpose.)	The	fundamental	notions	in	metrical	geometry	are	the	distance
between	 two	 points	 and	 the	 angle	 between	 two	 lines.	 Replacing	 the
concept	 of	 distance	 by	 another,	 also	 involving	 “imaginary”	 elements,
Cayley	 provided	 the	 means	 for	 unifying	 Euclidean	 geometry	 and	 the
common	 non-Euclidean	 geometries	 into	 one	 comprehensive	 theory.
Without	 the	 use	 of	 some	 algebra	 it	 is	 not	 feasible	 to	 give	 an	 intelligible
account	of	how	this	may	be	done;	 it	 is	sufficient	for	our	purpose	to	have
noted	Cayley’s	main	advance	of	uniting	projective	and	metrical	geometry
with	its	cognate	unification	of	the	other	geometries	just	mentioned.

The	matter	of	n-dimensional	geometry	when	Cayley	first	put	it	out	was
much	more	mysterious	than	it	seems	to	us	today,	accustomed	as	we	are	to
the	 special	 case	 of	 four	 dimensions	 (space-time)	 in	 relativity.	 It	 is	 still
sometimes	 said	 that	 a	 four-dimensional	 geometry	 is	 inconceivable	 to
human	 beings.	 This	 is	 a	 superstition	 which	 was	 exploded	 long	 ago	 by
Plücker;	it	is	easy	to	put	four-dimensional	figures	on	a	flat	sheet	of	paper,
and	so	far	as	geometry	is	concerned	the	whole	of	a	four-dimensional	“space”
can	 be	 easily	 imagined.	 Consider	 first	 a	 rather	 unconventional	 three-
dimensional	space:	all	the	circles	that	may	be	drawn	in	a	plane.	This	“all”	is	a
three-dimensional	“space”	for	the	simple	reason	that	it	takes	precisely	 three
numbers,	 or	 three	 coordinates,	 to	 individualize	 any	 one	 of	 the	 swarm	 of



circles,	namely	two	 to	fix	the	position	of	the	center	with	reference	to	any
arbitrarily	given	pair	of	axes,	and	one	to	give	the	length	of	the	radius.

If	 the	reader	now	wishes	 to	visualize	a	 four-dimensional	 space	he	may
think	 of	 straight	 lines,	 instead	 of	 points,	 as	 the	 elements	 out	 of	 which	 our
common	“solid”	space	is	built.	Instead	of	our	familiar	solid	space	looking
like	an	agglomeration	of	infinitely	fine	birdshot	it	now	resembles	a	cosmic
haystack	of	infinitely	thin,	infinitely	long	straight	straws.	That	it	is	indeed
four-dimensional	in	straight	lines	can	be	seen	easily	if	we	convince	ourselves
(as	 we	may	 do)	 that	 precisely	 four	 numbers	 are	 necessary	 and	 sufficient	 to
individualize	a	particular	straw	in	our	haystack.	The	“dimensionality”	of	a
“space”	can	be	anything	we	choose	to	make	it,	provided	we	suitably	select
the	 elements	 (points,	 circles,	 lines,	 etc.)	 out	 of	 which	 we	 build	 it.	 Of
course	 if	 we	 take	 points	 as	 the	 elements	 out	 of	 which	 our	 space	 is	 to	 be
constructed,	 nobody	 outside	 of	 a	 lunatic	 asylum	 has	 yet	 succeeded	 in
visualizing	a	space	of	more	than	three	dimensions.

Modern	physics	is	fast	teaching	some	to	shed	their	belief	in	a	mysterious
“absolute	space”	over	and	above	the	mathematical	“spaces”—like	Euclid’s,
for	example—that	were	constructed	by	geometers	to	correlate	their	physical
experiences.	 Geometry	 today	 is	 largely	 a	matter	 of	 analysis,	 but	 the	 old
terminology	 of	 “points,”	 “lines,”	 “distances,”	 and	 so	 on,	 is	 helpful	 in
suggesting	interesting	things	to	do	with	our	sets	of	coordinates.	But	it	does
not	 follow	 that	 these	particular	 things	are	 the	most	useful	 that	might	be
done	in	analysis;	it	may	turn	out	some	day	that	all	of	them	are	comparative
trivialities	 by	 more	 significant	 things	 which	 we,	 hidebound	 in	 outworn
traditions,	continue	to	do	merely	because	we	lack	imagination.

If	 there	is	any	mysterious	virtue	in	talking	about	situations	which	arise
in	 analysis	 as	 if	 we	were	 back	with	Archimedes	 drawing	 diagrams	 in	 the
dust,	 it	has	 yet	 to	be	 revealed.	Pictures	 after	 all	may	be	 suitable	only	 for
very	young	children;	Lagrange	dispensed	entirely	with	such	infantile	aids
when	 he	 composed	 his	 analytical	 mechanics.	 Our	 propensity	 to
“geometrize”	our	analysis	may	only	be	evidence	that	we	have	not	yet	grown
up.	Newton	himself,	it	is	known,	first	got	his	marvellous	results	analytically
and	 re-clothed	 them	 in	 the	 demonstrations	 of	 an	 Apollonius	 partly
because	 he	 knew	 that	 the	 multitude—mathematicians	 less	 gifted	 than
himself—would	believe	a	 theorem	 true	only	 if	 it	were	accompanied	by	a
pretty	 picture	 and	 a	 stilted	 Euclidean	 demonstration,	 partly	 because	 he



himself	 still	 lingered	 by	 preference	 in	 the	 pre-Cartesian	 twilight	 of
geometry.

The	 last	 of	 Cayley’s	 great	 inventions	 which	 we	 have	 selected	 for
mention	 is	 that	 of	 matrices	 and	 their	 algebra	 in	 its	 broad	 outline.	 The
subject	 originated	 in	 a	 memoir	 of	 1858	 and	 grew	 directly	 out	 of	 simple
observations	 on	 the	 way	 in	 which	 the	 transformations	 (linear)	 of	 the
theory	 of	 algebraic	 invariants	 are	 combined.	 Glancing	 back	 at	 what	 was
said	on	discriminants	and	their	invariance	we	note	the	transformation	(the
arrow	is	here	read	“is	replaced	by”)	 	Suppose	we	have	two	such
transformations,

the	second	of	which	is	to	be	applied	to	the	x	in	the	first.	We	get

Attending	 only	 to	 the	 coefficients	 in	 the	 three	 transformations	 we	 write
them	in	square	arrays,	thus

and	 see	 that	 the	 result	 of	 performing	 the	 first	 two	 transformations
successively	 could	 have	 been	 written	 down	 by	 the	 following	 rule	 of
“multiplication,”

where	the	rows	of	the	array	on	the	right	are	obtained,	in	an	obvious	way,	by
applying	 the	 rows	 of	 the	 first	 array	 on	 the	 left	 onto	 the	 columns	 of	 the
second.	 Such	 arrays	 (of	 any	 number	 of	 rows	 and	 columns)	 are	 called
matrices.	Their	 algebra	 follows	 from	a	 few	 simple	postulates,	of	which	we

need	cite	only	the	following.	The	matrices	 	and	 	are	equal	(by
definition)	when,	and	only	when,	a	=	A,	b	=	B,	c	=	C,	d	=	D.	The	sum	of	the

two	 matrices	 just	 written	 is	 the	 matrix	 	 The	 result	 of



multiplying	 	by	m	(any	number)	is	the	matrix	 	The	rule	for

“multiplying,”	 X,	 (or	 “compounding”)	 matrices	 is	 as	 exemplified	 for	

	 	above.
A	 distinctive	 feature	 of	 these	 rules	 is	 that	 multiplication	 is	 not

commutative,	except	for	special	kinds	of	matrices.	For	example,	by	the	rule
we	get

and	 the	matrix	 on	 the	 right	 is	 not	 equal	 to	 that	 which	 arises	 from	 the
multiplication

All	 this	 detail,	 particularly	 the	 last,	 has	 been	 given	 to	 illustrate	 a
phenomenon	of	 frequent	 occurrence	 in	 the	history	 of	mathematics:	 the
necessary	 mathematical	 tools	 for	 scientific	 applications	 have	 often	 been
invented	decades	before	the	science	to	which	the	mathematics	 is	 the	key
was	imagined.	The	bizarre	rule	of	“multiplication”	for	matrices,	by	which
we	 get	 different	 results	 according	 to	 the	 order	 in	 which	 we	 do	 the
multiplication	(unlike	common	algebra	where	x	×	y	is	always	equal	to	y	×	x),
seems	about	as	far	from	anything	of	scientific	or	practical	use	as	anything
could	possibly	be.	Yet	sixty	seven	years	after	Cayley	invented	it,	Heisenberg
in	 1925	 recognized	 in	 the	 algebra	 of	 matrices	 exactly	 the	 tool	 which	 he
needed	for	his	revolutionary	work	in	quantum	mechanics.

Cayley	continued	in	creative	activity	up	to	the	week	of	his	death,	which
occurred	 after	 a	 long	 and	 painful	 illness,	 borne	 with	 resignation	 and
unflinching	courage,	on	January	26,	1895.	To	quote	the	closing	sentences	of
Forsyth’s	 biography:	 “But	 he	 was	 more	 than	 a	 mathematician.	 With	 a
singleness	 of	 aim,	which	Wordsworth	would	have	 chosen	 for	 his	 ’Happy
Warrior,’	he	persevered	to	the	last	 in	his	nobly	 lived	ideal.	His	 life	had	a
significant	 influence	 on	 those	 who	 knew	 him	 [Forsyth	 was	 a	 pupil	 of
Cayley	 and	 became	 his	 successor	 at	 Cambridge]:	 they	 admired	 his
character	as	much	as	 they	 respected	his	genius:	 and	 they	 felt	 that,	 at	his
death,	a	great	man	had	passed	from	the	world.”



Much	 of	 what	 Cayley	 did	 has	 passed	 into	 the	 main	 current	 of
mathematics,	 and	 it	 is	 probable	 that	much	more	 in	 his	massive	Collected
Mathematical	Papers	(thirteen	large	quarto	volumes	of	about	600	pages	each,
comprising	 966	 papers)	 will	 suggest	 profitable	 forays	 to	 adventurous
mathematicians	 for	 generations	 to	 come.	 At	 present	 the	 fashion	 is	 away
from	the	fields	of	Cayley’s	greatest	interest,	and	the	same	may	be	said	for
Sylvester;	but	mathematics	has	a	habit	of	returning	to	its	old	problems	to
sweep	them	up	into	more	inclusive	syntheses.

*		*		*

In	1883	Henry	John	Stephen	Smith,	the	brilliant	Irish	specialist	 in	the
theory	 of	 numbers	 and	 Savilian	 Professor	 of	 Geometry	 in	 Oxford
University,	 died	 in	 his	 scientific	 prime	 at	 the	 age	 of	 fifty	 seven.	 Oxford
invited	 the	aged	Sylvester,	 then	 in	his	 seventieth	 year,	 to	 take	 the	 vacant
chair.	Sylvester	accepted,	much	to	the	regret	of	his	innumerable	friends	in
America.	But	he	felt	homesick	for	his	native	 land	which	had	treated	him
none	too	generously;	possibly	also	it	gave	him	a	certain	satisfaction	to	feel
that	“the	stone	which	the	builders	rejected,	the	same	is	become	the	head
of	the	corner.”

The	 amazing	 old	man	 arrived	 in	Oxford	 to	 take	 up	 his	 duties	 with	 a
brand-new	mathematical	 theory	 (“Reciprocants”—differential	 invariants)
to	spring	on	his	advanced	students.	Any	praise	or	 just	recognition	always
seemed	to	inspire	Sylvester	to	outdo	himself.	Although	he	had	been	partly
anticipated	 in	 his	 latest	 work	 by	 the	 French	 mathematician	 Georges
Halphen,	he	stamped	it	with	his	peculiar	genius	and	enlivened	it	with	his
ineffaceable	individuality.

The	 inaugural	 lecture,	 delivered	 on	 December	 12,	 1885,	 at	 Oxford
when	Sylvester	was	seventy	one,	has	all	the	fire	and	enthusiasm	of	his	early
years,	 perhaps	more,	 because	 he	 now	 felt	 secure	 and	 knew	 that	 he	 was
recognized	 at	 last	 by	 that	 snobbish	 world	 which	 had	 fought	 him.	 Two
extracts	will	give	some	idea	of	the	style	of	the	whole.

“The	 theory	 I	 am	 about	 to	 expound,	 or	 whose	 birth	 I	 am	 about	 to
announce,	stands	to	this	[’the	great	theory	of	Invariants’]	 in	the	relation
not	of	a	younger	sister,	but	of	a	brother,	who,	though	of	later	birth,	on	the
principle	 that	 the	masculine	 is	more	worthy	 than	 the	 feminine,	or	 at	 all
events,	 according	 to	 the	 regulations	 of	 the	 Salic	 law,	 is	 entitled	 to	 take



precedence	 over	 his	 elder	 sister,	 and	 exercise	 supreme	 sway	 over	 their
united	realms.”

Commenting	 on	 the	 unaccountable	 absence	 of	 a	 term	 in	 a	 certain
algebraic	expression	he	waxes	lyric.

“Still,	 in	 the	 case	before	us,	 this	 unexpected	 absence	of	 a	member	of
the	 family,	 whose	 appearance	 might	 have	 been	 looked	 for,	 made	 an
impression	 on	 my	 mind,	 and	 even	 went	 to	 the	 extent	 of	 acting	 on	 my
emotions.	 I	began	 to	 think	of	 it	as	a	 sort	of	 lost	Pleiad	 in	an	Algebraical
Constellation,	 and	 in	 the	 end,	 brooding	 over	 the	 subject,	 my	 feelings
found	vent,	or	 sought	 relief,	 in	a	 rhymed	effusion,	a	 jeu	de	 sottise,	which,
not	 without	 some	 apprehension	 of	 appearing	 singular	 or	 extravagant,	 I
will	venture	to	rehearse.	It	will	at	least	serve	as	an	interlude,	and	give	some
relief	to	the	strain	upon	your	attention	before	I	proceed	to	make	my	final
remarks	on	the	general	theory.

TO	A	MISSING	MEMBER

OF	A	FAMILY	OF	TERMS	IN	AN	ALGEBRAICAL	FORMULA.

Lone	and	discarded	one!	divorced	by	fate,
From	thy	wished-for	fellows—whither	art	flown?
Where	lingerest	thou	in	thy	bereaved	estate,
Like	some	lost	star	or	buried	meteor	stone?
Thou	mindst	me	much	of	that	presumptuous	one
Who	loth,	aught	less	than	greatest,	to	be	great,
From	Heaven	s	immensity	fell	headlong	down
To	live	forlorn,	self-centred,	desolate:
Or	who,	new	Heraklid,	hard	exile	bore,
Now	buoyed	by	hope,	now	stretched	on	rack	of	fear,
Till	throned	Astraea,	wafting	to	his	ear
Words	of	dim	portent	through	the	Atlantic	roar,
Bade	him	’the	sanctuary	of	the	Muse	revere
And	strew	with	flame	the	dust	of	Isis’	shore’.

Having	 refreshed	 ourselves	 and	 bathed	 the	 tips	 of	 our	 fingers	 in	 the
Pierian	spring,	let	us	turn	back	for	a	few	brief	moments	to	a	light	banquet
of	 the	reason,	and	entertain	ourselves	as	a	sort	of	after-course	with	some
general	 reflections	 arising	 naturally	 out	 of	 the	 previous	 matter	 of	 my
discourse.”

If	 the	 Pierian	 spring	was	 the	 old	 boy’s	 finger	 bowl	 at	 this	 astonishing
feast	of	reason,	it	is	a	safe	bet	that	the	faithful	decanter	of	port	was	never
very	far	from	his	elbow.



Sylvester’s	 sense	of	 the	kinship	of	mathematics	 to	 the	 finer	arts	 found
frequent	expression	in	his	writings.	Thus,	in	a	paper	on	Newton’s	rule	for
the	 discovery	 of	 imaginary	 roots	 of	 algebraic	 equations,	 he	 asks	 in	 a
footnote	 “May	 not	 Music	 be	 described	 as	 the	 Mathematic	 of	 sense,
Mathematic	as	Music	of	 the	 reason?	Thus	 the	musician	 feels	Mathematic,
the	 mathematician	 thinks	 Music—Music	 the	 dream,	 Mathematic	 the
working	life—each	to	receive	its	consummation	from	the	other	when	the
human	intelligence,	elevated	to	its	perfect	type,	shall	shine	forth	glorified
in	some	future	Mozart-Dirichlet	or	Beethoven-Gauss—a	union	already	not
indistinctly	foreshadowed	in	the	genius	and	labors	of	a	Helmholtz!”

Sylvester	 loved	 life,	 even	when	he	was	 forced	 to	 fight	 it,	 and	 if	 ever	 a
man	got	the	best	that	is	in	life	out	of	it,	he	did.	He	gloried	in	the	fact	that
the	great	mathematicians,	except	for	what	may	be	classed	as	avoidable	or
accidental	 deaths,	 have	 been	 long-lived	 and	 vigorous	 of	 mind	 to	 their
dying	days.	In	his	presidential	address	to	the	British	Association	in	1869	he
called	 the	honor	roll	of	 some	of	 the	greatest	mathematicians	of	 the	past
and	gave	 their	 ages	 at	 death	 to	bear	out	his	 thesis	 that	 “.	 .	 .	 there	 is	no
study	 in	 the	 world	 which	 brings	 into	 more	 harmonious	 action	 all	 the
faculties	of	the	mind	than	[mathematics],	.	 .	 .	or,	like	this,	seems	to	raise
them,	 by	 successive	 steps	 of	 initiation,	 to	 higher	 and	 higher	 states	 of
conscious	 intellectual	 being.	 .	 .	 .	The	mathematician	 lives	 long	 and	 lives
young;	the	wings	of	the	soul	do	not	early	drop	off,	nor	do	its	pores	become
clogged	with	the	earthy	particles	blown	from	the	dusty	highways	of	vulgar
life.”

Sylvester	was	a	living	example	of	his	own	philosophy.	But	even	he	at	last
began	 to	 bow	 to	 time.	 In	 1893—he	 was	 then	 seventy	 nine—his	 eyesight
began	 to	 fail,	 and	he	became	 sad	and	discouraged	because	he	 could	no
longer	lecture	with	his	old	enthusiasm.	The	following	year	he	asked	to	be
relieved	 of	 the	more	 onerous	 duties	 of	 his	 professorship,	 and	 retired	 to
live,	 lonely	 and	 dejected,	 in	 London	 or	 at	 Tunbridge	 Wells.	 All	 his
brothers	and	sisters	had	long	since	died,	and	he	had	outlived	most	of	his
dearest	friends.

But	even	now	he	was	not	through.	His	mind	was	still	vigorous,	although
he	himself	felt	that	the	keen	edge	of	his	inventiveness	was	dulled	forever.
Late	 in	 1896,	 in	 the	 eighty	 second	 year	 of	 his	 age,	 he	 found	 a	 new
enthusiasm	in	a	field	which	had	always	fascinated	him,	and	he	blazed	up



again	over	the	theory	of	compound	partitions	and	Goldbach’s	conjecture
that	every	even	number	is	the	sum	of	two	primes.

He	 had	 not	 much	 longer.	 While	 working	 at	 his	 mathematics	 in	 his
London	 rooms	early	 in	March,	 1897,	 he	 suffered	 a	 paralytic	 stroke	which
destroyed	 his	 power	 of	 speech.	He	 died	 on	March	 15,	 1897,	 at	 the	 age	 of
eighty	three.	His	life	can	be	summed	up	in	his	own	words,	“I	really	love	my
subject.”

I.	This	part	of	 the	 theory	was	developed	many	years	 later	by	E.	K.	Wakeford	(1894-1916),	who
lost	 his	 life	 in	 the	World	War.	 “Now	 thanked	 be	God	who	matched	 us	 with	 this	 hour.”	 (Rupert
Brooke.)



CHAPTER	TWENTY	TWO

Master	and	Pupil

WEIERSTRASS	AND	SONJA	KOWALEWSKI

The	theory	that	has	had	the	greatest	development	in	recent	times	is	without	any	doubt	the	theory	of	functions.
—VITO	VOLTERRA

YOUNG	DOCTORS	IN	MATHEMATICS,	anxiously	seeking	positions	in	which	their
training	and	 talents	may	have	 some	play,	often	ask	whether	 it	 is	possible
for	 a	 man	 to	 do	 elementary	 teaching	 for	 long	 and	 keep	 alive
mathematically.	 It	 is.	 The	 life	 of	 Boole	 is	 a	 partial	 answer;	 the	 career	 of
Weierstrass,	 the	 prince	 of	 analysts,	 “the	 father	 of	 modern	 analysis,”	 is
conclusive.

Before	 considering	 Weierstrass	 in	 some	 detail,	 we	 place	 him
chronologically	with	respect	to	those	of	his	German	contemporaries,	each
of	 whom,	 like	 him,	 gave	 at	 least	 one	 vast	 empire	 of	mathematics	 a	 new
outlook	 during	 the	 second	 half	 of	 the	 nineteenth	 century	 and	 the	 first
three	decades	of	the	twentieth.	The	year	1855,	which	marks	the	death	of
Gauss	 and	 the	 breaking	 of	 the	 last	 link	 with	 the	 outstanding
mathematicians	of	 the	preceding	 century,	may	be	 taken	 as	 a	 convenient
point	of	reference.	 In	1855	Weierstrass	(1815-1897)	was	 forty;	Kronecker
(1823-1891),	 thirty	 two;	 Riemann	 (1826-1866),	 twenty	 nine;	 Dedekind
(1831-1916),	twenty	four;	while	Cantor	(1845-1918)	was	a	small	boy	of	ten.
Thus	 German	 mathematics	 did	 not	 lack	 recruits	 to	 carry	 on	 the	 great
tradition	of	Gauss.	Weierstrass	was	just	gaining	recognition;	Kronecker	was
well	started;	some	of	Riemann’s	greatest	work	was	already	behind	him,	and
Dedekind	was	entering	the	field	(the	theory	of	numbers)	in	which	he	was
to	gain	his	greatest	fame.	Cantor,	of	course,	had	not	yet	been	heard	from.

We	 have	 juxtaposed	 these	 names	 and	 dates	 because	 four	 of	 the	men
mentioned,	dissimilar	 and	 totally	unrelated	 as	much	of	 their	 finest	work
was,	 came	 together	 on	 one	 of	 the	 central	 problems	 of	 all	 mathematics,
that	 of	 irrational	 numbers:	 Weierstrass	 and	 Dedekind	 resumed	 the



discussion	of	irrationals	and	continuity	practically	where	Eudoxus	had	left
it	 in	 the	 fourth	 century	 B.C.;	 Kronecker,	 a	modern	 echo	 of	 Zeno,	made
Weierstrass’	 last	 years	 miserable	 by	 skeptical	 criticism	 of	 the	 latter’s
revision	of	Eudoxus;	while	Cantor,	striking	out	on	a	new	road	of	his	own,
sought	to	compass	the	actual	infinite	itself	which	is	implicit—according	to
some—in	 the	 very	 concept	of	 continuity.	Out	of	 the	work	of	Weierstrass
and	 Dedekind	 developed	 the	modern	 epoch	 of	 analysis,	 that	 of	 critical
logical	 precision	 in	 analysis	 (the	 calculus,	 the	 theory	 of	 functions	 of	 a
complex	 variable,	 and	 the	 theory	 of	 functions	 of	 real	 variables)	 in
distinction	to	the	looser	intuitive	methods	of	some	of	the	older	writers—
invaluable	 as	 heuristic	 guides	 to	 discovery	 but	 quite	 worthless	 from	 the
standpoint	of	the	Pythagorean	ideal	of	mathematical	proof.	As	has	already
been	noted,	Gauss,	Abel,	and	Cauchy	inaugurated	the	first	period	of	rigor;
the	movement	started	by	Weierstrass	and	Dedekind	was	on	a	higher	plane,
suitable	to	the	more	exacting	demands	of	analysis	in	the	second	half	of	the
century,	for	which	the	earlier	precautions	were	inadequate.

One	discovery	by	Weierstrass	in	particular	shocked	the	intuitive	school
of	 analysts	 into	 a	 decent	 regard	 for	 caution:	 he	 produced	 a	 continuous
curve	which	has	no	tangent	at	any	point.	Gauss	once	called	mathematics
“the	science	of	the	eye”;	it	takes	more	than	a	good	pair	of	eyes	to	“see”	the
curve	which	Weierstrass	presented	to	the	advocates	of	sensual	intuition.

Since	to	every	action	there	is	an	equal	and	opposite	reaction	it	was	but
natural	 that	all	 this	 revamped	rigor	 should	engender	 its	own	opposition.
Kronecker	attacked	it	vigorously,	even	viciously,	and	quite	exasperatingly.
He	denied	that	it	meant	anything.	Although	he	succeeded	in	hurting	the
venerable	 and	 kindly	 Weierstrass,	 he	 made	 but	 little	 impression	 on	 his
conservative	 contemporaries	 and	 practically	 none	 on	 mathematical
analysis.	Kronecker	was	a	generation	ahead	of	his	time.	Not	till	the	second
decade	 of	 the	 twentieth	 century	 did	 his	 strictures	 on	 the	 currently
accepted	 doctrines	 of	 continuity	 and	 irrational	 numbers	 receive	 serious
consideration.	 Today	 it	 is	 true	 that	 not	 all	 mathematicians	 regard
Kronecker’s	attack	as	merely	 the	release	of	his	pent-up	envy	of	 the	more
famous	Weierstrass	which	 some	of	his	contemporaries	 imagined	 it	 to	be,
and	it	 is	admitted	that	 there	may	be	something—not	much,	perhaps—in
his	disturbing	objections.	Whether	there	is	or	not,	Kronecker’s	attack	was
partly	 responsible	 for	 the	 third	 period	 of	 rigor	 in	modern	mathematical
reasoning,	 that	 which	 we	 ourselves	 are	 attempting	 to	 enjoy.	 Weierstrass



was	not	 the	only	 fellow-mathematician	whom	Kronecker	harried;	Cantor
also	suffered	deeply	under	what	he	considered	his	 influential	colleague’s
malicious	 persecution.	 All	 these	 men	 will	 speak	 for	 themselves	 in	 the
proper	place;	here	we	are	only	attempting	to	indicate	that	their	lives	and
work	 were	 closely	 interwoven	 in	 at	 least	 one	 corner	 of	 the	 gorgeous
pattern.

To	 complete	 the	 picture	 we	 must	 indicate	 other	 points	 of	 contact
between	Weierstrass,	Kronecker,	and	Riemann	on	one	side	and	Kronecker
and	Dedekind	on	the	other.	Abel,	we	recall,	died	in	1829,	Galois	in	1832,
and	Jacobi	in	1851.	In	the	epoch	under	discussion	one	of	the	outstanding
problems	in	mathematical	analysis	was	the	completion	of	the	work	of	Abel
and	 Jacobi	 on	 multiply	 periodic	 functions—elliptic	 functions,	 Abelian
functions	 (see	 chapters	 17,	 18).	 From	 totally	 different	 points	 of	 view
Weierstrass	and	Riemann	accomplished	what	was	to	be	done—Weierstrass
indeed	considered	himself	in	some	degree	a	successor	of	Abel;	Kronecker
opened	up	new	vistas	in	elliptic	functions	but	he	did	not	compete	with	the
other	 two	 in	 the	 field	 of	 Abelian	 functions.	 Kronecker	 was	 primarily	 an
arithmetician	 and	 an	 algebraist;	 some	 of	 his	 best	 work	 went	 into	 the
elaboration	and	extension	of	the	work	of	Galois	in	the	theory	of	equations.
Thus	Galois	found	a	worthy	successor	not	too	long	after	his	death.

Apart	 from	 his	 forays	 into	 the	 domain	 of	 continuity	 and	 irrational
numbers,	 Dedekind’s	 most	 original	 work	 was	 in	 the	 higher	 arithmetic,
which	he	revolutionized	and	renovated.	In	this	Kronecker	was	his	able	and
sagacious	 rival,	 but	 again	 their	whole	 approaches	were	 entirely	 different
and	characteristic	of	 the	 two	men:	Dedekind	overcame	his	difficulties	 in
the	 theory	 of	 algebraic	 numbers	 by	 taking	 refuge	 in	 the	 infinite	 (in	 his
theory	 of	 “ideals,”	 as	 will	 be	 indicated	 in	 the	 proper	 place);	 Kronecker
sought	to	solve	his	problems	in	the	finite.

*		*		*

Karl	 Wilhelm	 Theodor	 Weierstrass,	 the	 eldest	 son	 of	 Wilhelm
Weierstrass	 (1790-1869)	 and	 his	 wife	 Theodora	 Forst,	 was	 born	 on
October	31,	1815,	at	Ostenfelde	in	the	district	of	Münster,	Germany.	The
father	 was	 then	 a	 customs	 officer	 in	 the	 pay	 of	 the	 French.	 It	 may	 be
recalled	 that	 1815	 was	 the	 year	 of	 Waterloo;	 the	 French	 were	 still
dominating	 Europe.	 That	 year	 also	 saw	 the	 birth	 of	 Bismarck,	 and	 it	 is



interesting	to	observe	that	whereas	the	more	famous	statesman’s	life	work
was	shot	to	pieces	in	the	World	War,	if	not	earlier,	the	contributions	of	his
comparatively	obscure	 contemporary	 to	 science	and	 the	 advancement	 of
civilization	in	general	are	even	more	highly	esteemed	today	than	they	were
during	his	lifetime.

The	Weierstrass	 family	were	devout	 liberal	Catholics	all	 their	 lives;	 the
father	had	been	converted	from	Protestantism,	probably	at	the	time	of	his
marriage.	Karl	had	a	brother,	Peter	(died	in	1904),	and	two	sisters,	Klara
(1823-1896),	and	Elise	(1826-1898)	who	looked	after	his	comfort	all	their
lives.	The	mother	died	 in	1826,	 shortly	after	Elise’s	birth,	and	 the	 father
married	again	the	following	year.	Little	is	known	of	Karl’s	mother,	except
that	she	appears	to	have	regarded	her	husband	with	a	restrained	aversion
and	 to	 have	 looked	 on	 her	 marriage	 with	 moderated	 disgust.	 The
stepmother	 was	 a	 typical	 German	 housewife;	 her	 influence	 on	 the
intellectual	development	of	her	stepchildren	was	probably	nil.	The	father,
on	 the	other	hand,	was	a	practical	 idealist,	 and	a	man	of	culture	who	at
one	time	had	been	a	 teacher.	The	 last	 ten	years	of	his	 life	were	spent	 in
peaceful	old	age	in	the	house	of	his	famous	son	in	Berlin,	where	the	two
daughters	 also	 lived.	None	 of	 the	 children	 ever	married,	 although	 poor
Peter	once	showed	an	inclination	toward	matrimony	which	was	promptly
squelched	by	his	father	and	sisters.

One	possible	discord	 in	 the	natural	 sociability	of	 the	children	was	 the
father’s	 uncompromising	 righteousness,	 domineering	 authority,	 and
Prussian	pigheadedness.	He	nearly	wrecked	Peter’s	life	with	his	everlasting
lecturing	and	came	perilously	close	 to	doing	the	same	by	Karl,	whom	he
attempted	to	force	into	an	uncongenial	career	without	ascertaining	where
his	brilliant	young	son’s	abilities	 lay.	Old	Weierstrass	had	 the	audacity	 to
preach	 at	 his	 younger	 son	 and	 meddle	 in	 his	 affairs	 till	 the	 “boy”	 was
nearly	forty.	Luckily	Karl	was	made	of	more	resistant	stuff.	As	we	shall	see
his	 fight	 against	 his	 father—although	 he	 himself	 was	 probably	 quite
unaware	 that	 he	 was	 fighting	 the	 tyrant—took	 the	 not	 unusual	 form	 of
making	a	mess	of	 the	 life	his	 father	had	chosen	for	him.	It	was	as	neat	a
defense	 as	 he	 could	 possibly	 have	 devised,	 and	 the	 best	 of	 it	 was	 that
neither	he	nor	his	 father	ever	dreamed	what	was	happening,	although	a
letter	 of	 Karl’s	 when	 he	 was	 sixty	 shows	 that	 he	 had	 at	 last	 realized	 the
cause	 of	 his	 early	 difficulties.	 Karl	 at	 last	 got	 his	 way,	 but	 it	 was	 a	 long,
roundabout	 way,	 beset	 with	 trials	 and	 errors.	 Only	 a	 shaggy	 man	 like



himself,	huge	and	rugged	of	body	and	mind,	could	have	won	through	to
the	end.

Shortly	 after	 Karl’s	 birth	 the	 family	 moved	 to	 Westernkotten,
Westphalia,	where	 the	 father	became	a	customs	officer	at	 the	 salt	works.
Westernkotten,	like	other	dismal	holes	in	which	Weierstrass	spent	the	best
years	of	his	life,	is	known	in	Germany	today	only	because	Weierstrass	once
was	condemned	to	rot	there—only	he	did	not	rust;	his	first	published	work
is	dated	as	having	been	written	in	1841	(he	was	then	26)	at	Westernkotten.
There	being	no	school	in	the	village,	Karl	was	sent	to	the	adjacent	town	of
Münster	 whence,	 at	 fourteen,	 he	 entered	 the	 Catholic	 Gymnasium	 at
Paderborn.	Like	Descartes	under	somewhat	similar	conditions,	Weierstrass
thoroughly	 enjoyed	 his	 school	 and	made	 friends	 of	 his	 expert,	 civilized
instructors.	 He	 traversed	 the	 set	 course	 in	 considerably	 less	 than	 the
standard	 time,	making	 a	uniformly	brilliant	 record	 in	 all	 his	 studies.	He
left	 in	 1834	 at	 the	 age	 of	 nineteen.	 Prizes	 fell	 his	 way	 with	 unfailing
regularity;	 one	 year	 he	 carried	 off	 seven;	 he	was	 usually	 first	 in	German
and	 in	 two	 of	 the	 three,	 Latin,	 Greek,	 and	mathematics.	 By	 a	 beautiful
freak	 of	 irony	 he	 never	 won	 a	 prize	 for	 calligraphy,	 although	 he	 was
destined	to	teach	penmanship	to	little	boys	but	recently	emancipated	from
their	mothers’	apron	strings.

As	mathematicians	often	have	a	liking	for	music	it	is	of	interest	to	note
here	 that	Weierstrass,	 broad	 as	 he	 was,	 could	 not	 tolerate	music	 in	 any
form.	It	meant	nothing	to	him	and	he	did	not	pretend	that	it	did.	When
he	had	become	a	success	his	solicitous	sisters	tried	to	get	him	to	take	music
lessons	 to	make	 him	more	 conventional	 socially,	 but	 after	 a	 halfhearted
lesson	or	 two	he	 abandoned	 the	distasteful	project.	Concerts	 bored	him
and	 grand	 opera	 put	 him	 to	 sleep—when	 they	 could	 drag	 him	 out	 to
either.

Like	 his	 good	 father,	 Karl	 was	 not	 only	 an	 idealist	 but	 was	 also
extremely	 practical—for	 a	 time.	 In	 addition	 to	 capturing	 most	 of	 the
prizes	in	purely	impractical	studies	he	secured	a	paying	job,	at	the	age	of
fifteen,	as	accountant	 for	a	prosperous	 female	merchant	 in	 the	ham	and
butter	business.

All	 of	 these	 successes	 had	 a	 disastrous	 effect	 on	 Karl’s	 future.	 Old
Weierstrass,	like	many	parents,	drew	the	wrong	conclusion	from	his	son’s
triumphs.	He	“reasoned”	as	follows.	Because	the	boy	has	won	a	cartload	of
prizes,	therefore	he	must	have	a	good	mind—this	much	may	be	admitted;



and	because	he	has	kept	himself	in	pocket	money	by	posting	the	honored
female	butter	and	ham	merchant’s	books	efficiently,	therefore	he	will	be	a
brilliant	bookkeeper.	Now	what	is	the	acme	of	all	bookkeeping?	Obviously
a	 government	 nest—in	 the	 higher	 branches	 of	 course—in	 the	 Prussian
civil	 service.	But	 to	prepare	 for	 this	exalted	position,	a	knowledge	of	 the
law	is	desirable	in	order	to	pluck	effectively	and	to	avoid	being	plucked.

As	 the	 grand	 conclusion	 of	 all	 this	 logic,	 paterfamilias	 Weierstrass
shoved	his	gifted	son,	at	the	age	of	nineteen,	headfirst	into	the	University
of	Bonn	to	master	the	chicaneries	of	commerce	and	the	quibblings	of	the
law.

Karl	had	more	sense	than	to	attempt	either.	He	devoted	his	great	bodily
strength,	his	 lightning	dexterity	 and	his	keen	mind	almost	 exclusively	 to
fencing	 and	 the	mellow	 sociability	 that	 is	 induced	by	nightly	 and	 liberal
indulgence	in	honest	German	beer.	What	a	shocking	example	for	ant-eyed
Ph.D.’s	who	shrink	from	a	spell	of	school-teaching	lest	their	dim	lights	be
dimmed	forever!	But	to	do	what	Weierstrass	did,	and	get	away	with	it,	one
must	have	at	least	a	tenth	of	his	constitution	and	not	less	than	one	tenth	of
one	percent	of	his	brains.

Bonn	found	Weierstrass	unbeatable.	His	quick	eye,	his	 long	reach,	his
devilish	 accuracy,	 and	 his	 lightning	 speed	 in	 fencing	 made	 him	 an
opponent	 to	 admire	 but	 not	 to	 touch.	 As	 a	matter	 of	 historical	 fact	 he
never	was	touched:	no	jagger	scar	adorned	his	cheeks,	and	in	all	his	bouts
he	never	lost	a	drop	of	blood.	Whether	or	not	he	was	ever	put	under	the
table	 in	 the	 subsequent	 celebrations	 of	 his	 numerous	 victories	 is	 not
known.	His	discreet	biographers	are	somewhat	reticent	on	this	important
point,	 but	 to	 anyone	 who	 has	 ever	 contemplated	 one	 of	 Weierstrass’
mathematical	masterpieces	it	is	inconceivable	that	so	strong	a	head	as	his
could	ever	have	nodded	over	a	half-gallon	stein.	His	four	misspent	years	in
the	university	were	perhaps	after	all	well	spent.

His	 experiences	 at	Bonn	did	 three	 things	of	 the	greatest	moment	 for
Weierstrass:	 they	 cured	 him	 of	 his	 father	 fixation	 without	 in	 any	 way
damaging	his	 affection	 for	his	deluded	parent;	 they	made	him	a	human
being	capable	of	entering	fully	into	the	pathetic	hopes	and	aspirations	of
human	beings	less	gifted	than	himself—his	pupils—and	thus	contributed
directly	to	his	success	as	probably	the	greatest	mathematical	teacher	of	all
time;	and	last,	the	humorous	geniality	of	his	boyhood	became	a	fixed	life-
habit.	So	the	“student	years”	were	not	the	loss	his	disappointed	father	and



his	 fluttering	 sisters—to	 say	 nothing	 of	 the	 panicky	 Peter—thought	 they
were	 when	 Karl	 returned,	 after	 four	 “empty”	 years	 at	 Bonn,	 without	 a
degree,	to	the	bosom	of	his	wailing	family.

There	was	a	terrific	row.	They	lectured	him—“sick	of	body	and	soul”	as
he	was,	possibly	the	result	of	not	enough	law,	too	little	mathematics,	and
too	much	beer;	they	sat	around	and	glowered	at	him	and,	worst	of	all,	they
began	 to	 discuss	 him	 as	 if	 he	 were	 dead:	 what	 was	 to	 be	 done	 with	 the
corpse?	Touching	the	law,	Weierstrass	had	only	one	brief	encounter	with	it
at	 Bonn,	 but	 it	 sufficed:	 he	 astonished	 the	 Dean	 and	 his	 friends	 by	 his
acute	“opposition”	of	a	candidate	for	the	doctor	degree	in	law.	As	for	the
mathematics	 at	Bonn—it	was	 inconsiderable.	The	one	gifted	man,	 Julius
Plücker,	who	might	have	done	Weierstrass	some	good	was	so	busy	with	his
manifold	 duties	 that	 he	 had	 no	 time	 to	 spare	 on	 individuals	 and
Weierstrass	got	nothing	out	of	him.

But	 like	 Abel	 and	 so	 many	 other	 mathematicians	 of	 the	 first	 rank,
Weierstrass	had	gone	to	the	masters	in	the	interludes	between	his	fencing
and	drinking:	he	had	been	absorbing	the	Celestial	Mechanics	of	Laplace,
thereby	 laying	 the	 foundations	 for	 his	 lifelong	 interest	 in	 dynamics	 and
systems	 of	 simultaneous	 differential	 equations.	 Of	 course	 he	 could	 get
none	of	this	through	the	head	of	his	cultured,	petty-official	father,	and	his
obedient	brother	and	his	dismayed	sisters	knew	not	what	the	devil	he	was
talking	about.	The	fact	alone	was	sufficient:	brother	Karl,	the	genius	of	the
timorous	 little	 family,	 on	 whom	 such	 high	 hopes	 of	 bourgeois
respectability	had	been	placed,	had	come	home,	after	 four	years	of	rigid
economy	on	father’s	part,	without	a	degree.

At	 last—after	 weeks—a	 sensible	 friend	 of	 the	 family	 who	 had
sympathized	 with	 Karl	 as	 a	 boy,	 and	 who	 had	 an	 intelligent	 amateur’s
interest	 in	mathematics,	 suggested	a	way	out:	 let	Karl	prepare	himself	 at
the	neighboring	Academy	of	Münster	for	the	state	teachers’	examination.
Young	Weierstrass	would	not	get	a	Ph.D.	out	of	it,	but	his	job	as	a	teacher
would	provide	a	certain	amount	of	evening	leisure	in	which	he	could	keep
alive	 mathematically	 provided	 he	 had	 the	 right	 stuff	 in	 him.	 Freely
confessing	his	“sins”	to	the	authorities,	Weierstrass	begged	the	opportunity
of	making	a	fresh	start.	His	plea	was	granted,	and	Weierstrass	matriculated
on	May	 22,	 1839	 at	Münster	 to	 prepare	 himself	 for	 a	 secondary	 school-
teaching	 career.	 This	 was	 a	 most	 important	 stepping	 stone	 to	 his	 later
mathematical	eminence,	although	at	the	time	it	looked	like	a	total	rout.



What	 made	 all	 the	 difference	 to	 Weierstrass	 was	 the	 presence	 at
Münster	 of	 Christof	 Gudermann	 (1798-1852)	 as	 Professor	 of	 Mathe
matics.	 Gudermann	 at	 the	 time	 (1839)	 was	 an	 enthusiast	 for	 elliptic
functions.	 We	 recall	 that	 Jacobi	 had	 published	 his	 Fundamenta	 nova	 in
1829.	 Although	 few	 are	 now	 familiar	 with	 Gudermann’s	 elaborate
investigations	(published	at	the	instigation	of	Crelle	in	a	series	of	articles
in	 his	 Journal),	 he	 is	 not	 to	 be	 dismissed	 as	 contemptuously	 as	 it	 is
sometimes	fashionable	to	do	merely	because	he	is	outmoded.	For	his	time
Gudermann	had	what	appears	to	have	been	an	original	 idea.	The	theory
of	elliptic	 functions	can	be	developed	 in	many	different	ways—too	many
for	comfort.	At	one	time	some	particular	way	seems	the	best;	at	another,	a
slightly	 different	 approach	 is	 highly	 advertised	 for	 a	 season	 and	 is
generally	regarded	as	being	more	chic.

Gudermann’s	idea	was	to	base	everything	on	the	power	series	expansion
of	 the	 functions.	 (This	 statement	 will	 have	 to	 do	 for	 the	 moment;	 its
meaning	 will	 become	 clear	 when	 we	 describe	 one	 of	 the	 leading
motivations	of	 the	work	of	Weierstrass.)	This	really	was	a	good	new	idea,
and	Gudermann	slaved	over	 it	with	overwhelming	German	thoroughness
for	years	without,	perhaps,	 realizing	what	 lay	behind	his	 inspiration,	and
himself	never	carried	it	through.	The	important	thing	to	note	here	is	that
Weierstrass	made	the	theory	of	power	series—Gudermann’s	inspiration—
the	nerve	 of	 all	 his	 work	 in	 analysis.	He	 got	 the	 idea	 from	Gudermann,
whose	 lectures	he	attended.	 In	 later	 life,	 contemplating	 the	 scope	of	 the
methods	 he	 had	 developed	 in	 analysis,	Weierstrass	 was	 wont	 to	 exclaim,
“There	is	nothing	but	power	series!”

At	the	opening	lecture	of	Gudermann’s	course	on	elliptic	functions	(he
called	them	by	a	different	name,	but	that	is	of	no	importance)	there	were
thirteen	 auditors.	 Being	 in	 love	with	 his	 subject	 the	 lecturer	 quickly	 left
the	earth	and	was	presently	soaring	practically	alone	in	the	aether	of	pure
thought.	 At	 the	 second	 lecture	 only	 one	 auditor	 appeared	 and
Gudermann	 was	 happy.	 The	 solitary	 student	 was	Weierstrass.	 Thereafter
no	 incautious	 third	 party	 ventured	 to	 profane	 the	 holy	 communion
between	the	lecturer	and	his	unique	disciple.	Gudermann	and	Weierstrass
were	fellow	Catholics;	they	got	along	splendidly	together.

Weierstrass	was	duly	grateful	for	the	pains	Gudermann	lavished	on	him,
and	after	he	had	become	famous	he	seized	every	opportunity—the	more
public	 the	 better—to	 proclaim	 his	 gratitude	 for	 what	 Gudermann	 had



done	 for	him.	The	debt	was	not	 inconsiderable:	 it	 is	not	every	professor
who	 can	 drop	 a	 hint	 like	 the	 one—power	 series	 representation	 of
functions	as	a	point	of	attack—which	inspired	Weierstrass.	In	addition	to
the	lectures	on	elliptic	functions,	Gudermann	also	gave	Weierstrass	private
lessons	on	“analytical	spherics”—whatever	that	may	have	been.

In	1841,	at	the	age	of	twenty	six,	Weierstrass	took	his	examinations	for	his
teacher’s	 certificate.	 The	 examination	 was	 in	 two	 sections,	 written	 and
oral.	For	the	first	he	was	allowed	six	months	in	which	to	write	out	essays	on
three	 topics	 acceptable	 to	 the	 examiners.	 The	 third	 question	 inspired	 a
fine	dissertation	on	the	Socratic	method	in	secondary	teaching,	a	method
which	 Weierstrass	 followed	 with	 brilliant	 success	 when	 he	 became	 the
foremost	mathematical	teacher	of	advanced	students	in	the	world.

A	teacher—at	least	in	higher	mathematics—is	judged	by	his	students.	If
his	students	are	enthusiastic	about	his	“beautifully	clear	lectures,”	of	which
they	take	copious	notes,	but	never	do	any	original	mathematics	themselves
after	 getting	 their	 advanced	 degrees,	 the	 teacher	 is	 a	 flat	 failure	 as	 a
university	 instructor	 and	 his	 proper	 sphere—if	 anywhere—is	 in	 a
secondary	 school	 or	 a	 small	 college	 where	 the	 aim	 is	 to	 produce	 tame
gentlemen	 but	 not	 independent	 thinkers.	 Weierstrass’	 lectures	 were
models	 of	 perfection.	 But	 if	 they	 had	 been	 nothing	more	 than	 finished
expositions	 they	would	have	been	pedagogically	worthless.	To	perfection
of	 form	 Weierstrass	 added	 that	 intangible	 something	 which	 is	 called
inspiration.	He	did	not	 rant	 about	 the	 sublimity	 of	mathematics	 and	he
never	orated;	but	 somehow	or	another	he	made	creative	mathematicians
out	of	a	disproportionately	large	fraction	of	his	students.

The	 examination	 which	 admitted	 Weierstrass	 after	 a	 year	 of
probationary	teaching	to	the	profession	of	secondary	school	work	is	one	of
the	most	extraordinary	of	its	kind	on	record.	One	of	the	essays	which	he
submitted	 must	 be	 the	 most	 abstruse	 production	 ever	 accepted	 in	 a
teachers’	 examination.	 At	 the	 candidate’s	 request	 Gudermann	 had	 set
Weierstrass	 a	 real	 mathematical	 problem:	 to	 find	 the	 power	 series
developments	of	the	elliptic	functions.	There	was	more	than	this,	but	the
part	mentioned	was	probably	the	most	interesting.

Gudermann’s	 report	 on	 the	 work	might	 have	 changed	 the	 course	 of
Weierstrass’	 life	 had	 it	 been	 listened	 to,	 but	 it	 made	 no	 practical
impression	where	it	might	have	done	good.	In	a	postscript	to	the	official
report	Gudermann	states	 that	“This	problem,	which	in	general	would	be



far	 too	 difficult	 for	 a	 young	 analyst,	 was	 set	 at	 the	 candidate’s	 express
request	with	the	consent	of	the	commission.”	After	the	acceptance	of	his
written	 work	 and	 the	 successful	 conclusion	 of	 his	 oral	 examination,
Weierstrass	 got	 a	 special	 certificate	 on	 his	 original	 contribution	 to
mathematics.	 Having	 stated	 what	 the	 candidate	 had	 done,	 and	 having
pointed	 out	 the	 originality	 of	 the	 attack	 and	 the	novelty	 of	 some	of	 the
results	 attained,	 Gudermann	 declares	 that	 the	 work	 evinces	 a	 fine
mathematical	talent	“which,	provided	it	is	not	frittered	away,	will	inevitably
contribute	to	the	advancement	of	science.	For	the	author’s	sake	and	that
of	science	it	is	to	be	desired	that	he	shall	not	become	a	secondary	teacher,
but	 that	 favorable	conditions	will	make	it	possible	for	him	to	function	in
academic	instruction.	 .	 .	 .	The	candidate	hereby	enters	by	birthright	 into
the	ranks	of	the	famous	discoverers.”

These	remarks,	 in	part	underlined	by	Gudermann,	were	very	properly
stricken	 from	 the	 official	 report.	Weierstrass	 got	 his	 certificate	 and	 that
was	all.	At	the	age	of	twenty	six	he	entered	his	trade	of	secondary	teaching
which	was	 to	absorb	nearly	 fifteen	years	of	his	 life,	 including	 the	decade
from	thirty	to	forty	which	is	usually	rated	as	the	most	fertile	in	a	scientific
man’s	career.

His	 work	 was	 excessive.	 Only	 a	 man	 with	 iron	 determination	 and	 a
rugged	physique	could	have	done	what	Weierstrass	did.	The	nights	were
his	own	and	he	lived	a	double	life.	Not	that	he	became	a	dull	drudge;	far
from	 it.	 Nor	 did	 he	 pose	 as	 the	 village	 scholar	 absorbed	 in	 mysterious
meditations	 beyond	 the	 comprehension	 of	 ordinary	mortals.	With	 quiet
satisfaction	 in	his	 later	years	he	 loved	 to	dwell	on	 the	way	he	had	fooled
them	 all;	 the	 gay	 government	 officials	 and	 the	 young	 officers	 found	 the
amiable	 school	 teacher	 a	 thoroughly	 good	 fellow	 and	 a	 lively	 tavern
companion.

But	 in	addition	to	these	boon	companions	of	an	occasional	night	out,
Weierstrass	had	another,	unknown	to	his	happy-go-lucky	 fellows	•—Abel,
with	whom	he	kept	many	 a	 long	 vigil.	He	himself	 said	 that	Abel’s	works
were	never	very	far	from	his	elbow.	When	he	became	the	leading	analyst	in
the	world	and	 the	greatest	mathematical	 teacher	 in	Europe	his	 first	 and
last	 advice	 to	 his	 numerous	 students	 was	 “Read	 Abel!”	 For	 the	 great
Norwegian	he	had	an	unbounded	admiration	undimmed	by	any	 shadow
of	 envy.	 “Abel,	 the	 lucky	 fellow!”	 he	 would	 exclaim:	 “He	 has	 done



something	everlasting!	His	ideas	will	always	exercise	a	fertilizing	influence
on	our	science.”

The	 same	 might	 be	 said	 for	 Weierstrass,	 and	 the	 creative	 ideas	 with
which	he	fertilized	mathematics	were	for	the	most	part	thought	out	while
he	was	an	obscure	schoolteacher	in	dismal	villages	where	advanced	books
were	unobtainable,	and	at	a	time	of	economic	stress	when	the	postage	on
a	letter	absorbed	a	prohibitive	part	of	the	teacher’s	meagre	weekly	wage.
Being	 unable	 to	 afford	 postage,	 Weierstrass	 was	 barred	 from	 scientific
correspondence.	Perhaps	it	is	as	well	that	he	was:	his	originality	developed
unhampered	by	 the	 fashionable	 ideas	of	 the	 time.	The	 independence	of
outlook	thus	acquired	characterized	his	work	in	later	years.	In	his	lectures
he	aimed	to	develop	everything	 from	the	ground	up	 in	his	own	way	and
made	 almost	 no	 reference	 to	 the	 work	 of	 others.	 This	 occasionally
mystified	his	auditors	as	to	what	was	the	master’s	and	what	another’s.

It	will	be	of	interest	to	mathematical	readers	to	note	one	or	two	stages
in	Weierstrass’	scientific	career.	After	his	probationary	year	as	a	teacher	at
the	 Gymnasium	 at	 Münster,	 Weierstrass	 wrote	 a	 memoir	 on	 analytic
functions	 in	 which,	 among	 other	 things,	 he	 arrived	 independently	 at
Cauchy’s	 integral	 theorem—the	 so-called	 fundamental	 theorem	 of
analysis.	In	1842	he	heard	of	Cauchy’s	work	but	claimed	no	priority	(as	a
matter	of	fact	Gauss	had	anticipated	them	both	away	back	in	1811,	but	as
usual	had	laid	his	work	aside	to	ripen).	In	1842,	at	the	age	of	twenty	seven,
Weierstrass	 applied	 the	 methods	 he	 had	 developed	 to	 systems	 of
differential	equations—such	as	those	occurring	in	the	Newtonian	problem
of	 three	 bodies,	 for	 example;	 the	 treatment	 was	 mature	 and	 rigorous.
These	 works	 were	 undertaken	 without	 thought	 of	 publication	merely	 to
prepare	 the	 ground	 on	 which	 Weierstrass’	 life	 work	 (on	 Abelian
functions)	was	to	be	built.

In	1842	Weierstrass	was	assistant	teacher	of	mathematics	and	physics	at
the	 Pro-Gymnasium	 in	 Deutsch-Krone,	 West	 Prussia.	 Presently	 he	 was
promoted	 to	 the	dignity	 of	 ordinary	 teacher.	 In	 addition	 to	 the	 subjects
mentioned	the	leading	analyst	in	Europe	also	taught	German,	geography,
and	writing	 to	 the	 little	 boys	under	his	 charge;	 gymnastics	was	 added	 in
1845.

In	 1848,	 at	 the	 age	 of	 thirty	 three,	 Weierstrass	 was	 transferred	 as
ordinary	teacher	to	the	Gymnasium	at	Braunsberg.	This	was	something	of
a	promotion,	but	not	much.	The	head	of	the	school	was	an	excellent	man



who	did	what	he	could	to	make	things	agreeable	for	Weierstrass	although
he	 had	 only	 a	 remote	 conception	 of	 the	 intellectual	 eminence	 of	 his
colleague.	 The	 school	 boasted	 a	 very	 small	 library	 of	 carefully	 selected
books	on	mathematics	and	science.

It	was	in	this	year	that	Weierstrass	turned	aside	for	a	few	weeks	from	his
absorbing	mathematics	to	indulge	in	a	little	delicious	mischief.	The	times
were	 somewhat	 troubled	 politically;	 the	 virus	 of	 liberty	 had	 infected	 the
patient	German	people	and	at	least	a	few	of	the	bolder	souls	were	out	on
the	warpath	 for	democracy.	The	 royalist	 party	 in	power	 clamped	 a	 strict
censorship	on	all	 spoken	or	printed	sentiments	not	 sufficiently	 laudatory
to	their	regime.	Fugitive	hymns	to	liberty	began	appearing	in	the	papers.
The	authorities	of	course	could	tolerate	nothing	so	subversive	of	law	and
order	 as	 this,	 and	when	Braunsberg	 suddenly	blossomed	out	with	a	 lush
crop	 of	 democratic	 poets	 all	 singing	 the	 praises	 of	 liberty	 in	 the	 local
paper,	 as	 yet	 uncensored,	 the	 flustered	 government	 hastily	 appointed	 a
local	civil	servant	as	censor	and	went	to	sleep,	believing	that	all	would	be
well.

Unfortunately	the	newly	appointed	censor	had	a	violent	aversion	to	all
forms	of	literature,	poetry	especially.	He	simply	could	not	bring	himself	to
read	 the	 stuff.	 Confining	 his	 supervision	 to	 blue-pencilling	 the	 dull
political	 prose,	 he	 turned	over	 all	 the	 literary	 effusions	 to	 schoolteacher
Weierstrass	 for	 censoring.	 Weierstrass	 was	 delighted.	 Knowing	 that	 the
official	censor	would	never	glance	at	any	poem,	Weierstrass	saw	to	it	that
the	most	inflammatory	ones	were	printed	in	full	right	under	the	censor’s
nose.	 This	 went	 merrily	 on	 to	 the	 great	 delight	 of	 the	 populace	 till	 a
higher	official	stepped	in	and	put	an	end	to	the	farce.	As	the	censor	was
the	officially	responsible	offender,	Weierstrass	escaped	scot-free.

The	obscure	hamlet	of	Deutsch-Krone	has	the	honor	of	being	the	place
where	 Weierstrass	 (in	 1842-43)	 first	 broke	 into	 print.	 German	 schools
publish	occasional	“programs”	containing	papers	by	members	of	the	staff.
Weierstrass	contributed	Remarks	on	Analytical	Factorials.	 It	 is	not	necessary
to	explain	what	these	are;	the	point	of	interest	here	is	that	the	subject	of
factorials	was	 one	which	had	 caused	 the	older	 analysts	many	 a	 profitless
headache.	 Until	 Weierstrass	 attacked	 the	 problems	 connected	 with
factorials	the	nub	of	the	matter	had	been	missed.

Crelle,	we	recall,	wrote	extensively	on	factorials,	and	we	have	seen	how
interested	he	was	when	Abel	somewhat	rashly	informed	him	that	his	work



contained	 serious	oversights.	Crelle	now	enters	once	more,	and	again	 in
the	same	fine	spirit	he	showed	Abel.

Weierstrass’	work	was	not	published	till	1856,	fourteen	years	after	it	had
been	written,	 when	Crelle	 printed	 it	 in	 his	 Journal.	Weierstrass	 was	 then
famous.	 Admitting	 that	 the	 rigorous	 treatment	 by	 Weierstrass	 clearly
exposes	 the	 errors	 of	 his	 own	work,	 Crelle	 continues	 as	 follows:	 “I	 have
never	taken	the	personal	point	of	view	in	my	work,	nor	have	I	striven	for
fame	and	praise,	but	only	for	the	advancement	of	truth	to	the	best	of	my
ability;	and	it	is	all	one	to	me	whoever	it	may	be	that	comes	nearer	to	the
truth—whether	 it	 is	 I	 or	 someone	 else,	 provided	 only	 a	 closer
approximation	to	the	truth	is	attained.”	There	was	nothing	neurotic	about
Crelle.	Nor	was	there	about	Weierstrass.

Whether	or	not	the	tiny	village	of	Deutsch-Krone	is	conspicuous	on	the
map	of	politics	and	commerce	it	stands	out	like	the	capital	of	an	empire	in
the	history	of	mathematics,	for	it	was	there	that	Weierstrass,	without	even
an	apology	for	a	 library	and	with	no	scientific	connections	whatever,	 laid
the	 foundations	of	his	 life	work—“to	complete	 the	 life	work	of	Abel	and
Jacobi	growing	out	of	Abel’s	Theorem	and	 Jacobi’s	discovery	of	multiply
periodic	functions	of	several	variables.”

Abel,	 he	 observes,	 cut	 down	 in	 the	 flower	 of	 his	 youth,	 had	 no
opportunity	 to	follow	out	 the	consequences	of	his	 tremendous	discovery,
and	Jacobi	had	failed	to	see	clearly	that	the	true	meaning	of	his	own	work
was	to	be	sought	in	Abel’s	Theorem.	“The	consolidation	and	extension	of
these	gains—the	task	of	actually	exhibiting	the	functions	and	working	out
their	 properties—is	 one	 of	 the	 major	 problems	 of	 mathematics.”
Weierstrass	 thus	 declares	 his	 intention	 of	 devoting	 his	 energies	 to	 this
problem	as	soon	as	he	shall	have	understood	it	deeply	and	have	developed
the	 necessary	 tools.	 Later	 he	 tells	 how	 slowly	 he	 progressed:	 “The
fabrication	 of	 methods	 and	 other	 difficult	 problems	 occupied	 my	 time.
Thus	 years	 slipped	 away	 before	 I	 could	 get	 at	 the	 main	 problem	 itself,
hampered	as	I	was	by	an	unfavorable	environment.”

The	whole	of	Weierstrass’	work	in	analysis	can	be	regarded	as	a	grand
attack	 on	 his	 main	 problem.	 Isolated	 results,	 special	 developments	 and
even	 extensive	 theories—for	 example	 that	 of	 irrational	 numbers	 as
developed	by	him—all	originated	in	some	phase	or	another	of	the	central
problem.	 He	 early	 became	 convinced	 that	 for	 a	 clear	 understanding	 of
what	 he	 was	 attempting	 to	 do	 a	 radical	 revision	 of	 the	 fundamental



concepts	of	mathematical	analysis	was	necessary,	and	from	this	conviction
he	passed	to	another,	of	more	significance	today	perhaps	than	the	central
problem	itself:	analysis	must	be	founded	on	the	common	whole	numbers
1,	 2,	 3,	 .	 .	 ..	 The	 irrationals	 which	 give	 us	 the	 concepts	 of	 limits	 and
continuity,	 from	 which	 analysis	 springs,	 must	 be	 referred	 back	 by
irrefrangible	 reasoning	 to	 the	 integers;	 shoddy	proofs	must	be	discarded
or	 reworked,	 gaps	 must	 be	 filled	 up,	 and	 obscure	 “axioms”	 must	 be
dragged	out	into	the	light	of	critical	inquiry	till	all	are	understood	and	all
are	stated	in	comprehensible	language	in	terms	of	the	integers.	This	in	a
sense	is	the	Pythagorean	dream	of	basing	all	mathematics	on	the	integers,
but	Weierstrass	 gave	 the	 program	 constructive	 definiteness	 and	made	 it
work.

Thus	 originated	 the	 nineteenth	 century	 movement	 known	 as	 the
arithmetization	 of	 analysis—something	 quite	 different	 from	 Kronecker’s
arithmetical	program,	at	which	we	shall	glance	in	a	later	chapter;	 indeed
the	two	approaches	were	mutually	antagonistic.

In	passing	it	may	be	pointed	out	that	Weierstrass’	plan	for	his	life	work
and	his	magnificent	accomplishment	of	most	of	what	he	 set	himself	as	a
young	man	 to	 do,	 is	 a	 good	 illustration	 of	 the	 value	 of	 the	 advice	 Felix
Klein	 once	 gave	 a	 perplexed	 student	 who	 had	 asked	 him	 the	 secret	 of
mathematical	 discovery.	 “You	 must	 have	 a	 problem,”	 Klein	 replied.
“Choose	one	definite	objective	and	drive	ahead	toward	it.	You	may	never
reach	your	goal,	but	you	will	find	something	of	interest	on	the	way.”

From	 Deutsch-Krone	 Weierstrass	 moved	 to	 Braunsberg,	 where	 he
taught	in	the	Royal	Catholic	Gymnasium	for	six	years,	beginning	in	1848.
The	school	“program”	for	1848-49	contains	a	paper	by	Weierstrass	which
must	 have	 astonished	 the	 natives:	 Contributions	 to	 the	 Theory	 of	 Abelian
Integrals.	 If	 this	 work	 had	 chanced	 to	 fall	 under	 the	 eyes	 of	 any	 of	 the
professional	 mathematicians	 of	 Germany,	 Weierstrass	 would	 have	 been
made.	But,	 as	his	 Swedish	biographer,	Mittag-Leffler,	 dryly	 remarks,	 one
does	 not	 look	 for	 epochal	 papers	 on	 pure	 mathematics	 in	 secondary-
school	programs.	Weierstrass	might	as	well	have	used	his	paper	to	light	his
pipe.

His	next	effort	fared	better.	The	summer	vacation	of	1853	(Weierstrass
was	then	38)	was	passed	in	his	father’s	house	at	Westernkotten.	Weierstrass
spent	the	vacation	writing	up	a	memoir	on	Abelian	functions.	When	it	was



completed	 he	 sent	 it	 to	 Crelle’s	 great	 Journal.	 It	 was	 accepted	 and
appeared	in	volume	47	(1854).

This	may	have	been	 the	paper	whose	composition	was	responsible	 for
an	 amusing	 incident	 in	 Weierstrass’	 career	 as	 a	 schoolteacher	 at
Braunsberg.	Early	one	morning	the	director	of	the	school	was	startled	by	a
terrific	 uproar	 proceeding	 from	 the	 classroom	 where	 Weierstrass	 was
supposed	 to	 be	 holding	 forth.	 On	 investigation	 he	 discovered	 that
Weierstrass	had	not	 shown	up.	He	hurried	over	 to	Weierstrass’	dwelling,
and	on	knocking	was	bidden	to	enter.	There	sat	Weierstrass	pondering	by
the	glimmering	 light	of	a	 lamp,	 the	curtains	of	 the	room	still	drawn.	He
had	worked	the	whole	night	through	and	had	not	noticed	the	approach	of
dawn.	 The	 director	 called	 his	 attention	 to	 the	 fact	 that	 it	 was	 broad
daylight	and	told	him	of	the	uproar	in	his	classroom.	Weierstrass	replied
that	he	was	on	the	trail	of	an	important	discovery	which	would	rouse	great
interest	 in	 the	 scientific	 world	 and	 he	 could	 not	 possibly	 interrupt	 his
work.

The	memoir	on	Abelian	functions	published	in	Crelle’s	Journal	in	1854
created	a	sensation.	Here	was	a	masterpiece	from	the	pen	of	an	unknown
schoolmaster	 in	 an	 obscure	 village	 nobody	 in	 Berlin	 had	 ever	 heard	 of.
This	 in	 itself	 was	 sufficiently	 astonishing.	 But	 what	 surprised	 those	 who
could	 appreciate	 the	magnitude	 of	 the	 work	 even	more	 was	 the	 almost
unprecedented	fact	that	the	solitary	worker	had	published	no	preliminary
bulletins	announcing	his	progress	 from	time	to	 time,	but	with	admirable
restraint	had	held	back	everything	till	the	work	was	completed.

Writing	 to	 a	 friend	 some	 ten	 years	 later,	Weierstrass	 gives	 his	modest
version	of	his	scientific	reticence:	“.	.	.	the	infinite	emptiness	and	boredom
of	those	years	[as	a	schoolteacher]	would	have	been	unendurable	without
the	hard	work	that	made	me	a	recluse—even	if	I	was	rated	rather	a	good
fellow	by	 the	circle	of	my	friends	among	the	 junkers,	 lawyers,	and	young
officers	 of	 the	 community.	 .	 .	 .	 The	 present	 offered	 nothing	 worth
mentioning,	and	it	was	not	my	custom	to	speak	of	the	future.”

Recognition	 was	 immediate.	 At	 the	 University	 of	 Königsberg,	 where
Jacobi	had	made	his	great	discoveries	 in	 the	 field	which	Weierstrass	had
now	entered	with	a	masterpiece	of	surpassing	excellence,	Richelot,	himself
a	worthy	successor	of	Jacobi	 in	the	theory	of	multiply	periodic	functions,
was	Professor	of	Mathematics.	His	expert	eyes	saw	at	once	what	Weierstrass
had	done.	He	forthwith	persuaded	his	university	 to	confer	 the	degree	of



doctor,	honoris	causa,	on	Weierstrass	and	himself	journeyed	to	Braunsberg
to	present	the	diploma.

At	 the	 dinner	 organized	 by	 the	 director	 of	 the	 Gymnasium	 in
Weierstrass’	honor	Richelot	asserted	that	“we	have	all	found	our	master	in
Mr.	Weierstrass.”	 The	Ministry	 of	 Education	 immediately	 promoted	 him
and	granted	him	a	year’s	leave	to	prosecute	his	scientific	work.	Borchardt,
the	 editor	 of	 Crelle’s	 Journal	 at	 the	 time,	 hurried	 to	 Braunsberg	 to
congratulate	 the	 greatest	 analyst	 in	 the	 world,	 thus	 starting	 a	 warm
friendship	which	lasted	till	Borchardt’s	death	a	quarter	of	a	century	later.

None	of	this	went	to	Weierstrass’	head.	Although	he	was	deeply	moved
and	 profoundly	 grateful	 for	 all	 the	 generous	 recognition	 so	 promptly
accorded	him,	he	could	not	refrain	from	casting	a	backward	glance	over
his	 career.	 Years	 later,	 thinking	of	 the	happiness	 of	 the	 occasion	 and	of
what	that	occasion	had	opened	up	for	him	when	he	was	forty	years	of	age,
he	remarked	sadly	that	“everything	in	life	comes	too	late.”

*		*		*

Weierstrass	 did	 not	 return	 to	 Braunsberg.	 No	 really	 suitable	 position
being	open	at	the	time,	the	leading	German	mathematicians	did	what	they
could	to	tide	over	the	emergency	and	got	Weierstrass	appointed	Professor
of	 Mathematics	 at	 the	 Royal	 Polytechnic	 School	 in	 Berlin.	 This
appointment	dated	from	July	1,	1856;	in	the	autumn	of	the	same	year	he	was
made	Assistant	Professor	(in	addition	to	the	other	post)	at	the	University
of	Berlin	and	was	elected	to	the	Berlin	Academy.

The	excitement	of	novel	working	conditions	and	the	strain	of	too	much
lecturing	presently	brought	on	a	nervous	breakdown.	Weierstrass	had	also
been	overworking	at	his	researches.	In	the	summer	of	1859	he	was	forced	to
abandon	 his	 course	 and	 take	 a	 rest	 cure.	 Returning	 in	 the	 fall	 he
continued	his	work,	apparently	refreshed,	but	in	the	following	March	was
suddenly	attacked	by	spells	of	vertigo,	and	he	collapsed	in	the	middle	of	a
lecture.

All	the	rest	of	his	life	he	was	bothered	with	the	same	trouble	off	and	on,
and	 after	 resuming	 his	 work—as	 full	 professor,	 with	 a	 considerably
lightened	 load—never	 trusted	 himself	 to	 write	 his	 own	 formulas	 on	 the
board.	 His	 custom	 was	 to	 sit	 where	 he	 could	 see	 the	 class	 and	 the
blackboard,	and	dictate	to	some	student	delegated	from	the	class	what	was



to	be	written.	One	of	these	“mouthpieces”	of	the	master	developed	a	rash
propensity	to	try	to	improve	on	what	he	had	been	told	to	write.	Weierstrass
would	 reach	 up	 and	 rub	 out	 the	 amateur’s	 efforts	 and	make	 him	 write
what	he	had	been	told.	Occasionally	the	battle	between	the	professor	and
the	 obstinate	 student	 would	 go	 to	 several	 rounds,	 but	 in	 the	 end
Weierstrass	always	won.	He	had	seen	little	boys	misbehaving	before.

As	 the	 fame	 of	 his	 work	 spread	 over	 Europe	 (and	 later	 to	 America),
Weierstrass’	 classes	 began	 to	 grow	 rather	 unwieldy	 and	 he	 would
sometimes	 regret	 that	 the	quality	of	his	 auditors	 lagged	 far	behind	 their
rapidly	 mounting	 quantity.	 Nevertheless	 he	 gathered	 about	 him	 an
extremely	 able	 band	 of	 young	 mathematicians	 who	 were	 absolutely
devoted	to	him	and	who	did	much	to	propagate	his	ideas,	for	Weierstrass
was	 always	 slow	 about	 publication,	 and	 without	 the	 broadcasting	 of	 his
lectures	 which	 his	 disciples	 took	 upon	 themselves	 his	 influence	 on	 the
mathematical	 thought	 of	 the	 nineteenth	 century	 would	 have	 been
considerably	retarded.

Weierstrass	was	always	accessible	to	his	students	and	sincerely	interested
in	their	problems,	whether	mathematical	or	human.	There	was	nothing	of
the	 “great	man”	complex	about	him,	and	he	would	as	gladly	walk	home
with	any	of	the	students—and	there	were	many—who	cared	to	join	him	as
with	 the	 most	 famous	 of	 his	 colleagues,	 perhaps	 more	 gladly	 when	 the
colleague	happened	to	be	Kronecker.	He	was	happiest	when,	 sitting	at	a
table	over	a	glass	of	wine	with	a	few	of	his	devoted	disciples,	he	became	a
jolly	student	again	himself	and	insisted	on	paying	the	bill	for	the	crowd.

An	anecdote	(about	Mittag-Leffler)	may	suggest	that	the	Europe	of	the
present	century	has	partly	lost	something	it	had	in	the	1870’s.	The	Franco-
Prussian	war	(1870-71)	had	left	France	pretty	sore	at	Germany.	But	it	had
not	befogged	the	minds	of	mathematicians	regarding	one	another’s	merits
irrespective	of	their	nationalities.	The	like	holds	for	the	Napoleonic	wars
and	the	mutual	esteem	of	the	French	and	British	mathematicians.	In	1873
Mittag-Leffler	 arrived	 in	 Paris	 from	 Stockholm	 all	 set	 and	 full	 of
enthusiasm	 to	 study	 analysis	 under	Hermite.	 “You	have	made	 a	mistake,
sir,”	Hermite	 told	him:	 “you	 should	 follow	Weierstrass’	 course	 at	 Berlin.
He	is	the	master	of	all	of	us.”

Mittag-Leffler	 took	 the	 sound	advice	of	 the	magnanimous	Frenchman
and	not	so	long	afterward	made	a	capital	discovery	of	his	own	which	is	to
be	 found	 today	 in	 all	 books	 on	 the	 theory	 of	 functions.	 “Hermite	 was	 a



Frenchman	and	a	patriot,”	Mittag-Leffler	remarks;	“I	learned	at	the	same
time	in	what	degree	he	was	also	a	mathematician.”

*		*		*

The	 years	 (1864-97)	 of	 Weierstrass’	 career	 at	 Berlin	 as	 Professor	 of
Mathematics	were	full	of	scientific	and	human	interests	for	the	man	who
was	acknowledged	as	the	leading	analyst	in	the	world.	One	phase	of	these
interests	demands	more	than	the	passing	reference	that	might	suffice	in	a
purely	 scientific	biography	of	Weierstrass:	his	 friendship	with	his	 favorite
pupil,	Sonja	(or	Sophie)	Kowalewski.

Madame	Kowalewski’s	maiden	name	was	Sonja	Corvin-Kroukow-sky;	she
was	born	at	Moscow,	Russia,	on	January	15,	1850,	and	died	at	Stockholm,
Sweden,	on	February	10,	1891,	six	years	before	the	death	of	Weierstrass.

At	 fifteen	Sonja	began	 the	study	of	mathematics.	By	eighteen	she	had
made	such	rapid	progress	 that	 she	was	ready	 for	advanced	work	and	was
enamored	of	 the	 subject.	As	 she	 came	of	 an	 aristocratic	 and	prosperous
family,	 she	 was	 enabled	 to	 gratify	 her	 ambition	 for	 foreign	 study	 and
matriculated	at	the	University	of	Heidelberg.

This	 highly	 gifted	 girl	 became	 not	 only	 the	 leading	 woman
mathematician	of	modern	times,	but	also	made	a	reputation	as	a	leader	in
the	movement	 for	 the	 emancipation	 of	 women,	 particularly	 as	 regarded
their	age-old	disabilities	in	the	field	of	higher	education.

In	 addition	 to	 all	 this	 she	 was	 a	 brilliant	 writer.	 As	 a	 young	 girl	 she
hesitated	 long	between	mathematics	and	 literature	as	a	 career.	After	 the
composition	of	her	most	important	mathematical	work	(the	prize	memoir
noted	 later),	 she	 turned	 to	 literature	 as	 a	 relaxation	 and	 wrote	 the
reminiscences	 of	 her	 childhood	 in	 Russia	 in	 the	 form	 of	 a	 novel
(published	 first	 in	Swedish	and	Danish).	Of	 this	work	 it	 is	 reported	 that
“the	literary	critics	of	Russia	and	Scandinavia	were	unanimous	in	declaring
that	Sonja	Kowalewski	had	equalled	 the	best	writers	of	Russian	 literature
in	 style	 and	 thought.”	Unfortunately	 this	promising	 start	was	blocked	by
her	premature	death,	and	only	 fragments	of	other	 literary	works	 survive.
Her	one	novel	was	translated	into	many	languages.

Although	Weierstrass	 never	married	 he	was	 no	 panicky	 bachelor	 who
took	 to	 his	 heels	 every	 time	 he	 saw	 a	 pretty	 woman	 coming.	 Sonja,



according	 to	 competent	 judges	 who	 knew	 her,	 was	 extremely	 good-
looking.	We	must	first	tell	how	she	and	Weierstrass	met.

Weierstrass	used	to	enjoy	his	summer	vacations	in	a	thoroughly	human
manner.	The	Franco-Prussian	war	caused	him	to	forego	his	usual	summer
trip	in	1870,	and	he	stayed	in	Berlin,	lecturing	on	elliptic	functions.	Owing
to	 the	war	his	 class	had	dwindled	 to	only	 twenty	 instead	of	 the	 fifty	who
heard	 the	 lectures	 two	 years	 before.	 Since	 the	 autumn	 of	 1869	 Sonja
Kowalewski,	then	a	dazzling	young	woman	of	nineteen,	had	been	studying
elliptic	functions	under	Leo	Königsberger	(born	1837)	at	the	University	of
Heidelberg,	 where	 she	 had	 also	 followed	 the	 lectures	 on	 physics	 by
Kirchhoff	and	Helmholtz	and	had	met	Bunsen	the	famous	chemist	under
rather	amusing	circumstances—to	be	related	presently.	Königsberger,	one
of	Weierstrass’	 first	 pupils,	 was	 a	 first-rate	 publicity	 agent	 for	his	master.
Sonja	caught	her	 teacher’s	enthusiasm	and	resolved	to	go	directly	 to	 the
master	himself	for	inspiration	and	enlightenment.

The	 status	of	unmarried	women	 students	 in	 the	 1870’s	was	 somewhat
anomalous.	 To	 forestall	 gossip,	 Sonja	 at	 the	 age	 of	 eighteen	 contracted
what	was	to	have	been	a	nominal	marriage,	left	her	husband	in	Russia,	and
set	out	for	Germany.	Her	one	indiscretion	in	her	dealings	with	Weierstrass
was	her	neglect	to	inform	him	at	the	beginning	that	she	was	married.

Having	 decided	 to	 learn	 from	 the	 master	 himself,	 Sonja	 took	 her
courage	in	her	hands	and	called	on	Weierstrass	in	Berlin.	She	was	twenty,
very	 earnest,	 very	 eager,	 and	 very	 determined;	 he	 was	 fifty	 five,	 vividly
grateful	 for	 the	 lift	 Gudermann	 had	 given	 him	 toward	 becoming	 a
mathematician	 by	 taking	 him	 on	 as	 a	 pupil,	 and	 sympathetically
understanding	of	the	ambitions	of	young	people.	To	hide	her	trepidation
Sonja	 wore	 a	 large	 and	 floppy	 hat,	 “so	 that	 Weierstrass	 saw	 nothing	 of
those	marvelous	 eyes	 whose	 eloquence,	 when	 she	 wished	 it,	 none	 could
resist.”

Some	 two	 or	 three	 years	 later,	 on	 a	 visit	 to	 Heidelberg,	 Weierstrass
learned	from	Bunsen—a	crabbed	bachelor—that	Sonja	was	“a	dangerous
woman.”	Weierstrass	enjoyed	his	 friend’s	 terror	hugely,	as	Bunsen	at	 the
time	was	unaware	 that	Sonja	had	been	receiving	 frequent	private	 lessons
from	Weierstrass	for	over	two	years.

Poor	Bunsen	based	his	estimate	of	Sonja	on	bitter	personal	experience.
He	 had	 proclaimed	 for	 years	 that	 no	 woman,	 and	 especially	 no	Russian
woman,	would	ever	be	permitted	to	profane	the	masculine	sanctity	of	his



laboratory.	One	of	Sonja’s	Russian	girl	 friends,	desiring	ardently	to	study
chemistry	 in	 Bunsen’s	 laboratory,	 and	 having	 been	 thrown	 out	 herself,
prevailed	 upon	 Sonja	 to	 try	 her	 powers	 of	 persuasion	 on	 the	 crusty
chemist.	Leaving	her	hat	at	home,	Sonja	interviewed	Bunsen.	He	was	only
too	charmed	to	accept	Sonja’s	friend	as	a	student	in	his	laboratory.	After
she	 left	he	woke	up	 to	what	 she	had	done	 to	him.	“And	now	 that	woman
has	made	me	eat	my	own	words,”	he	lamented	to	Weierstrass.

Sonja’s	 evident	 earnestness	 on	 her	 first	 visit	 impressed	 Weierstrass
favorably	and	he	wrote	to	Königsberger	inquiring	about	her	mathematical
aptitudes.	 He	 asked	 also	 whether	 “the	 lady’s	 personality	 offers	 the
necessary	 guarantees.”	 On	 receiving	 an	 enthusiastic	 reply,	 Weierstrass
tried	 to	 get	 the	 university	 senate	 to	 admit	 Sonja	 to	 his	 mathematical
lectures.	Being	brusquely	refused	he	took	care	of	her	himself	on	his	own
time.	Every	Sunday	afternoon	was	devoted	to	teaching	Sonja	at	his	house,
and	once	a	week	Weierstrass	returned	her	visit.	After	the	first	few	lessons
Sonja	lost	her	hat.	The	lessons	began	in	the	autumn	of	1870	and	continued
with	 slight	 interruptions	 due	 to	 vacations	 or	 illnesses	 till	 the	 autumn	 of
1874.	 When	 for	 any	 reason	 the	 friends	 were	 unable	 to	 meet	 they
corresponded.	After	Sonja’s	death	in	1891	Weierstrass	burnt	all	her	letters
to	 him,	 together	 with	 much	 of	 his	 other	 correspondence	 and	 probably
more	than	one	mathematical	paper.

The	 correspondence	 between	 Weierstrass	 and	 his	 charming	 young
friend	 is	 warmly	 human,	 even	 when	 most	 of	 a	 letter	 is	 given	 over	 to
mathematics.	 Much	 of	 the	 correspondence	 was	 undoubtedly	 of
considerable	 scientific	 importance,	 but	 unfortunately	 Sonja	 was	 a	 very
untidy	woman	when	it	came	to	papers,	and	most	of	what	she	left	behind
was	fragmentary	or	in	hopeless	confusion.

Weierstrass	 himself	 was	 no	 paragon	 in	 this	 respect.	 Without	 keeping
records	he	loaned	his	unpublished	manuscripts	right	and	left	to	students
who	 did	 not	 always	 return	 what	 they	 borrowed.	 Some	 even	 brazenly
rehashed	parts	of	their	teacher’s	work,	spoiled	it,	and	published	the	results
as	 their	 own.	 Although	 Weierstrass	 complains	 about	 this	 outrageous
practice	in	letters	to	Sonja	his	chagrin	is	not	over	the	petty	pilfering	of	his
ideas	 but	 of	 their	 bungling	 in	 incompetent	 hands	 and	 the	 consequent
damage	to	mathematics.	Sonja	of	course	never	descended	to	anything	of
this	sort,	but	in	another	respect	she	was	not	entirely	blameless.	Weierstrass
sent	her	one	of	his	unpublished	works	by	which	he	set	great	store,	and	that



was	 the	 last	 he	 ever	 saw	 of	 it.	 Apparently	 she	 lost	 it,	 for	 she	 discreetly
avoids	the	topic—to	judge	from	his	letters—whenever	he	brings	it	up.

To	compensate	for	this	lapse	Sonja	tried	her	best	to	get	Weierstrass	to
exercise	a	little	reasonable	caution	in	regard	to	the	rest	of	his	unpublished
work.	It	was	his	custom	to	carry	about	with	him	on	his	 frequent	travels	a
large	white	wooden	box	 in	which	he	 kept	 all	 his	working	notes	 and	 the
various	versions	of	papers	which	he	had	not	yet	perfected.	His	habit	was	to
rework	a	theory	many	times	until	he	found	the	best,	the	“natural”	way	in
which	it	should	be	developed.	Consequently	he	published	slowly	and	put
out	 a	work	 under	 his	 own	name	only	when	he	had	 exhausted	 the	 topic
from	some	coherent	point	of	view.	Several	of	his	rough-hewn	projects	are
said	 to	 have	 been	 confided	 to	 the	 mysterious	 box.	 In	 1880,	 while
Weierstrass	was	on	a	vacation	trip,	the	box	was	lost	in	the	baggage.	It	has
never	been	heard	of	since.

After	 taking	 her	 degree	 in	 absentia	 from	 Göttingen	 in	 1874,	 Sonja
returned	 to	 Russia	 for	 a	 rest	 as	 she	 was	 worn	 out	 by	 excitement	 and
overwork.	Her	fame	had	preceded	her	and	she	“rested”	by	plunging	into
the	 hectic	 futilities	 of	 a	 crowded	 social	 season	 in	 St.	 Petersburg	 while
Weierstrass,	back	 in	Berlin,	pulled	wires	all	over	Europe	trying	to	get	his
favorite	 pupil	 a	 position	 worthy	 of	 her	 talents.	 His	 fruitless	 efforts
disgusted	him	with	the	narrowness	of	the	orthodox	academic	mind.

In	 October	 1875,	 Weierstrass	 received	 from	 Sonja	 the	 news	 that	 her
father	had	died.	She	apparently	never	replied	to	his	tender	condolences,
and	 for	 nearly	 three	 years	 she	 dropped	 completely	 out	 of	 his	 life.	 In
August,	 1878,	he	writes	 to	 ask	whether	 she	ever	 received	a	 letter	he	had
written	her	so	long	before	that	he	has	forgotten	its	date.	“Didn’t	you	get
my	 letter?	Or	 what	 can	 be	 preventing	 you	 from	 confiding	 freely	 in	me,
your	 best	 friend	 as	 you	 so	 often	 called	me,	 as	 you	used	 to	 do?	This	 is	 a
riddle	whose	solution	only	you	can	give	me.	.	.	.”

In	the	same	letter	Weierstrass	rather	pathetically	begs	her	to	contradict
the	 rumor	 that	 she	has	 abandoned	mathematics:	Tchebycheff,	 a	Russian
mathematician,	had	called	on	Weierstrass	when	he	was	out,	but	had	told
Borchardt	 that	 Sonja	 had	 “gone	 social,”	 as	 indeed	 she	 had.	 “Send	 your
letter	 to	 Berlin	 at	 the	 old	 address,”	 he	 concludes;	 “it	 will	 certainly	 be
forwarded	to	me.”

Man’s	 ingratitude	 to	 man	 is	 a	 familiar	 enough	 theme;	 Sonja	 now
demonstrated	what	a	woman	can	do	in	that	line	when	she	puts	her	mind



to	it.	She	did	not	answer	her	old	friend’s	letter	for	two	years	although	she
knew	he	had	been	unhappy	and	in	poor	health.

The	answer	when	it	did	come	was	rather	a	letdown.	Sonja’s	sex	had	got
the	 better	 of	 her	 ambitions	 and	 she	 had	 been	 living	 happily	 with	 her
husband.	Her	misfortune	at	 the	 time	was	 to	be	 the	 focus	 for	 the	 flattery
and	 unintelligent,	 sideshow	 wonder	 of	 a	 superficially	 brilliant	 mob	 of
artists,	journalists,	and	dilettant	litterateurs	who	gabbled	incessantly	about
her	 unsurpassable	 genius.	 The	 shallow	 praise	 warmed	 and	 excited	 her.
Had	 she	 frequented	 the	 society	 of	 her	 intellectual	 peers	 she	might	 still
have	lived	a	normal	life	and	have	kept	her	enthusiasm.	And	she	would	not
have	been	tempted	to	treat	the	man	who	had	formed	her	mind	as	shabbily
as	she	did.

In	October,	1878,	Sonja’s	daughter	“Foufie”	was	born.
The	 forced	 quiet	 after	 Foufie’s	 arrival	 roused	 the	 mother’s	 dormant

mathematical	 interests	 once	 more,	 and	 she	 wrote	 to	 Weierstrass	 for
technical	advice.	He	replied	 that	he	must	 look	up	 the	relevant	 literature
before	venturing	an	opinion.	Although	she	had	neglected	him,	he	was	still
ready	with	his	ungrudging	encouragement.	His	only	regret	(in	a	letter	of
October,	1880)	is	that	her	long	silence	has	deprived	him	of	the	opportunity
of	helping	her.	“But	I	don’t	 like	to	dwell	 so	much	on	the	past—so	let	us
keep	the	future	before	our	eyes.”

Material	 tribulations	 aroused	 Sonja	 to	 the	 truth.	 She	 was	 a	 born
mathematician	 and	 could	 no	more	 keep	 away	 from	mathematics	 than	 a
duck	can	from	water.	So	in	October,	1880	(she	was	then	thirty),	she	wrote
begging	 Weierstrass	 to	 advise	 her	 again.	 Not	 waiting	 for	 his	 reply	 she
packed	 up	 and	 left	 Moscow	 for	 Berlin.	 His	 reply,	 had	 she	 received	 it,
might	 have	 caused	 her	 to	 stay	 where	 she	 was.	 Nevertheless	 when	 the
distracted	 Sonja	 arrived	 unexpectedly	 he	 devoted	 a	 whole	 day	 to	 going
over	her	difficulties	with	her.	He	must	have	given	her	some	pretty	straight
talk,	for	when	she	returned	to	Moscow	three	months	later	she	went	after
her	mathematics	with	such	fury	that	her	gay	friends	and	silly	parasites	no
longer	 recognized	 her.	 At	 Weierstrass’	 suggestion	 she	 attacked	 the
problem	of	the	propagation	of	light	in	a	crystalline	medium.

In	 1882	 the	 correspondence	 takes	 two	 new	 turns,	 one	 of	 which	 is	 of
mathematical	 interest.	 The	 other	 is	Weierstrass’	 outspoken	 opinion	 that
Sonja	 and	 her	 husband	 are	 unsuited	 to	 one	 another,	 especially	 as	 the
latter	 has	 no	 true	 appreciation	 of	 her	 intellectual	 merits.	 The



mathematical	point	refers	to	Poincaré,	then	at	the	beginning	of	his	career.
With	 his	 sure	 instinct	 for	 recognizing	 young	 talent,	 Weierstrass	 hails
Poincaré	as	a	coming	man	and	hopes	that	he	will	outgrow	his	propensity
to	publish	too	rapidly	and	let	his	researches	ripen	without	scattering	them
over	too	wide	a	field.	“To	publish	an	article	of	real	merit	every	week—that
is	impossible,”	he	remarks,	referring	to	Poincaré’s	deluge	of	papers.

Sonja’s	domestic	difficulties	presently	resolved	themselves	through	the
sudden	death	of	her	husband	in	March	1883.	She	was	in	Paris	at	the	time,
he	in	Moscow.	The	shock	prostrated	her.	For	four	days	she	shut	herself	up
alone,	 refused	 food,	 lost	 consciousness	 the	 fifth	 day,	 and	 on	 the	 sixth
recovered,	 asked	 for	 paper	 and	 pencil,	 and	 covered	 the	 paper	 with
mathematical	 formulas.	 By	 autumn	 she	 was	 herself	 again,	 attending	 a
scientific	congress	at	Odessa.

Thanks	 to	 Mittag-Leffler,	 Madame	 Kowalewski	 at	 last	 obtained	 a
position	where	she	could	do	herself	justice;	in	the	autumn	of	1884	she	was
lecturing	at	 the	University	of	Stockholm,	where	 she	was	 to	be	appointed
(in	 1889)	 as	 professor	 for	 life.	 A	 little	 later	 she	 suffered	 a	 rather
embarrassing	 setback	 when	 the	 Italian	 mathematician	 Vito	 Volterra
pointed	 out	 a	 serious	mistake	 in	 her	 work	 on	 the	 refraction	 of	 light	 in
crystalline	media.	This	oversight	had	escaped	Weierstrass,	who	at	the	time
was	so	overwhelmed	with	official	duties	that	outside	of	them	he	had	“time
only	for	eating,	drinking,	and	sleeping.	.	.	 .	In	short,”	he	says,	“I	am	what
the	doctors	call	brain-weary.”	He	was	now	nearly	seventy.	But	as	his	bodily
ills	increased	his	intellect	remained	as	powerful	as	ever.

The	 master’s	 seventieth	 birthday	 was	 made	 the	 occasion	 for	 public
honors	 and	 a	 gathering	 of	 his	 disciples	 and	 former	 pupils	 from	 all	 over
Europe.	 Thereafter	 he	 lectured	 publicly	 less	 and	 less	 often,	 and	 for	 ten
years	received	a	few	of	his	students	at	his	own	house.	When	they	saw	that
he	was	tired	out	they	avoided	mathematics	and	talked	of	other	things,	or
listened	 eagerly	 while	 the	 companionable	 old	 man	 reminisced	 of	 his
student	 pranks	 and	 the	 dreary	 years	 of	 his	 isolation	 from	 all	 scientific
friends.	His	eightieth	birthday	was	celebrated	by	an	even	more	impressive
jubilee	than	his	seventieth	and	he	became	in	some	degree	a	national	hero
of	the	German	people.

One	of	the	greatest	joys	Weierstrass	experienced	in	his	declining	years
was	 the	 recognition	won	 at	 last	 by	 his	 favorite	 pupil.	On	Christmas	Eve,



1888,	Sonja	received	in	person	the	Bordin	Prize	of	the	French	Academy	of
Sciences	for	her	memoir	On	the	rotation	of	a	solid	body	about	a	fixed	point.

As	 is	 the	 rule	 in	 competition	 for	 such	 prizes,	 the	 memoir	 had	 been
submitted	 anonymously	 (the	 author’s	 name	 being	 in	 a	 sealed	 envelope
bearing	on	the	outside	the	same	motto	as	that	 inscribed	on	the	memoir,
the	envelope	to	be	opened	only	if	the	competing	work	won	the	prize),	so
there	was	no	opportunity	for	jealous	rivals	to	hint	at	undue	influence.	In
the	opinion	of	the	judges	the	memoir	was	of	such	exceptional	merit	that
they	 raised	 the	 value	 of	 the	 prize	 from	 the	 previously	 announced	 3000
francs	 to	 5000.	 The	 monetary	 value,	 however,	 was	 the	 least	 part	 of	 the
prize.

Weierstrass	was	overjoyed.	“I	do	not	need	 to	 tell	 you,”	he	writes,	 “how
much	your	success	has	gladdened	the	hearts	of	myself	and	my	sisters,	also
of	 your	 friends	 here.	 I	 particularly	 experienced	 a	 true	 satisfaction;
competent	judges	have	now	delivered	their	verdict	that	my	’faithful	pupil/
my	’weakness’	is	indeed	not	a	’frivolous	humbug.’ ”

We	may	leave	the	friends	in	their	moment	of	triumph.	Two	years	later
(February	10,	1891)	Sonja	died	in	Stockholm	at	the	age	of	forty	one	after	a
brief	 attack	 of	 influenza	 which	 at	 the	 time	 was	 epidemic.	 Weierstrass
outlived	 her	 six	 years,	 dying	 peacefully	 in	 his	 eighty	 second	 year	 on
February	19,	 1897,	 at	his	home	 in	Berlin	after	 a	 long	 illness	 followed	by
influenza.	His	last	wish	was	that	the	priest	say	nothing	in	his	praise	at	the
funeral	but	restrict	the	services	to	the	customary	prayers.

Sonja	 is	 buried	 in	 Stockholm,	 Weierstrass	 with	 his	 two	 sisters	 in	 a
Catholic	cemetery	in	Berlin.	Sonja	also	was	of	the	Catholic	faith,	belonging
to	the	Greek	Church.

*		*		*

We	shall	now	give	some	intimation	of	 two	of	 the	basic	 ideas	on	which
Weierstrass	 founded	his	work	 in	 analysis.	Details	 or	 an	 exact	description
are	out	of	the	question	here,	but	may	be	found	in	the	earlier	chapters	of
any	competently	written	book	on	the	theory	of	functions.

A	power	series	is	an	expression	of	the	form

a0	+	a1z	a2z+	2	+	.	.	.	+	anzn	+	.	.	.	,



in	which	the	coefficients	a0,	a1	a2,	.	.	.	,	an,	.	.	.	are	constant	numbers	and	z
is	a	variable	number;	the	numbers	concerned	may	be	real	or	complex.

The	sums	of	1,	2,	3,	.	.	.	terms	of	the	series,	namely	a0,	a0	+	a1Z,	a2Z2,	.	.	.
are	 called	 the	partial	 sums.	 If	 for	 some	particular	 value	 of	 z	 these	partial
sums	give	a	sequence	of	numbers	which	converge	to	a	definite	 limit,	 the
power	series	is	said	to	converge	to	the	same	limit	for	that	value	of	z.

All	 the	 values	 of	 z	 for	 which	 the	 power	 series	 converges	 to	 a	 limit
constitute	 the	 domain	 of	 convergence	 of	 the	 series;	 for	 any	 value	 of	 the
variable	z	in	this	domain	the	series	converges;	for	other	values	of	z	it	diverges.

If	the	series	converges	for	some	value	of	z,	its	value	can	be	calculated	to
any	 desired	 degree	 of	 approximation,	 for	 that	 value,	 by	 taking	 a
sufficiently	large	number	of	terms.

Now,	in	the	majority	of	mathematical	problems	which	have	applications
to	 science,	 the	 “answer”	 is	 indicated	 as	 the	 solution	 in	 series	 of	 a
differential	 equation	 (or	 system	 of	 such	 equations),	 and	 this	 solution	 is
only	 rarely	 obtainable	 as	 a	 finite	 expression	 in	 terms	 of	 mathematical
functions	 which	 have	 been	 tabulated	 (for	 instance	 logarithms,
trigonometric	functions,	elliptic	functions,	etc.).	In	such	problems	it	then
becomes	necessary	 to	do	two	things:	prove	that	 the	series	converges,	 if	 it
does;	calculate	its	numerical	value	to	the	required	accuracy.

If	the	series	does	not	converge	it	is	usually	a	sign	that	the	problem	has
been	 either	 incorrectly	 stated	 or	 wrongly	 solved.	 The	 multitude	 of
functions	which	present	themselves	in	pure	mathematics	are	treated	in	the
same	 way,	 whether	 they	 are	 ever	 likely	 to	 have	 scientific	 applications	 or
not,	 and	 finally	 a	 general	 theory	of	 convergence	has	 been	 elaborated	 to
cover	 vast	 tracts	 of	 all	 this,	 so	 that	 the	 individual	 examination	 of	 a
particular	 series	 is	often	referred	 to	more	 inclusive	 investigations	already
carried	out.

Finally,	all	this	(both	pure	and	applied)	is	extended	to	power	series	in	2,
3,	4,	.	.	.	variables	instead	of	the	single	variable	z	above;	for	example,	in	two
variables,

a	+	b0z	+	b1w	+	c0z2	+	C1zw	+	c2w2	+	.	.	..

It	 may	 be	 said	 that	 without	 the	 theory	 of	 power	 series	 most	 of
mathematical	physics	(including	much	of	astronomy	and	astro-physics)	as
we	know	it	would	not	exist.



Difficulties	 arising	 with	 the	 concepts	 of	 limits,	 continuity,	 and
convergence	drove	Weierstrass	 to	 the	 creation	of	his	 theory	of	 irrational
numbers.

Suppose	we	extract	 the	 square	 root	of	 2	 as	we	did	 in	 school,	 carrying
the	computation	to	a	large	number	of	decimal	places.	We	get	as	successive
approximations	to	the	required	square	root	the	sequence	of	numbers	1,	1.4,
1.41,	 1.412,	 .	 .	 .	 .	With	 sufficient	 labor,	 proceeding	by	well-defined	 steps
according	 to	 the	 usual	 rule,	 we	 could	 if	 necessary	 exhibit	 the	 first
thousand,	 or	 the	 first	 million,	 of	 the	 rational	 numbers	 1,	 1.4,	 .	 .	 .
constituting	this	sequence	of	approximations.	Examining	this	sequence	we
see	 that	when	we	have	gone	 far	 enough	we	have	determined	a	perfectly
definite	rational	number	containing	as	many	decimal	places	as	we	please
(say	1000),	and	that	this	rational	number	differs	from	any	of	the	succeeding
rational	 numbers	 in	 the	 sequence	 by	 a	 number	 (decimal),	 such	 as
.000	.	.	.	.000	.	.	.	,	in	which	a	correspondingly	large	number	of	zeros	occur
before	another	digit	(1,	2,	.	.	.	or	9)	appears.

This	 illustrates	 what	 is	meant	 by	 a	 convergent	 sequence	 of	 numbers:	 the
rationals	 1,	 1.4,	 .	 .	 .	 constituting	 the	 sequence	 give	 us	 ever	 closer
approximations	to	the	“irrational	number”	which	we	call	the	square	root	of
2,	 and	 which	 we	 conceive	 of	 as	 having	 been	 defined	 by	 the	 convergent
sequence	 of	 rationals,	 this	 definition	being	 in	 the	 sense	 that	 a	method	has
been	indicated	(the	usual	school	one)	of	calculating	any	particular	member
of	the	sequence	in	a	finite	number	of	steps.

Although	 it	 is	 impossible	 actually	 to	 exhibit	 the	whole	 sequence,	 as	 it
does	not	 stop	 at	 any	 finite	number	of	 terms,	nevertheless	we	 regard	 the
process	for	constructing	any	member	of	the	sequence	as	a	sufficiently	clear
conception	of	the	whole	sequence	as	a	single	definite	object	which	we	can
reason	about.	Doing	so,	we	have	a	workable	method	for	using	 the	square
root	of	2	and	similarly	for	any	irrational	number,	in	mathematical	analysis.

As	has	been	indicated	it	is	impossible	to	make	this	precise	in	an	account
like	the	present,	but	even	a	careful	statement	might	disclose	some	of	the
logical	objections	glaringly	apparent	in	the	above	description—objections
which	 inspired	 Kronecker	 and	 others	 to	 attack	Weierstrass’	 “sequential”
definition	of	irrationals.

Nevertheless,	 right	 or	 wrong,	 Weierstrass	 and	 his	 school	 made	 the
theory	 work.	 The	 most	 useful	 results	 they	 obtained	 have	 not	 yet	 been
questioned,	 at	 least	 on	 the	 ground	of	 their	 great	utility	 in	mathematical



analysis	 and	 its	 applications,	 by	 any	 competent	 judge	 in	 his	 right	mind.
This	does	not	mean	 that	objections	 cannot	be	well	 taken:	 it	merely	 calls
attention	to	the	fact	that	in	mathematics,	as	in	everything	else,	this	earth	is
not	yet	 to	be	confused	with	 the	Kingdom	of	Heaven,	 that	perfection	 is	a
chimaera,	and	that,	in	the	words	of	Crelle,	we	can	only	hope	for	closer	and
closer	 approximations	 to	 mathematical	 truth—whatever	 that	 may	 be,	 if
anything—precisely	 as	 in	 the	 Weierstrassian	 theory	 of	 convergent
sequences	of	rationals	defining	irrationals.

After	 all,	why	 should	mathematicians,	who	 are	human	beings	 like	 the
rest	 of	 us,	 always	 be	 so	 pedantically	 exact	 and	 so	 inhumanly	 perfect?	As
Weierstrass	said,	“It	is	true	that	a	mathematician	who	is	not	also	something
of	 a	 poet	 will	 never	 be	 a	 perfect	mathematician.”	 That	 is	 the	 answer:	 a
perfect	mathematician,	by	the	very	fact	of	his	poetic	perfection,	would	be	a
mathematical	impossibility.



CHAPTER	TWENTY	THREE

Complete	Independence

BOOLE

Pure	 Mathematics	 was	 discovered	 by	 Boole	 in	 a	 work	 which	 he	 called	 The	 Laws	 of	 Thought.—
BERTRAND	RUSSELL

“OH,	 WE	 NEVER	 READ	 ANYTHING	 the	 English	 mathematicians	 do.”	 This
characteristically	 continental	 remark	 was	 the	 reply	 of	 a	 distinguished
European	mathematician	when	he	was	asked	whether	he	had	 seen	 some
recent	work	of	one	of	the	leading	English	mathematicians.	The	“we”	of	his
frank	superiority	included	Continental	mathematicians	in	general.

This	 is	 not	 the	 sort	 of	 story	 that	 mathematicians	 like	 to	 tell	 on
themselves,	 but	 as	 it	 illustrates	 admirably	 that	 characteristic	 of	 British
mathematicians—insular	 originality—which	 has	 been	 the	 chief	 claim	 to
distinction	of	the	British	school,	it	is	an	ideal	introduction	to	the	life	and
work	 of	 one	 of	 the	most	 insularly	 original	mathematicians	 England	 has
produced,	 George	 Boole.	 The	 fact	 is	 that	 British	 mathematicians	 have
often	serenely	gone	their	own	way,	doing	the	things	that	interested	them
personally	 as	 if	 they	were	playing	 cricket	 for	 their	own	amusement	only,
with	a	self-satisfied	disregard	for	what	others,	shouting	at	the	top	of	their
scientific	 lungs,	 have	 assured	 the	 world	 is	 of	 supreme	 importance.
Sometimes,	 as	 in	 the	 prolonged	 idolatry	 of	 Newton’s	 methods,
indifference	 to	 the	 leading	 fashions	 of	 the	moment	 has	 cost	 the	 British
school	 dearly,	 but	 in	 the	 long	 run	 the	 take-it-or-leave-it	 attitude	 of	 this
school	has	added	more	new	fields	to	mathematics	than	a	slavish	imitation
of	the	continental	masters	could	ever	have	done.	The	theory	of	invariance
is	a	case	in	point;	Maxwell’s	electrodynamic	field	theory	is	another.

Although	the	British	school	has	had	its	share	of	powerful	developers	of
work	 started	 elsewhere,	 its	 greater	 contribution	 to	 the	 progress	 of
mathematics	 has	 been	 in	 the	 direction	 of	 originality.	 Boole’s	 work	 is	 a
striking	illustration	of	this.	When	first	put	out	it	was	ignored	as	mathematics,



except	by	a	 few,	chiefly	Boole’s	own	more	unorthodox	countrymen,	who
recognized	 that	here	was	 the	germ	of	 something	of	 supreme	 interest	 for
all	mathematics.	Today	 the	natural	development	of	what	Boole	started	 is
rapidly	 becoming	 one	 of	 the	major	 divisions	 of	 pure	mathematics,	 with
scores	 of	 workers	 in	 practically	 all	 countries	 extending	 it	 to	 all	 fields	 of
mathematics	where	attempts	are	being	made	to	consolidate	our	gains	on
firmer	 foundations.	 As	 Bertrand	Russell	 remarked	 some	 years	 ago,	 pure
mathematics	 was	 discovered	 by	 George	 Boole	 in	 his	 work	 The	 Laws	 of
Thought	 published	 in	 1854.	 This	 may	 be	 an	 exaggeration,	 but	 it	 gives	 a
measure	 of	 the	 importance	 in	 which	 mathematical	 logic	 and	 its
ramifications	are	held	today.	Others	before	Boole,	notably	Leibniz	and	De
Morgan,	 had	 dreamed	 of	 adding	 logic	 itself	 to	 the	 domain	 of	 algebra;
Boole	did	it.

George	 Boole	 was	 not,	 like	 some	 of	 the	 other	 originators	 in
mathematics,	 born	 into	 the	 lowest	 economic	 stratum	of	 society.	His	 fate
was	much	harder.	He	was	born	on	November	2,	1815,	at	Lincoln,	England,
and	was	the	son	of	a	petty	shopkeeper.	If	we	can	credit	the	picture	drawn
by	English	writers	themselves	of	those	hearty	old	days—1815	was	the	year	of
Waterloo—to	 be	 the	 son	 of	 a	 small	 tradesman	 at	 that	 time	 was	 to	 be
damned	by	foreordination.

The	 whole	 class	 to	 which	 Boole’s	 father	 belonged	 was	 treated	 with	 a
contempt	 a	 trifle	 more	 contemptuous	 than	 that	 reserved	 for	 enslaved
scullery	 maids	 and	 despised	 second	 footmen.	 The	 “lower	 classes,”	 into
whose	ranks	Boole	had	been	born,	simply	did	not	exist	in	the	eyes	of	the
“upper	 classes”—including	 the	 more	 prosperous	 wine	 merchants	 and
moneylenders.	 It	 was	 taken	 for	 granted	 that	 a	 child	 in	 Boole’s	 station
should	dutifully	and	gratefully	master	the	shorter	catechism	and	so	live	as
never	 to	 transgress	 the	 strict	 limits	 of	 obedience	 imposed	 by	 that
remarkable	testimonial	to	human	conceit	and	class-conscious	snobbery.

To	 say	 that	 Boole’s	 early	 struggles	 to	 educate	 himself	 into	 a	 station
above	that	to	which	“it	had	pleased	God	to	call	him”	were	a	fair	imitation
of	 purgatory	 is	 putting	 it	mildly.	 By	 an	 act	 of	 divine	 providence	 Boole’s
great	 spirit	had	been	assigned	 to	 the	meanest	class;	 let	 it	 stay	 there	 then
and	 stew	 in	 its	 own	 ambitious	 juice.	 Americans	 may	 like	 to	 recall	 that
Abraham	Lincoln,	only	six	years	older	than	Boole,	had	his	struggle	about
the	same	time.	Lincoln	was	not	sneered	at	but	encouraged.



The	schools	where	young	gentlemen	were	taught	to	knock	one	another
about	 in	 training	 for	 their	 future	 parts	 as	 leaders	 in	 the	 sweatshop	 and
coal	mine	systems	then	coming	into	vogue	were	not	for	the	likes	of	George
Boole.	No;	his	“National	School”	was	designed	chiefly	with	the	end	in	view
of	keeping	the	poor	in	their	proper,	un-washable	place.

A	 wretched	 smattering	 of	 Latin,	 with	 perhaps	 a	 slight	 exposure	 to
Greek,	 was	 one	 of	 the	 mystical	 stigmata	 of	 a	 gentleman	 in	 those
incomprehensible	days	of	the	sooty	industrial	revolution.	Although	few	of
the	boys	ever	mastered	Latin	enough	to	enable	them	to	read	it	without	a
crib,	an	assumed	knowledge	of	 its	grammar	was	one	of	the	hall	marks	of
gentility,	and	its	syntax,	memorized	by	rote	was,	oddly	enough,	esteemed
as	 mental	 discipline	 of	 the	 highest	 usefulness	 in	 preparation	 for	 the
ownership	and	conservation	of	property.

Of	course	no	Latin	was	taught	in	the	school	that	Boole	was	permitted	to
attend.	 Making	 a	 pathetically	 mistaken	 diagnosis	 of	 the	 abilities	 which
enabled	the	propertied	class	to	govern	those	beneath	them	in	the	scale	of
wealth,	Boole	decided	that	he	must	learn	Latin	and	Greek	if	he	was	ever	to
get	his	feet	out	of	the	mire.	This	was	Boole’s	mistake.	Latin	and	Greek	had
nothing	to	do	with	the	cause	of	his	difficulties.	He	did	teach	himself	Latin
with	 his	 poor	 struggling	 father’s	 sympathetic	 encouragement.	 Although
the	poverty-stricken	tradesman	knew	that	he	himself	should	never	escape
he	did	what	he	could	to	open	the	door	for	his	son.	He	knew	no	Latin.	The
struggling	 boy	 appealed	 to	 another	 tradesman,	 a	 small	 bookseller	 and
friend	of	his	father.	This	good	man	could	only	give	the	boy	a	start	in	the
elementary	 grammar.	 Thereafter	 Boole	 had	 to	 go	 it	 alone.	 Anyone	who
has	 watched	 even	 a	 good	 teacher	 trying	 to	 get	 a	 normal	 child	 of	 eight
through	Caesar	will	 realize	what	 the	untutored	Boole	was	up	against.	By
the	 age	 of	 twelve	 he	 had	mastered	 enough	 Latin	 to	 translate	 an	 ode	 of
Horace	into	English	verse.	His	father,	hopefully	proud	but	understanding
nothing	 of	 the	 technical	merits	 of	 the	 translation,	 had	 it	 printed	 in	 the
local	 paper.	 This	 precipitated	 a	 scholarly	 row,	 partly	 flattering	 to	Boole,
partly	humiliating.

A	classical	master	denied	that	a	boy	of	twelve	could	have	produced	such
a	 translation.	 Little	 boys	 of	 twelve	 often	 know	more	 about	 some	 things
than	 their	 forgetful	 elders	 give	 them	 credit	 for.	 On	 the	 technical	 side
grave	defects	showed	up.	Boole	was	humiliated	and	resolved	to	supply	the
deficiencies	 of	 his	 self-instruction.	 He	 had	 also	 taught	 himself	 Greek.



Determined	now	 to	 do	 a	 good	 job	or	none	he	 spent	 the	next	 two	 years
slaving	 over	 Latin	 and	 Greek,	 again	 without	 help.	 The	 effect	 of	 all	 this
drudgery	is	plainly	apparent	in	the	dignity	and	marked	Latinity	of	much	of
Boole’s	prose.

Boole	got	his	early	mathematical	 instruction	from	his	 father,	who	had
gone	considerably	beyond	his	own	meager	schooling	by	private	study.	The
father	had	also	tried	to	interest	his	son	in	another	hobby,	that	of	making
optical	instruments,	but	Boole,	bent	on	his	own	ambition,	stuck	to	it	that
the	classics	were	 the	key	 to	dominant	 living.	After	 finishing	his	 common
schooling	he	took	a	commercial	course.	This	time	his	diagnosis	was	better,
but	it	did	not	help	him	greatly.	By	the	age	of	sixteen	he	saw	that	he	must
contribute	at	once	to	the	support	of	his	wretched	parents.	School	teaching
offered	 the	 most	 immediate	 opportunity	 of	 earning	 steady	 wages—in
Boole’s	 day	 “ushers,”	 as	 assistant	 teachers	 were	 called,	 were	 not	 paid
salaries	but	wages.	There	is	more	than	a	monetary	difference	between	the
two.	 It	 may	 have	 been	 about	 this	 time	 that	 the	 immortal	 Squeers,	 in
Dickens’	 Nicholas	 Nickleby,	 was	 making	 his	 great	 but	 unappreciated
contribution	 to	 modern	 pedagogy	 at	 Dotheboys	 Hall	 with	 his	 brilliant
anticipation	 of	 the	 “project”	method.	 Young	Boole	may	 even	 have	 been
one	of	Squeers’	ushers;	he	taught	at	two	schools.

Boole	spent	four	more	or	less	happy	years	teaching	in	these	elementary
schools.	 The	 chilly	 nights,	 at	 least,	 long	 after	 the	 pupils	 were	 safely	 and
mercifully	asleep,	were	his	own.	He	 still	was	on	 the	wrong	 track.	A	 third
diagnosis	 of	 his	 social	 unworthiness	 was	 similar	 to	 his	 second	 but	 a
considerable	advance	over	both	his	first	and	second.	Lacking	anything	in
the	way	of	capital—practically	every	penny	the	young	man	earned	went	to
the	 support	 of	 his	 parents	 and	 the	 barest	 necessities	 of	 his	 own	meager
existence—Boole	 now	 cast	 an	 appraising	 eye	 over	 the	 gentlemanly
professions.	The	Army	at	 that	 time	was	out	of	his	 reach	as	he	could	not
afford	 to	 purchase	 a	 commission.	 The	 Bar	 made	 obvious	 financial	 and
educational	demands	which	he	had	no	prospect	of	satisfying.	Teaching,	of
the	grade	in	which	he	was	then	engaged,	was	not	even	a	reputable	trade,
let	alone	a	profession.	What	remained?	Only	the	Church.	Boole	resolved
to	become	a	clergyman.

In	 spite	 of	 all	 that	 has	 been	 said	 for	 and	 against	 God,	 it	 must	 be
admitted	even	by	his	severest	critics	that	he	has	a	sense	of	humor.	Seeing
the	 ridiculousness	 of	 George	 Boole’s	 ever	 becoming	 a	 clergyman,	 he



skilfully	 turned	 the	 young	 man’s	 eager	 ambition	 into	 less	 preposterous
channels.	An	unforeseen	affliction	of	greater	poverty	than	any	they	had	yet
enjoyed	compelled	Boole’s	parents	to	urge	their	son	to	forego	all	thoughts
of	ecclesiastical	eminence.	But	his	 four	years	of	private	preparation	(and
rigid	privation)	for	the	career	he	had	planned	were	not	wholly	wasted;	he
had	acquired	a	mastery	of	French,	German,	and	Italian,	all	destined	to	be
of	indispensable	service	to	him	on	his	true	road.

*		*		*

At	last	he	found	himself.	His	father’s	early	instruction	now	bore	fruit.	In
his	 twentieth	 year	 Boole	 opened	 up	 a	 civilized	 school	 of	 his	 own.	 To
prepare	his	pupils	properly	he	had	to	teach	them	some	mathematics	as	it
should	 be	 taught.	 His	 interest	 was	 aroused.	 Soon	 the	 ordinary	 and
execrable	textbooks	of	the	day	awoke	his	wonder,	then	his	contempt.	Was
this	 stuff	 mathematics?	 Incredible.	 What	 did	 the	 great	 masters	 of
mathematics	 say?	 Like	 Abel	 and	 Galois,	 Boole	 went	 directly	 to	 great
headquarters	for	his	marching	orders.	It	must	be	remembered	that	he	had
had	no	mathematical	training	beyond	the	rudiments.	To	get	some	idea	of
his	mental	capacity	we	can	imagine	the	lonely	student	of	twenty	mastering,
by	 his	 own	 unaided	 efforts,	 the	Mécanique	 céleste	 of	 Laplace,	 one	 of	 the
toughest	 masterpieces	 ever	 written	 for	 a	 conscientious	 student	 to
assimilate,	 for	 the	 mathematical	 reasoning	 in	 it	 is	 full	 of	 gaps	 and
enigmatical	declarations	that	“it	is	easy	to	see,”	and	then	we	must	think	of
him	making	 a	 thorough,	 understanding	 study	 of	 the	 excessively	 abstract
Mécanique	analytique	of	Lagrange,	in	which	there	is	not	a	single	diagram	to
illuminate	 the	 analysis	 from	 beginning	 to	 end.	 Yet	 Boole,	 self-taught,
found	 his	 way	 and	 saw	 what	 he	 was	 doing.	 He	 even	 got	 his	 first
contribution	to	mathematics	out	of	his	unguided	efforts.	This	was	a	paper
on	the	calculus	of	variations.

Another	 gain	 that	 Boole	 got	 out	 of	 all	 this	 lonely	 study	 deserves	 a
separate	paragraph	to	itself.	He	discovered	invariants.	The	significance	of
this	great	discovery	which	Cayley	and	Sylvester	were	 to	develop	 in	grand
fashion	has	 been	 sufficiently	 explained;	 here	we	 repeat	 that	without	 the
mathematical	theory	of	 invariance	(which	grew	out	of	the	early	algebraic
work)	the	theory	of	relativity	would	have	been	impossible.	Thus	at	the	very
threshold	of	his	scientific	career	Boole	noticed	something	lying	at	his	feet



which	Lagrange	himself	might	 easily	have	 seen,	picked	 it	up,	 and	 found
that	 he	 had	 a	 gem	 of	 the	 first	 water.	 That	 Boole	 saw	 what	 others	 had
overlooked	was	due	no	doubt	 to	his	 strong	feeling	for	 the	symmetry	and
beauty	 of	 algebraic	 relations—when	 of	 course	 they	 happen	 to	 be	 both
symmetrical	and	beautiful;	they	are	not	always.	Others	might	have	thought
his	 find	 merely	 pretty.	 Boole	 recognized	 that	 it	 belonged	 to	 a	 higher
order.

Opportunities	 for	 mathematical	 publication	 in	 Boole’s	 day	 were
inadequate	unless	an	author	happened	to	be	a	member	of	some	learned
society	 with	 a	 journal	 or	 transactions	 of	 its	 own.	 Luckily	 for	 Boole,	The
Cambridge	 Mathematical	 Journal,	 under	 the	 able	 editorship	 of	 the	 Scotch
mathematician,	D.	F.	Gregory,	was	founded	in	1837.	Boole	submitted	some
of	 his	 work.	 Its	 originality	 and	 style	 impressed	Gregory	 favorably,	 and	 a
cordial	mathematical	correspondence	began	a	friendship	which	lasted	out
Boole’s	life.

It	 would	 take	 us	 too	 far	 afield	 to	 discuss	 here	 the	 great	 contribution
which	the	British	school	was	making	at	 the	time	to	the	understanding	of
algebra	as	algebra,	that	is,	as	the	abstract	development	of	the	consequences
of	a	set	of	postulates	without	necessarily	any	interpretation	or	application
to	“numbers”	or	anything	else,	but	it	may	be	mentioned	that	the	modern
conception	 of	 algebra	 began	 with	 the	 British	 “reformers,”	 Peacock,
Herschel,	 De	 Morgan,	 Babbage,	 Gregory,	 and	 Boole.	 What	 was	 a
somewhat	heretical	novelty	when	Peacock	published	his	Treatise	on	Algebra
in	 1830	 is	 today	 a	 commonplace	 in	 any	 competently	 written	 schoolbook.
Once	and	for	all	Peacock	broke	away	 from	the	superstition	 that	 the	x,	y,
z,	.	.	.	in	such	relations	as	x	+	y	=	y	+	x,	xy	=	yx,	x(y	+	z)	=	xy	+	xz,	and	so	on,	as
we	find	them	in	elementary	algebra,	necessarily	“represent	numbers”;	they
do	not,	and	that	is	one	of	the	most	important	things	about	algebra	and	the
source	 of	 its	 power	 in	 applications.	The	 x,	 y,	 z,	 .	 .	 .	 are	merely	 arbitrary
marks,	 combined	 according	 to	 certain	 operations,	 one	 of	 which	 is
symbolized	 as	 +,	 another	 by	 ×	 (or	 simply	 as	 xy	 instead	 of	 x	 ×	 y),	 in
accordance	with	postulates	laid	down	at	the	beginning,	like	the	specimens
x	+	y	=	y	+	x,	etc.,	above.

Without	 this	 realization	 that	 algebra	 is	of	 itself	nothing	more	 than	an
abstract	system,	algebra	might	still	have	been	stuck	fast	in	the	arithmetical
mud	of	the	eighteenth	century,	unable	to	move	forward	to	its	modern	and
extremely	useful	variants	under	the	direction	of	Hamilton.	We	need	only



note	here	that	this	renovation	of	algebra	gave	Boole	his	first	opportunity
to	 do	 fine	 work	 appreciated	 by	 his	 contemporaries.	 Striking	 out	 on	 his
own	initiative	he	separated	the	symbols	of	mathematical	operations	from	the
things	 upon	 which	 they	 operate	 and	 proceeded	 to	 investigate	 these
operations	on	their	own	account.	How	did	 they	combine?	Were	 they	 too
subject	 to	 some	 sort	 of	 symbolic	 algebra?	He	 found	 that	 they	 were.	His
work	 in	 this	direction	 is	 extremely	 interesting,	but	 it	 is	overshadowed	by
the	 contribution	 which	 is	 peculiarly	 his	 own,	 the	 creation	 of	 a	 simple,
workable	system	of	symbolic	or	mathematical	logic.

*		*		*

To	 introduce	 Boole’s	 splendid	 invention	 properly	 we	 must	 digress
slightly	and	recall	a	famous	row	of	the	first	half	of	the	nineteenth	century,
which	 raised	 a	 devil	 of	 a	 din	 in	 its	 own	 day	 but	 which	 is	 now	 almost
forgotten	except	by	historians	of	pathological	philosophy.	We	mentioned
Hamilton	a	moment	ago.	There	were	two	Hamiltons	of	public	fame	at	this
time,	 one	 the	 Irish	 mathematician	 Sir	 William	 Rowan	 Hamilton	 (1805-
1865),	 the	 other	 the	 Scotch	 philosopher	 Sir	 William	 Hamilton	 (1788-
1856).	 Mathematicians	 usually	 refer	 to	 the	 philosopher	 as	 the	 other
Hamilton.	After	a	somewhat	unsuccessful	career	as	a	Scotch	barrister	and
candidate	for	official	university	positions	the	eloquent	philosopher	finally
became	 Professor	 of	 Logic	 and	 Metaphysics	 in	 the	 University	 of
Edinburgh.	The	mathematical	Hamilton,	as	we	have	seen,	was	one	of	the
outstanding	 original	 mathematicians	 of	 the	 nineteenth	 century.	 This	 is
perhaps	unfortunate	 for	 the	other	Hamilton,	 as	 the	 latter	had	no	 earthly
use	for	mathematics,	and	hasty	readers	sometimes	confuse	the	two	famous
Sir	Williams.	This	causes	the	other	one	to	turn	and	shiver	in	his	grave.

Now,	 if	 there	 is	 anything	 more	 obtuse	 mathematically	 than	 a
thickheaded	Scotch	metaphysician	it	is	probably	a	mathematically	thicker-
headed	 German	 metaphysician.	 To	 surpass	 the	 ludicrous	 absurdity	 of
some	of	the	things	the	Scotch	Hamilton	said	about	mathematics	we	have
to	turn	to	what	Hegel	said	about	astronomy	or	Lotze	about	non-Euclidean
geometry.	 Any	 depraved	 reader	 who	 wishes	 to	 fuddle	 himself	 can	 easily
run	down	all	he	needs.	It	was	the	metaphysician	Hamilton’s	misfortune	to
have	 been	 too	 dense	 or	 too	 lazy	 to	 get	 more	 than	 the	 most	 trivial
smattering	of	elementary	mathematics	at	school,	but	“omniscience	was	his



foible,”	 and	when	he	began	 lecturing	and	writing	on	philosophy,	he	 felt
constrained	to	tell	the	world	exactly	how	worthless	mathematics	is.

Hamilton’s	 attack	 on	mathematics	 is	 probably	 the	most	 famous	 of	 all
the	many	 savage	 assaults	mathematics	 has	 survived,	 undented.	 Less	 than
ten	 years	 ago	 lengthy	 extracts	 from	Hamilton’s	 diatribe	 were	 vigorously
applauded	 when	 a	 pedagogical	 enthusiast	 retailed	 them	 at	 a	 largely
attended	meeting	of	our	own	National	Educational	Association.	Instead	of
applauding,	the	auditors	might	have	got	more	out	of	the	exhibition	if	they
had	 paused	 to	 swallow	 some	 of	 Hamilton’s	 philosophy	 as	 a	 sort	 of
compulsory	sauce	for	the	proper	enjoyment	of	his	mathematical	herring.
To	be	 fair	 to	him	we	 shall	pass	on	a	 few	of	his	hottest	 shots	 and	 let	 the
reader	make	what	use	of	them	he	pleases.

“Mathematics	 [Hamilton	 always	 used	 “mathematics”	 as	 a	 plural,	 not	 a
singular,	 as	 customary	 today]	 freeze	 and	parch	 the	mind”;	 “an	 excessive
study	 of	 mathematics	 absolutely	 incapacitates	 the	 mind	 for	 those
intellectual	energies	which	philosophy	and	life	require”;	“mathematics	can
not	 conduce	 to	 logical	 habits	 at	 all”;	 “in	 mathematics	 dullness	 is	 thus
elevated	 into	 talent,	 and	 talent	 degraded	 into	 incapacity”;	 “mathematics
may	distort,	but	can	never	rectify,	the	mind.”

This	is	only	a	handful	of	the	birdshot;	we	have	not	room	for	the	cannon
balls.	The	whole	attack	 is	most	 impressive—for	a	man	who	knew	 far	 less
mathematics	 than	 any	 intelligent	 child	 of	 ten	 knows.	 One	 last	 shot
deserves	 special	 mention,	 as	 it	 introduces	 the	 figure	 of	 mathematical
importance	in	the	whole	wordy	war,	De	Morgan	(18061871),	one	of	the	most
expert	 controversialists	 who	 ever	 lived,	 a	 mathematician	 of	 vigorous
independence,	 a	 great	 logician	 who	 prepared	 the	 way	 for	 Boole,	 the
remorselessly	 good-humored	 enemy	 of	 all	 cranks,	 charlatans,	 and
humbugs,	 and	 finally	 father	 of	 the	 famous	 novelist	 (Alice	 for	 Short,	 etc.).
Hamilton	remarks,	“This	[a	perfectly	nonsensical	reason	that	need	not	be
repeated]	 is	 why	Mr.	 De	Morgan	 among	 other	mathematicians	 so	 often
argues	 right.	Still,	had	Mr.	De	Morgan	been	 less	of	 a	Mathematician,	he
might	 have	 been	 more	 of	 a	 Philosopher;	 and	 be	 it	 remembered,	 that
mathematics	and	dram-drinking	tell	especially,	in	the	long	run.”	Although
the	 esoteric	 punctuation	 is	 obscure	 the	meaning	 is	 clear	 enough.	 But	 it
was	not	De	Morgan	who	was	given	to	tippling.

De	Morgan,	having	 gained	 some	 fame	 from	his	 pioneering	 studies	 in
logic,	allowed	himself	 in	an	absent-minded	moment	to	be	trapped	into	a



controversy	 with	 Hamilton	 over	 the	 latter’s	 famous	 principle	 of	 “the
quantification	 of	 the	 predicate.”	 There	 is	 no	 need	 to	 explain	 what	 this
mystery	 is	(or	was);	 it	 is	as	dead	as	a	coffin	nail.	De	Morgan	had	made	a
real	 contribution	 to	 the	 syllogism;	 Hamilton	 thought	 he	 detected	 De
Morgan’s	 diamond	 in	 his	 own	 blue	 mud;	 the	 irate	 Scottish	 lawyer-
philosopher	 publicly	 accused	 De	 Morgan	 of	 plagiarism—an	 insanely
unphilosophical	thing	to	do—and	the	fight	was	on.	On	De	Morgan’s	side,
at	 least,	 the	row	was	a	hilarious	 frolic.	De	Morgan	never	 lost	his	 temper;
Hamilton	had	never	learned	to	keep	his.

*		*		*

If	 this	 were	 merely	 one	 of	 the	 innumerable	 squabbles	 over	 priority
which	disfigure	scientific	history	it	would	not	be	worth	a	passing	mention.
Its	historical	importance	is	that	Boole	by	now	(1848)	was	a	firm	friend	and
warm	admirer	of	De	Morgan.	Boole	was	still	teaching	school,	but	he	knew
many	 of	 the	 leading	 British	 mathematicians	 personally	 or	 by
correspondence.	He	now	came	to	the	aid	of	his	friend—not	that	the	witty
De	Morgan	needed	any	mortal’s	aid,	but	because	he	knew	that	De	Morgan
was	 right	 and	 Hamilton	 wrong.	 So,	 in	 1848,	 Boole	 published	 a	 slim
volume,	The	Mathematical	Analysis	 of	Logic,	his	 first	public	 contribution	 to
the	 vast	 subject	which	his	work	 inaugurated	 and	 in	which	he	was	 to	win
enduring	 fame	 for	 the	 boldness	 and	 perspicacity	 of	 his	 vision.	 The
pamphlet—it	 was	 hardly	 more	 than	 that—excited	 De	 Morgan’s	 warm
admiration.	Here	was	 the	master,	and	De	Morgan	hastened	 to	recognize
him.	The	booklet	was	only	the	promise	of	greater	things	to	come	six	years
later,	but	Boole	had	definitely	broken	new,	stubborn	ground.

In	 the	meantime,	 reluctantly	 turning	 down	 his	mathematical	 friends’
advice	that	he	proceed	to	Cambridge	and	take	the	orthodox	mathematical
training	 there,	Boole	went	on	with	 the	drudgery	of	elementary	 teaching,
without	 a	 complaint,	 because	 his	 parents	 were	 now	 wholly	 dependent
upon	 his	 support.	 At	 last	 he	 got	 an	 opportunity	 where	 his	 conspicuous
abilities	 as	 an	 investigator	 and	 a	 lecturer	 could	 have	 some	 play.	He	 was
appointed	 Professor	 of	 Mathematics	 at	 the	 recently	 opened	 Queen’s
College	at	what	was	then	called	the	city	of	Cork,	Ireland.	This	was	in	1849.

Needless	 to	 say,	 the	 brilliant	 man	 who	 had	 known	 only	 poverty	 and
hard	work	all	his	life	made	excellent	use	of	his	comparative	freedom	from



financial	worry	and	everlasting	grind.	His	duties	would	now	be	considered
onerous;	 Boole	 found	 them	 light	 by	 contrast	 with	 the	 dreary	 round	 of
elementary	 teaching	 to	 which	 he	 had	 been	 accustomed.	 He	 produced
much	notable	miscellaneous	mathematical	work,	but	his	main	effort	went
on	 licking	 his	 masterpeice	 into	 shape.	 In	 1854	 he	 published	 it:	 An
Investigation	 of	 the	 Laws	 of	 Thought,	 on	 which	 are	 founded	 the	 Mathematical
Theories	of	Logic	and	Probabilities.	Boole	was	thirty	nine	when	this	appeared.
It	is	somewhat	unusual	for	a	mathematician	as	old	as	that	to	produce	work
of	such	profound	originality,	but	the	phenomenon	is	accounted	for	when
we	remember	the	long,	devious	path	Boole	was	compelled	to	follow	before
he	could	set	his	face	fairly	toward	his	goal.	(Compare	the	careers	of	Boole
and	Weierstrass.)

A	few	extracts	will	give	some	idea	of	Boole’s	style	and	the	scope	of	his
work.

“The	design	of	 the	 following	 treatise	 is	 to	 investigate	 the	 fundamental
laws	of	those	operations	of	the	mind	by	which	reasoning	is	performed;	to
give	 expression	 to	 them	 in	 the	 language	 of	 a	 Calculus,	 and	 upon	 this
foundation	to	establish	the	science	of	Logic	and	construct	its	method;	to
make	that	method	itself	the	basis	of	a	general	method	for	the	application
of	the	mathematical	doctrine	of	probabilities;	and,	finally,	to	collect	from
the	 various	 elements	 of	 truth	 brought	 to	 view	 in	 the	 course	 of	 these
inquiries	 some	 probable	 intimations	 concerning	 the	 nature	 and
constitution	of	the	human	mind.	.	.	.”

“Shall	we	then	err	in	regarding	that	as	the	true	science	of	Logic	which,
laying	down	certain	elementary	 laws,	 confirmed	by	 the	 very	 testimony	of
the	mind,	permits	us	 thence	to	deduce,	by	uniform	processes,	 the	entire
chain	 of	 its	 secondary	 consequences,	 and	 furnishes,	 for	 its	 practical
applications,	methods	of	perfect	generality?	.	.	.”

“There	 exist,	 indeed,	 certain	 general	 principles	 founded	 in	 the	 very
nature	 of	 language,	 by	 which	 the	 use	 of	 symbols,	 which	 are	 but	 the
elements	of	 scientific	 language,	 is	determined.	To	a	 certain	extent	 these
elements	are	arbitrary.	Their	interpretation	is	purely	conventional:	we	are
permitted	 to	 employ	 them	 in	 whatever	 sense	 we	 please.	 But	 this
permission	is	limited	by	two	indispensable	conditions,—first,	that	from	the
sense	 once	 conventionally	 established	 we	 never,	 in	 the	 same	 process	 of
reasoning,	 depart;	 secondly,	 that	 the	 laws	 by	 which	 the	 process	 is
conducted	be	founded	exclusively	upon	the	above	fixed	sense	or	meaning



of	 the	 symbols	 employed.	 In	 accordance	 with	 these	 principles,	 any
agreement	which	may	be	established	between	 the	 laws	of	 the	 symbols	of
Logic	 and	 those	 of	Algebra	 can	 but	 issue	 in	 an	 agreement	 of	 processes.
The	two	provinces	of	interpretation	remain	apart	and	independent,	each
subject	to	its	own	laws	and	conditions.

“Now	the	actual	 investigations	of	 the	 following	pages	exhibit	Logic,	 in
its	 practical	 aspect,	 as	 a	 system	 of	 processes	 carried	 on	 by	 the	 aid	 of
symbols	 having	 a	 definite	 interpretation,	 and	 subject	 to	 laws	 founded
upon	 that	 interpretation	 alone.	 But	 at	 the	 same	 time	 they	 exhibit	 those
laws	as	 identical	 in	form	with	the	laws	of	the	general	symbols	of	Algebra,
with	this	single	addition,	viz.,	that	the	symbols	of	Logic	are	further	subject
to	a	special	law	[x2	=	x	 in	the	algebra	of	 logic,	which	can	be	 interpreted,
among	other	ways,	as	“the	class	of	all	those	things	common	to	a	class	x	and
itself	is	merely	the	class	x”],	to	which	the	symbols	of	quantity,	as	such,	are
not	subject.”	(That	is,	in	common	algebra,	it	is	not	true	that	every	x	is	equal
to	its	square,	whereas	in	the	Boolean	algebra	of	logic,	this	is	true.)

This	program	is	carried	out	in	detail	in	the	book.	Boole	reduced	logic
to	 an	 extremely	 easy	 and	 simple	 type	 of	 algebra.	 “Reasoning”	 upon
appropriate	 material	 becomes	 in	 this	 algebra	 a	 matter	 of	 elementary
manipulations	 of	 formulas	 far	 simpler	 than	most	 of	 those	 handled	 in	 a
second	year	of	school	algebra.	Thus	logic	itself	was	brought	under	the	sway
of	mathematics.

Since	Boole’s	pioneering	work	his	great	 invention	has	been	modified,
improved,	generalized,	and	extended	in	many	directions.	Today	symbolic
or	 mathematical	 logic	 is	 indispensable	 in	 any	 serious	 attempt	 to
understand	the	nature	of	mathematics	and	the	state	of	its	foundations	on
which	the	whole	colossal	superstructure	rests.	The	intricacy	and	delicacy	of
the	difficulties	explored	by	 the	 symbolic	 reasoning	would,	 it	 is	 safe	 to	 say,
defy	 human	 reason	 if	 only	 the	 old,	 pre-Boole	 methods	 of	 verbal	 logical
arguments	were	 at	 our	 disposal.	 The	daring	 originality	 of	 Boole’s	 whole
project	needs	no	signpost.	It	is	a	landmark	in	itself.

Since	 1899,	 when	 Hilbert	 published	 his	 classic	 on	 the	 foundations	 of
geometry,	much	attention	has	been	given	to	the	postulational	formulation
of	the	several	branches	of	mathematics.	This	movement	goes	back	as	far	as
Euclid,	 but	 for	 some	 strange	 reason—possibly	 because	 the	 techniques
invented	 by	 Descartes,	 Newton,	 Leibniz,	 Euler,	 Gauss,	 and	 others	 gave
mathematicians	 plenty	 to	 do	 in	 developing	 their	 subject	 freely	 and



somewhat	 uncritically—the	Euclidean	method	was	 for	 long	 neglected	 in
everything	 but	 geometry.	 We	 have	 already	 seen	 that	 the	 British	 school
applied	the	method	to	algebra	in	the	first	half	of	the	nineteenth	century.
Their	successes	seem	to	have	made	no	very	great	impression	on	the	work
of	 their	 contemporaries	 and	 immediate	 successors,	 and	 it	 was	 only	 with
the	work	of	Hilbert	that	the	postulational	method	came	to	be	recognized
as	the	clearest	and	most	rigorous	approach	to	any	mathematical	discipline.

Today	 this	 tendency	 to	abstraction,	 in	which	 the	 symbols	and	rules	of
operation	in	a	particular	subject	are	emptied	of	all	meaning	and	discussed
from	a	purely	formal	point	of	view,	is	all	the	rage,	rather	to	the	neglect	of
applications	(practical	or	mathematical)	which	some	say	are	the	ultimate
human	 justification	 for	 any	 scientific	 activity.	 Nevertheless	 the	 abstract
method	does	give	 insights	which	 looser	attacks	do	not,	 and	 in	particular
the	true	simplicity	of	Boole’s	algebra	of	logic	is	most	easily	seen	thus.

Accordingly	 we	 shall	 state	 the	 postulates	 for	 Boolean	 algebra	 (the
algebra	of	logic)	and,	having	done	so,	see	that	they	can	indeed	be	given	an
interpretation	 consistent	 with	 classical	 logic.	 The	 following	 set	 of
postulates	is	taken	from	a	paper	by	E.	V.	Huntington,	in	the	Transactions	of
the	 American	Mathematical	 Society,	 (vol.	 35,	 1933,	 pp.	 274	 −304).	 The	 whole
paper	is	easily	understandable	by	anyone	who	has	had	a	week	of	algebra,
and	may	 be	 found	 in	most	 large	 public	 libraries.	 As	Huntington	 points
out,	this	first	set	of	his	which	we	transcribe	is	not	as	elegant	as	some	of	his
others.	 But	 as	 its	 interpretation	 in	 terms	 of	 class	 inclusion	 as	 in	 formal
logic	is	more	immediate	than	the	like	for	the	others,	it	is	to	be	preferred
here.

The	set	of	postulates	is	expressed	in	terms	of	K,	+,	X,	where	K	is	a	class
of	 undefined	 (wholly	 arbitrary,	 without	 any	 assigned	 meaning	 or
properties	beyond	those	given	in	the	postulates)	elements	a,	b,	c,	.	.	.	,	and
a	+	b	and	a	×	b	(written	also	simply	as	ab)	are	the	results	of	two	undefined
binary	 operations,	 +,	 ×	 (“binary,”	 because	 each	 of	 +,	 ×	 operates	 on	 two
elements	of	K).	There	are	ten	postulates,	I	a-VI:

“I	a.	If	a	and	b	are	in	the	class	K,	then	a	+	b	is	in	the	class	K.
“I	b.	If	a	and	b	are	in	the	class	K,	then	ab	is	in	the	class	K.
“II	a.	There	is	an	element	Z	such	that	a	+	Z	=	a	for	every	element	a.
“II	b.	There	is	an	element	U	such	that	a	U	=	a	for	every	element	a.
“III	a.	a	+	b	=	b	+	a.
“III	b.	ab	=	ba.



“IV	a.	a	+	bc	=	(a	+	b)(a	+	c).
“IV	b.	a(b	+	c)	=	ab	+	ac.
“V.	For	every	element	a	there	is	an	element	a′	such	that	a	+	a′	=	U	and	aa′	=	Z.
“VI.	There	are	at	least	two	distinct	elements	in	the	class	K.”
It	will	be	readily	seen	that	these	postulates	are	satisfied	by	the	following

interpretation:	a,	b,	c,	 .	 .	 .	are	classes’,	a	+	b	 is	 the	class	of	all	 those	things
that	are	in	at	least	one	of	the	classes	a,	b;	ab	 is	 the	class	of	all	 those	things
that	are	in	both	of	the	classes	a,	b;	Z	is	the	“null	class”—the	class	that	has	no
members;	U	is	the	“universal	class”—the	class	that	contains	all	the	things	in
all	the	classes	under	discussion.	Postulate	V	then	states	that	given	any	class
a,	there	is	a	class	a’	consisting	of	all	those	things	which	are	not	in	a.	Note
that	VI	implies	that	U,	Z	are	not	the	same	class.

From	 such	 a	 simple	 and	 obvious	 set	 of	 statements	 it	 seems	 rather
remarkable	that	the	whole	of	classical	logic	can	be	built	up	symbolically	by
means	 of	 the	 easy	 algebra	 generated	 by	 the	 postulates.	 From	 these
postulates	a	theory	of	what	may	be	called	“logical	equations”	is	developed:
problems	 in	 logic	 are	 translated	 into	 such	 equations,	 which	 are	 then
“solved”	by	the	devices	of	the	algebra;	the	solution	is	then	reinterpreted	in
terms	of	the	logical	data,	giving	the	solution	of	the	original	problem.	We
shall	 close	 this	 description	with	 the	 symbolic	 equivalent	 of	 “inclusion”—
also	interpretable,	when	propositions	rather	than	classes	are	the	elements	of
K,	as	“implication.”

“The	 relation	 a	 <	 b	 [read,	 a	 is	 included	 in	 b]	 is	 defined	 by	 any	 one	 of	 the
following	equations

a	+	b	=	b,	ab	=	a,	a′	+	b	=	U,	ab′	=	Z.”

To	see	that	these	are	reasonable,	consider	for	example	the	second,	ab	=
a.	This	states	that	if	a	is	included	in	b,	then	everything	that	is	in	both	a	and
b	is	the	whole	of	a.

From	 the	 stated	postulates	 the	 following	 theorems	 on	 inclusion	 (with
thousands	 of	 more	 complicated	 ones,	 if	 desired)	 can	 be	 proved.	 The
specimens	 selected	 all	 agree	 with	 our	 intuitive	 conception	 of	 what
“inclusion”	means.

(1)	a	<	a.
(2)	If	a	<	b	and	b	<	c,	then	a	<	c.
(3)	If	a	<	b	and	b	<	a,	then	a	=	b.



(4)	Z	<	a	(where	Z	is	the	element	in	II	a—it	is	proved	to	be	the	only	element
satisfying	II	a).

(5)	a	<	U	(where	U	is	the	element	in	II	b—likewise	unique).
(6)	a	<	a	+	b;	and	if	a	<	y	and	b	<	y,	then	a	+	b	<	y.
(7)	ab	<	a;	and	if	x	<	a	and	x	<	b,	then	x	<	ab.
(8)	If	x	<	a	and	x	<	a’,	then	x	=	Z;	and	if	a	<	y	and	a’	<	y,	then	y	=	U.
(9)	If	a	<	b’	 is	 false,	 then	there	is	at	 least	one	element	x,	distinct	 from	Z,	such

that	x	<	a	and	x	<	b.
It	may	 be	 of	 interest	 to	 observe	 that	 in	 arithmetic	 and	 analysis	 is	 the

symbol	 for	 “less	 than.”	Note	 that	 if	a,	 b,	 c,	 .	 .	 .	 are	 real	 numbers,	 and	Z
denotes	 zero,	 then	 (2)	 is	 satisfied	 for	 this	 interpretation	 of	 “<,”	 and
similarly	for	(4),	provided	a	is	positive;	but	that	(1)	is	not	satisfied,	nor	is
the	 second	part	of	 (6)—as	we	 see	 from	5	<	10,	7	<	10,	but	5	+	7	<	10	 is
false.

The	 tremendous	power	and	 fluent	 ease	of	 the	method	can	be	 readily
appreciated	by	seeing	what	it	does	in	any	work	on	symbolic	logic.	But,	as
already	emphasized,	 the	 importance	of	 this	 “symbolic	reasoning”	 is	 in	 its
applicability	 to	 subtle	 questions	 regarding	 the	 foundations	 of	 all
mathematics	which,	were	it	not	for	this	precise	method	of	fixing	meanings
of	 “words”	 or	 other	 “symbols”	 once	 for	 all,	 would	 probably	 be
unapproachable	by	ordinary	mortals.

Like	 nearly	 all	 novelties,	 symbolic	 logic	 was	 neglected	 for	many	 years
after	 its	 invention.	 As	 late	 as	 1910	 we	 find	 eminent	 mathematicians
scorning	 it	 as	 a	 “philosophical”	 curiosity	 without	 mathematical
significance.	The	work	of	Whitehead	and	Russell	 in	Principia	Mathematica
(1910-1913)	 was	 the	 first	 to	 convince	 any	 considerable	 body	 of
professional	 mathematicians	 that	 symbolic	 logic	 might	 be	 worth	 their
serious	attention.	One	staunch	hater	of	symbolic	logic	may	be	mentioned
—Cantor,	 whose	 work	 on	 the	 infinite	 will	 be	 noticed	 in	 the	 concluding
chapter.	 By	 one	 of	 those	 little	 ironies	 which	make	mathematical	 history
such	amusing	reading	for	the	open-minded,	symbolic	logic	was	to	play	an
important	 part	 in	 the	 drastic	 criticism	 of	 Cantor’s	 work	 that	 caused	 its
author	to	lose	faith	in	himself	and	his	theory.

Boole	did	not	long	survive	the	production	of	his	masterpiece.	The	year
after	its	publication,	still	subconsciously	striving	for	the	social	respectability
that	 he	 once	 thought	 a	 knowledge	 of	 Greek	 could	 confer,	 he	 married
Mary	Everest,	niece	of	the	Professor	of	Greek	in	Queen’s	College.	His	wife



became	 his	 devoted	 disciple.	 After	 her	 husband’s	 death,	 Mary	 Boole
applied	 some	 of	 the	 ideas	 which	 she	 had	 acquired	 from	 him	 to
rationalizing	 and	 humanizing	 the	 education	 of	 young	 children.	 In	 her
pamphlet,	Boole’s	Psychology,	Mary	Boole	records	an	interesting	speculation
of	 Boole’s	 which	 readers	 of	 The	 Laws	 of	 Thought	 will	 recognize	 as	 in
keeping	with	the	unexpressed	but	implied	personal	philosophy	in	certain
sections.	Boole	told	his	wife	that	in	1832,	when	he	was	about	seventeen,	it
“flashed	 upon”	 him	 as	 he	 was	 walking	 across	 a	 field	 that	 besides	 the
knowledge	gained	 from	direct	observation,	man	derives	knowledge	 from
some	 source	 un-definable	 and	 invisible—which	 Mary	 Boole	 calls	 “the
unconscious.”	 It	will	 be	 interesting	 (in	a	 later	 chapter)	 to	hear	Poincaré
expressing	 a	 similar	 opinion	 regarding	 the	 genesis	 of	 mathematical
“inspirations”	in	the	“subconscious	mind.”	Anyhow,	Boole	was	inspired,	if
ever	a	mortal	was,	when	he	wrote	The	Laws	of	Thought.

Boole	 died,	 honored	 and	 with	 a	 fast-growing	 fame,	 on	 December	 8,
1864,	 in	 the	 fiftieth	 year	 of	 his	 age.	 His	 premature	 death	 was	 due	 to
pneumonia	contracted	after	faithfully	keeping	a	lecture	engagement	when
he	was	soaked	to	the	skin.	He	fully	realized	that	he	had	done	great	work.



CHAPTER	TWENTY	FOUR

The	Man,	Not	the	Method

HERMITE

Talk	with	M.	Hermite:	he	never	evokes	a	concrete	image;	yet	you	soon	perceive	that	the	most	abstract	entities
are	for	him	like	living	creatures.—HENRI	POINCARé

OUTSTANDING	UNSOLVED	PROBLEMS	demand	new	methods	for	their	solution,
while	 powerful	 new	 methods	 beget	 new	 problems	 to	 be	 solved.	 But,	 as
Poincaré	observed,	it	is	the	man,	not	the	method,	that	solves	a	problem.

Of	old	problems	 responsible	 for	new	methods	 in	mathematics	 that	of
motion	and	all	 it	 implies	 for	mechanics,	 terrestrial	 and	 celestial,	may	be
recalled	 as	 one	 of	 the	 principal	 instigators	 of	 the	 calculus	 and	 present
attempts	to	put	reasoning	about	the	infinite	on	a	firm	basis.	An	example	of
new	problems	suggested	by	powerful	new	methods	is	the	swarm	which	the
tensor	calculus,	popularized	to	geometers	by	 its	successes	 in	relativity,	 let
loose	 in	geometry.	And	 finally,	 as	 an	 illustration	of	Poincaré’s	 remark,	 it
was	Einstein,	and	not	 the	method	of	 tensors,	 that	 solved	 the	problem	of
giving	a	coherent	mathematical	account	of	gravitation.	All	three	theses	are
sustained	 in	 the	 life	 of	 Charles	 Hermite,	 the	 leading	 French
mathematician	of	the	second	half	of	the	nineteenth	century—if	we	except
Hermite’s	pupil	Poincaré,	who	belonged	partly	to	our	own	century.

Charles	Hermite,	 born	 at	Dieuze,	Lorraine,	 France,	 on	December	24,
1822,	could	hardly	have	chosen	a	more	propitious	era	 for	his	birth	 than
the	 third	 decade	 of	 the	 nineteenth	 century.	 His	 was	 just	 the	 rare
combination	 of	 creative	 genius	 and	 the	 ability	 to	master	 the	 best	 in	 the
work	of	other	men	which	was	demanded	in	the	middle	of	the	century	to
coordinate	the	arithmetical	creations	of	Gauss	with	the	discoveries	of	Abel
and	Jacobi	in	elliptic	functions,	the	striking	advances	of	Jacobi	in	Abelian
functions,	 and	 the	 vast	 theory	of	 algebraic	 invariants	 in	process	 of	 rapid
development	by	the	English	mathematicians	Boole,	Cayley,	and	Sylvester.



Hermite	almost	lost	his	life	in	the	French	Revolution—although	the	last
head	 had	 fallen	 nearly	 a	 quarter	 of	 a	 century	 before	 he	 was	 born.	 His
paternal	grandfather	was	ruined	by	the	Commune	and	died	in	prison;	his
grandfather’s	 brother	 went	 to	 the	 guillotine.	 Hermite’s	 father	 escaped
owing	to	his	youth.

If	Hermite’s	mathematical	ability	was	inherited,	it	probably	came	from
the	side	of	the	father,	who	had	studied	engineering.	Finding	engineering
uncongenial,	Hermite	 senior	 gave	 it	 up,	 and	 after	 an	 equally	 distasteful
start	 in	 the	 salt	 industry,	 finally	 settled	 down	 in	 business	 as	 a	 cloth
merchant.	 This	 resting	 place	 was	 no	 doubt	 chosen	 by	 the	 rolling	 stone
because	he	had	married	his	employer’s	daughter,	Madeleine	Lallemand,	a
domineering	 woman	 who	 wore	 the	 breeches	 in	 her	 family	 and	 ran
everything	 from	the	business	 to	her	husband.	She	succeeded	 in	building
both	up	 to	a	 state	of	 solid	bourgeois	prosperity.	Charles	was	 the	 sixth	of
seven	 children—five	 sons	 and	 two	 daughters.	 He	 was	 born	 with	 a
deformity	 of	 the	 right	 leg	which	 rendered	 him	 lame	 for	 life—possibly	 a
disguised	 blessing,	 as	 it	 effectively	 barred	 him	 from	 any	 career	 even
remotely	connected	with	the	army—and	he	had	to	get	about	with	a	cane.
His	deformity	never	affected	the	uniform	sweetness	of	his	disposition.

Hermite’s	 earliest	 education	 was	 received	 from	 his	 parents.	 As	 the
business	 continued	 to	 prosper,	 the	 family	moved	 from	Dieuze	 to	Nancy
when	 Hermite	 was	 six.	 Presently	 the	 growing	 demands	 of	 the	 business
absorbed	all	the	time	of	the	parents	and	Hermite	was	sent	as	a	boarder	to
the	 lycée	 at	 Nancy.	 This	 school	 proving	 unsatisfactory	 the	 prosperous
parents	 decided	 to	 give	 Charles	 the	 best	 and	 packed	 him	 off	 to	 Paris.
There	he	studied	for	a	short	time	at	the	Lycée	Henri	IV,	moving	on	at	the
age	of	eighteen	(1840)	to	the	more	famous	(or	infamous)	Louis-le-Grand
—the	 “Alma”	 Mater	 of	 the	 wretched	 Galois—to	 prepare	 for	 the
Polytechnique.

For	 a	 while	 it	 looked	 as	 if	 Hermite	 was	 to	 repeat	 the	 disaster	 of	 his
untamable	 predecessor	 at	 Louis-le-Grand.	 He	 had	 the	 same	 dislike	 for
rhetoric	and	the	same	indifference	to	the	elementary	mathematics	of	the
classroom.	But	the	competent	lectures	on	physics	fascinated	him	and	won
his	cordial	cooperation	in	the	bilateral	process	of	acquiring	an	education.
Later	 on,	 unpestered	 by	 pedants,	Hermite	 became	 a	 good	 classicist	 and
the	master	of	a	beautifully	clear	prose.



Those	who	hate	examinations	will	love	Hermite.	There	is	something	in
the	careers	of	these	two	most	famous	alumni	of	Louis-le-Grand,	Galois	and
Hermite,	 which	 might	 well	 cause	 the	 advocates	 of	 examinations	 as	 a
reliable	 yardstick	 for	 arranging	 human	 beings	 in	 order	 of	 intellectual
merit	to	ask	themselves	whether	they	have	used	their	heads	or	their	feet	in
arriving	 at	 their	 conclusions.	 It	 was	 only	 by	 the	 grace	 of	 God	 and	 the
diplomatic	 persistence	 of	 the	 devoted	 and	 intelligent	 Professor	 Richard,
who	had	done	his	 unavailing	 best	 fifteen	 years	 before	 to	 save	Galois	 for
science,	that	Hermite	was	not	tossed	out	by	stupid	examiners	to	rot	on	the
rubbish	 heap	 of	 failure.	 While	 still	 a	 student	 at	 the	 lycée,	 Hermite,
following	 in	 the	 steps	 of	 Galois,	 supplemented	 and	 neglected	 his
elementary	 lessons	 by	 private	 reading	 at	 the	 library	 of	 Sainte-Geneviève,
where	he	found	and	mastered	the	memoir	of	Lagrange	on	the	solution	of
numerical	 equations.	 Saving	 up	 his	 pennies,	 he	 bought	 the	 French
translation	 of	 the	 Disquisitiones	 Arithmeticae	 of	 Gauss	 and,	 what	 is	 more,
mastered	 it	 as	 few	before	or	 since	have	mastered	 it.	By	 the	 time	he	had
followed	what	Gauss	had	done	Hermite	was	ready	to	go	on.	“It	was	in	these
two	books,”	he	loved	to	say	in	later	life,	“that	I	learned	Algebra.”	Euler	and
Laplace	 also	 instructed	 him	 through	 their	 works.	 And	 yet	 Hermite’s
performance	in	examinations	was,	to	say	the	most	flattering	thing	possible
of	it,	mediocre.	Mathematical	nonentities	beat	him	out	of	sight.

Mindful	 of	 the	 tragic	 end	 of	 Galois,	 Richard	 tried	 his	 best	 to	 steer
Hermite	 away	 from	 original	 investigation	 to	 the	 less	 exciting	 though
muddier	waters	of	the	competitive	examinations	for	entrance	to	the	École
Polytechnique—the	 filthy	 ditch	 in	 which	 Galois	 had	 drowned	 himself.
Nevertheless	 the	 good	Richard	 could	 not	 refrain	 from	 telling	Hermite’s
father	that	Charles	was	“a	young	Lagrange.”

The	 Nouvelles	 Annales	 de	 Mathématiques,	 a	 journal	 devoted	 to	 the
interests	of	students	in	the	higher	schools,	was	founded	in	1842.	The	first
volume	 contains	 two	 papers	 composed	 by	 Hermite	 while	 he	 was	 still	 a
student	 at	 Louis-le-Grand.	 The	 first	 is	 a	 simple	 exercise	 in	 the	 analytic
geometry	of	conic	sections	and	betrays	no	originality.	The	second,	which
fills	only	 six	 and	a	half	pages	 in	Hermite’s	 collected	works,	 is	 a	horse	of
quite	a	different	color.	Its	unassuming	title	is	Considerations	on	the	algebraic
solution	of	the	equation	of	the	fifth	degree	(translation).

“It	 is	 known,”	 the	 modest	 mathematician	 of	 twenty	 begins,	 “that
Lagrange	made	the	algebraic	solution	of	the	general	equation	of	the	fifth



degree	depend	on	the	determination	of	a	root	of	a	particular	equation	of
the	 sixth	 degree,	 which	 he	 calls	 a	 reduced	 equation	 £	 today,	 a
’resolvent’].	.	.	.	So	that,	if	this	resolvent	were	decomposable	into	rational
factors	of	the	second	or	third	degrees,	we	should	have	the	solution	of	the
equation	of	the	fifth	degree.	I	shall	try	to	show	that	such	a	decomposition
is	 impossible.”	 Hermite	 not	 only	 succeeded	 in	 his	 attempt—by	 a
beautifully	simple	argument—but	showed	also	in	doing	so	that	he	was	an
algebraist.	With	but	a	few	slight	changes	this	short	paper	will	do	all	that	is
required.

It	may	seem	strange	that	a	young	man	capable	of	genuine	mathematical
reasoning	 of	 the	 caliber	 shown	 by	Hermite	 in	 his	 paper	 on	 the	 general
quintic	 should	 find	 elementary	 mathematics	 difficult.	 But	 it	 is	 not
necessary	 to	 understand—or	 even	 to	 have	 heard	 of—much	 of	 classical
mathematics	as	it	has	evolved	in	the	course	of	its	long	history	in	order	to
be	 able	 to	 follow	 or	 work	 creatively	 in	 the	 mathematics	 that	 has	 been
developed	since	1800	and	is	still	of	living	interest	to	mathematicians.	The
geometrical	 treatment	 (synthetic)	 of	 conic	 sections	 of	 the	 Greeks,	 for
instance,	 need	 not	 be	 mastered	 today	 by	 anyone	 who	 wishes	 to	 follow
modern	geometry;	nor	need	any	geometry	at	all	be	learned	by	one	whose
tastes	are	algebraic	or	arithmetical.	To	a	lesser	degree	the	same	is	true	for
analysis,	where	such	geometrical	language	as	is	used	is	of	the	simplest	and
is	neither	necessary	nor	desirable	if	up-to-date	proofs	are	the	object.	As	a
last	example,	descriptive	geometry,	of	great	use	to	designing	engineers,	is
of	 practically	 no	 use	 whatever	 to	 a	 working	mathematician.	 Some	 quite
difficult	 subjects	 that	 are	 still	mathematically	 alive	 require	 only	 a	 school
education	in	algebra	and	a	clear	head	for	their	comprehension.	Such	are
the	 theory	of	 finite	 groups,	 the	mathematical	 theory	of	 the	 infinite,	 and
parts	of	the	theory	of	probabilities	and	the	higher	arithmetic.	So	it	is	not
astonishing	 that	 large	 tracts	 of	what	 a	 candidate	 is	 required	 to	 know	 for
entrance	 to	a	 technical	or	 scientific	 school,	or	even	 for	graduation	 from
the	same,	are	less	than	worthless	for	a	mathematical	career.	This	accounts
for	 Hermite’s	 spectacular	 success	 as	 a	 budding	 mathematician	 and	 his
narrow	escape	from	complete	disaster	as	an	examinee.

Late	 in	 1842,	 at	 the	 age	 of	 twenty,	 Hermite	 sat	 for	 the	 entrance
examinations	 to	 the	 École	 Polytechnique.	 He	 passed,	 but	 only	 as	 sixty
eighth	 in	 order	 of	 merit.	 Already	 he	 was	 a	 vastly	 better	 mathematician
than	some	of	the	men	who	examined	him	were,	or	were	ever	to	become.



The	humiliating	outcome	of	 this	 test	made	 an	 impression	on	 the	 young
master	which	all	the	triumphs	of	his	manhood	never	effaced.

Hermite	stayed	only	one	year	at	the	Polytechnique.	It	was	not	his	head
that	disqualified	him	but	his	lame	foot	which,	according	to	a	ruling	of	the
authorities,	 unfitted	 him	 for	 any	 of	 the	 positions	 open	 to	 successful
students	of	the	school.	Perhaps	it	 is	as	well	that	Hermite	was	thrown	out;
he	was	an	ardent	patriot	and	might	easily	have	been	embroiled	in	one	or
other	 of	 the	 political	 or	 military	 rows	 so	 precious	 to	 the	 effervescent
French	temperament.	However,	the	year	was	by	no	means	wasted.	Instead
of	 slaving	 over	 descriptive	 geometry,	 which	 he	 hated,	Hermite	 spent	 his
time	on	Abelian	functions,	then	(1842)	perhaps	the	topic	of	outstanding
interest	and	 importance	 to	 the	great	mathematicians	of	Europe.	He	had
also	made	 the	 acquaintance	 of	 Joseph	 Liouville	 (1809-1882),	 a	 first-rate
mathematician	and	editor	of	the	Journal	des	Mathématiques.

Liouville	 recognized	 genius	 when	 he	 saw	 it.	 In	 passing	 it	 may	 be
amusing	 to	 recall	 that	Liouville	 inspired	William	Thomson,	Lord	Kelvin,
the	famous	Scotch	physicist,	to	one	of	the	most	satisfying	definitions	of	a
mathematician	 that	 has	 ever	 been	 given.	 “Do	 you	 know	 what	 a
mathematician	is?”	Kelvin	once	asked	a	class.	He	stepped	to	the	board	and
wrote

Putting	 his	 finger	 on	 what	 he	 had	 written,	 he	 turned	 to	 the	 class.	 “A
mathematician	 is	one	 to	whom	 that	 is	as	obvious	as	 that	 twice	 two	makes
four	 is	 to	 you.	 Liouville	 was	 a	 mathematician.”	 Young	 Hermite’s
pioneering	 work	 in	 Abelian	 functions,	 well	 begun	 before	 he	 was	 twenty
one,	was	as	far	beyond	Kelvin’s	example	in	unobviousness	as	the	example
is	beyond	“twice	two	makes	four.”	Remembering	the	cordial	welcome	the
aged	 Legendre	 had	 accorded	 the	 revolutionary	 work	 of	 the	 young	 and
unknown	 Jacobi,	 Liouville	 guessed	 that	 Jacobi	 would	 show	 a	 similar
generosity	to	the	beginning	Hermite.	He	was	not	mistaken.

*		*		*

The	first	of	Hermite’s	astonishing	letters	to	Jacobi	is	dated	from	Paris,
January,	 1843.	 “The	 study	 of	 your	 [Jacobi’s]	 memoir	 on	 quad-ruply



periodic	functions	arising	in	the	theory	of	Abelian	functions	has	led	me	to
a	 theorem,	 for	 the	 division	 of	 the	 arguments	 [Variables]	 of	 these
functions,	 analogous	 to	 that	 which	 you	 gave	 .	 .	 .	 to	 obtain	 the	 simplest
expression	 for	 the	 roots	 of	 the	 equations	 treated	 by	 Abel.	 M.	 Liouville
induced	me	to	write	to	you,	to	submit	this	work	to	you;	dare	I	hope,	Sir,
that	 you	will	be	pleased	 to	welcome	 it	with	all	 the	 indulgence	 it	needs?”
With	that	he	plunges	at	once	into	the	mathematics.

To	 recall	 briefly	 the	 bare	 nature	 of	 the	 problem	 in	 question:	 the
trigonometric	functions	are	functions	of	one	variable	with	one	period,	thus
sin	(x	+	27r)	=	sin	x,	where	x	is	the	variable	and	2	π	is	the	period;	Abel	and
Jacobi,	by	“inverting”	the	elliptic	integrals,	had	discovered	functions	of	one
variable	and	two	periods,	say	f(x	+	p	+	q)	=	f(x),	where	p,	q	are	the	periods
(see	Chapters	12,	18);	Jacobi	had	discovered	functions	of	two	variables	and
four	periods,	say

F(x+	a	+	b,	y	+	c	+	d)	=	F(x,	y),

where	 a,	 b,	 c,	 d	 are	 the	 periods.	 A	 problem	 early	 encountered	 in

trigonometry	is	to	express	sin	 	or	sin	 	or	generally	sin	 	where	n	is
any	 given	 integer,	 in	 terms	 of	 sin	 x	 (and	 possibly	 other	 trigonometric
functions	 of	 x).	 The	 corresponding	 problem	 for	 the	 functions	 of	 two
variables	 and	 four	 periods	 was	 that	 which	 Hermite	 attacked.	 In	 the
trigonometric	 problem	 we	 are	 finally	 led	 to	 quite	 simple	 equations;	 in
Hermite’s	 incomparably	 more	 difficult	 problem	 the	 upshot	 is	 again	 an
equation	(of	degree	n4),	and	the	unexpected	thing	about	this	equation	is
that	it	can	be	solved	algebraically,	that	is,	by	radicals.

Barred	 from	 the	 Polytechnique	 by	 his	 lameness,	 Hermite	 now	 cast
longing	eyes	on	the	teaching	profession	as	a	haven	where	he	might	earn
his	 living	 while	 advancing	 his	 beloved	 mathematics.	 The	 career	 should
have	 been	 flung	 wide	 open	 to	 him,	 degree	 or	 no	 degree,	 but	 the
inexorable	 rules	 and	 regulations	 made	 no	 exceptions.	 Red	 tape	 always
hangs	the	wrong	man,	and	it	nearly	strangled	Hermite.

Unable	 to	 break	 himself	 of	 his	 “pernicious	 originality,”	 Hermite
continued	his	researches	to	the	last	possible	moment	when,	at	the	age	of
twenty	four,	he	abandoned	the	fundamental	discoveries	he	was	making	to
master	the	trivialities	required	for	his	first	degrees	(bachelor	of	letters	and
science).	 Two	 harder	 ordeals	 would	 normally	 have	 followed	 the	 first



before	 the	 young	mathematical	 genius	 could	 be	 certified	 as	 fit	 to	 teach,
but	 fortunately	 Hermite	 escaped	 the	 last	 and	 worst	 when	 influential
friends	 got	 him	 appointed	 to	 a	 position	 where	 he	 could	 mock	 the
examiners.	He	passed	his	examinations	(in	1847	−48)	very	badly.	But	 for
the	friendliness	of	two	of	the	inquisitors—Sturm	and	Bertrand,	both	fine
mathematicians	who	recognized	a	 fellow	craftsman	when	 they	 saw	one—
Hermite	 would	 probably	 not	 have	 passed	 at	 all.	 (Hermite	 married
Bertrand’s	sister	Louise	in	1848.)

By	 an	 ironic	 twist	 of	 fate	 Hermite’s	 first	 academic	 success	 was	 his
appointment	 in	 1848	 as	 an	 examiner	 for	 admissions	 to	 the	 very
Polytechnique	which	had	almost	failed	to	admit	him.	A	few	months	 later
he	was	 appointed	quiz	master	 (répétiteur)	 at	 the	 same	 institution.	He	was
now	securely	established	in	a	niche	where	no	examiner	could	get	at	him.
But	 to	 reach	 this	 “bad	 eminence”	 he	 had	 sacrificed	 nearly	 five	 years	 of
what	 almost	 certainly	 was	 his	 most	 inventive	 period	 to	 propitiate	 the
stupidities	of	the	official	system.

*		*		*

Having	 finally	 satisfied	 or	 evaded	 his	 rapacious	 examiners,	 Hermite
settled	down	to	become	a	great	mathematician.	His	life	was	peaceful	and
uneventful.	In	1848	to	1850	he	substituted	for	Libri	at	the	Collège	de	France.
Six	years	later,	at	the	early	age	of	thirty	four,	he	was	elected	to	the	Institut
(as	 a	 member	 of	 the	 Academy	 of	 Sciences).	 In	 spite	 of	 his	 world-wide
reputation	as	a	creative	mathematician	Hermite	was	forty	seven	before	he
obtained	a	suitable	position:	he	was	appointed	professor	only	in	1869	at	the
École	Normale	and	finally,	in	1870,	he	became	professor	at	the	Sorbonne,	a
position	which	he	held	till	his	retirement	 twenty	seven	years	later.	During
his	 tenure	 of	 this	 influential	 position	 he	 trained	 a	 whole	 generation	 of
distinguished	French	mathematicians,	among	whom	Émile	Picard,	Gaston
Darboux,	 Paul	 Appell,	 Émile	 Borel,	 Paul	 Painlevé	 and	 Henri	 Poincaré,
may	be	mentioned.	But	his	influence	extended	far	beyond	France,	and	his
classic	works	helped	to	educate	his	contemporaries	in	all	lands.

A	distinguishing	feature	of	Hermite’s	beautiful	work	is	closely	allied	to
his	repugnance	to	take	advantage	of	his	authoritative	position	to	re-create
all	his	pupils	 in	his	own	 image:	 this	 is	 the	unstinted	generosity	which	he
invariably	 displays	 to	 his	 fellow	 mathematicians.	 Probably	 no	 other



mathematician	 of	 modern	 times	 has	 carried	 on	 such	 a	 voluminous
scientific	 correspondence	 with	 workers	 all	 over	 Europe	 as	Hermite,	 and
the	 tone	 of	 his	 letters	 is	 always	 kindly,	 encouraging,	 and	 appreciative.
Many	a	mathematician	of	the	second	half	of	the	nineteenth	century	owed
his	recognition	to	the	publicity	which	Hermite	gave	his	first	efforts.	In	this,
as	in	other	respects,	there	is	no	finer	character	than	Hermite	in	the	whole
history	of	mathematics.	Jacobi	was	as	generous—with	the	one	exception	of
his	early	treatment	of	Eisenstein—but	he	had	a	tendency	to	sarcasm	(often
highly	amusing,	except	possibly	to	the	unhappy	victim)	which	was	wholly
absent	from	Hermite’s	genial	wit.	Such	a	man	deserved	the	generous	reply
of	Jacobi	when	the	unknown	young	mathematician	ventured	to	approach
him	with	 his	 first	 great	 work	 on	Abelian	 functions.	 “Do	 not	 be	 put	 out,
Sir,”	 Jacobi	wrote,	 “if	 some	of	your	discoveries	coincide	with	old	work	of
my	own.	As	you	must	begin	where	I	end,	there	is	necessarily	a	small	sphere
of	contact.	 In	future,	 if	you	honor	me	with	your	communications,	I	 shall
have	only	to	learn.”

Encouraged	 by	 Jacobi,	 Hermite	 shared	 with	 him	 not	 only	 the
discoveries	in	Abelian	functions,	but	also	sent	him	four	tremendous	letters
on	the	theory	of	numbers,	the	first	early	in	1847.	These	letters,	the	first	of
which	 was	 composed	 when	 Hermite	 was	 only	 twenty	 four,	 break	 new
ground	 (in	 what	 respect	 we	 shall	 indicate	 presently)	 and	 are	 sufficient
alone	 to	 establish	Hermite	 as	 a	 creative	mathematician	of	 the	 first	 rank.
The	generality	of	the	problems	he	attacked	and	the	bold	originality	of	the
methods	he	devised	 for	 their	 solution	assure	Hermite’s	 remembrance	as
one	of	the	born	arithmeticians	of	history.

The	 first	 letter	opens	with	an	apology.	 “Nearly	 two	years	have	elapsed
without	 my	 answering	 the	 letter	 full	 of	 goodwill	 which	 you	 did	 me	 the
honor	to	write	to	me.	Today	I	shall	beg	you	to	pardon	my	long	negligence
and	express	 to	you	all	 the	 joy	 I	 felt	 in	 seeing	myself	given	a	place	 in	 the
repertory	 of	 your	works.	 [Jacobi	 has	 published	parts	 of	Hermite’s	 letter,
with	all	due	acknowledgment,	in	some	work	of	his	own.]	Having	been	for
long	away	 from	the	work,	 I	was	greatly	 touched	by	such	an	attestation	of
your	kindness;	allow	me,	Sir,	to	believe	that	it	will	not	desert	me.”	Hermite
then	says	that	another	research	of	Jacobi’s	has	inspired	him	to	his	present
efforts.

If	 the	reader	will	glance	at	what	was	 said	about	uniform	 functions	of	 a
single	variable	in	the	chapter	on	Gauss	(a	uniform	function	takes	only	one



value	 for	 each	 value	 of	 the	 variable),	 the	 following	 statement	 of	 what
Jacobi	 had	 proved	 should	 be	 intelligible:	 a	 uniform	 function	 of	 only	 one
variable	with	three	distinct	periods	is	impossible.	That	uniform	functions	of
one	 variable	 exist	 having	 either	 one	 period	 or	 two	 periods	 is	 proved	 by
exhibiting	 the	 trigonometric	 functions	 and	 the	 elliptic	 functions.	 This
theorem	of	Jacobi’s,	Hermite	declares,	gave	him	his	own	idea	for	the	novel
methods	which	he	introduced	into	the	higher	arithmetic.	Although	these
methods	are	too	technical	for	description	here,	the	spirit	of	one	of	them
can	be	briefly	indicated.

Arithmetic	 in	 the	 sense	 of	Gauss	 deals	with	properties	 of	 the	 rational
integers	1,	2,	3,	.	.	.;	irrationals	(like	the	square	root	of	2)	are	excluded.	In
particular	 Gauss	 investigated	 the	 integer	 solutions	 of	 large	 classes	 of
indeterminate	equations	in	two	or	three	unknowns,	for	example	as	in	ax2
+	2bxy	+	cy2	=	m,	where	a,	b,	c,	m	are	any	given	integers	and	it	is	required	to
discuss	 all	 integer	 solutions	 x,	 y	 of	 the	 equation.	 The	 point	 to	 be	 noted
here	is	that	the	problem	is	stated	and	is	to	be	solved	entirely	in	the	domain
of	 the	 rational	 integers,	 that	 is,	 in	 the	 realm	 of	 discrete	 number.	 To	 fit
analysis,	 which	 is	 adapted	 to	 the	 investigation	 of	 continuous	 number,	 to
such	a	discrete	problem	would	seem	to	be	an	impossibility,	yet	this	is	what
Hermite	did.	Starting	with	a	discrete	formulation,	he	applied	analysis	to	the
problem,	 and	 in	 the	 end	 came	 out	 with	 results	 in	 the	 discrete	 domain
from	which	he	had	started.	As	analysis	is	far	more	highly	developed	than
any	 of	 the	 discrete	 techniques	 invented	 for	 algebra	 and	 arithmetic,
Hermite’s	 advance	 was	 comparable	 to	 the	 introduction	 of	 modern
machinery	into	a	medieval	handicraft.

Hermite	 had	 at	 his	 disposal	 much	 more	 powerful	 machinery,	 both
algebraic	 and	 analytic,	 than	 any	 available	 to	 Gauss	 when	 he	 wrote	 the
Disquisitiones	Arithmeticae.	With	Hermite’s	own	great	invention	these	more
modern	 tools	 enabled	him	 to	attack	problems	which	would	have	baffled
Gauss	 in	1800.	At	one	stride	Hermite	caught	up	with	general	problems	of
the	type	which	Gauss	and	Eisenstein	had	discussed,	and	he	at	least	began
the	 arithmetical	 study	 of	 quadratic	 forms	 in	 any	 number	 of	 unknowns.
The	general	nature	of	the	arithmetical	“theory	of	forms”	can	be	seen	from
the	statement	of	a	special	problem.	Instead	of	the	Gaussian	equation	ax2	+
2bxy	+	cy2	=	m	of	degree	two	in	two	unknowns	(x,	y),	it	is	required	to	discuss
the	 integer	 solutions	 of	 similar	 equations	 of	 degree	 n	 in	 s	 unknowns,
where	n,	s	are	any	integers,	and	the	degree	of	each	term	on	the	left	of	the



equation	is	n	(not	2	as	in	Gauss’	equation).	After	stating	how	he	had	seen
after	much	thought	that	Jacobi’s	researches	on	the	periodicity	of	uniform
functions	depend	upon	deeper	questions	in	the	theory	of	quadratic	forms,
Hermite	outlines	his	programs.

“But,	 having	 once	 arrived	 at	 this	 point	 of	 view,	 the	 problems—vast
enough—which	 I	 had	 thought	 to	 propose	 to	 myself,	 seemed
inconsiderable	beside	the	great	questions	of	the	general	theory	of	forms.
In	this	boundless	expanse	of	researches	which	Monsieur	Gauss	[Gauss	was
still	 living	 when	 Hermite	 wrote	 this,	 hence	 the	 polite	 “Monsieur”]	 has
opened	up	to	us,	Algebra	and	the	Theory	of	Numbers	seem	necessarily	to
be	merged	in	the	same	order	of	analytical	concepts,	of	which	our	present
knowledge	does	not	yet	permit	us	to	form	an	accurate	idea.”

He	 then	 makes	 a	 remark	 which,	 although	 not	 very	 clear,	 can	 be
interpreted	 as	 meaning	 that	 the	 key	 to	 the	 subtle	 connections	 between
algebra,	the	higher	arithmetic,	and	certain	parts	of	the	theory	of	functions
will	be	found	in	a	 thorough	understanding	of	what	sort	of	“numbers”	are
both	 necessary	 and	 sufficient	 for	 the	 explicit	 solution	 of	 all	 types	 of
algebraic	 equations.	Thus,	 for	x3	 −1	 =	 0,	 it	 is	 necessary	 and	 sufficient	 to
understand	 	for	x5	+	ax	+	b	=	0,	where	a,	b	are	any	given	numbers,	what
sort	of	a	“number”	x	must	be	 invented	 in	order	 that	x	may	be	expressed
explicitly	in	terms	of	a,	b?	Gauss	of	course	gave	one	kind	of	answer:	any	root
x	 is	a	complex	number.	But	 this	 is	only	a	beginning.	Abel	proved	 that	 if
only	 a	 finite	 number	 of	 rational	 operations	 and	 extractions	 of	 roots	 are
permitted,	 then	there	 is	no	explicit	 formula	giving	x	 in	 terms	of	a,	b.	We
shall	return	to	this	question	later;	Hermite	even	at	this	early	date	(1848;	he
was	 then	 twenty	 six)	 seems	 to	 have	 had	 one	 of	 his	 greatest	 discoveries
somewhere	at	the	back	of	his	head.

In	his	 attitude	 toward	numbers	Hermite	was	 somewhat	 of	 a	mystic	 in
the	 tradition	 of	 Pythagoras	 and	 Descartes—the	 latter’s	 mathematical
creed,	 as	will	 appear	 in	a	moment,	was	essentially	Pythagorean.	 In	other
matters,	 too,	 the	 gentle	 Hermite	 exhibited	 a	 marked	 leaning	 toward
mysticism.	Up	to	the	age	of	forty	three	he	was	a	tolerant	agnostic,	like	so
many	French	men	of	 science	of	his	 time.	Then,	 in	 1856,	 he	 fell	 suddenly
and	dangerously	ill.	In	this	debilitated	condition	he	was	no	match	for	even
the	 least	 persistent	 evangelist,	 and	 the	 ardent	 Cauchy,	 who	 had	 always
deplored	 his	 brilliant	 young	 friend’s	 open-mindedness	 on	 religious
matters,	pounced	on	the	prostrate	Hermite	and	converted	him	to	Roman



Catholicism.	Thenceforth	Hermite	was	a	devout	Catholic,	and	the	practice
of	his	religion	gave	him	much	satisfaction.

Hermite’s	number-mysticism	is	harmless	enough	and	it	is	one	of	those
personal	things	on	which	argument	is	futile.	Briefly,	Hermite	believed	that
numbers	 have	 an	 existence	 of	 their	 own	 above	 all	 control	 by	 human
beings.	Mathematicians,	he	thought,	are	permitted	now	and	then	to	catch
glimpses	of	 the	superhuman	harmonies	regulating	 this	ethereal	realm	of
numerical	existence,	 just	as	 the	great	geniuses	of	ethics	and	morals	have
sometimes	 claimed	 to	 have	 visioned	 the	 celestial	 perfections	 of	 the
Kingdom	of	Heaven.

It	 is	probably	 right	 to	 say	 that	no	reputable	mathematician	 today	who
has	 paid	 any	 attention	 to	 what	 has	 been	 done	 in	 the	 past	 fifty	 years
(especially	the	last	twenty	five)	in	attempting	to	understand	the	nature	of
mathematics	 and	 the	 processes	 of	 mathematical	 reasoning	 would	 agree
with	the	mystical	Hermite.	Whether	this	modern	skepticism	regarding	the
other-worldliness	of	mathematics	 is	a	gain	or	a	 loss	over	Hermite’s	creed
must	be	left	to	the	taste	of	the	reader.	What	is	now	almost	universally	held
by	competent	judges	to	be	the	wrong	view	of	“mathematical	existence”	was
so	admirably	expressed	by	Descartes	 in	his	 theory	of	 the	eternal	 triangle
that	it	may	be	quoted	here	as	an	epitome	of	Hermite’s	mystical	beliefs.

“I	imagine	a	triangle,	although	perhaps	such	a	figure	does	not	exist	and
never	has	existed	anywhere	in	the	world	outside	my	thought.	Nevertheless
this	figure	has	a	certain	nature,	or	form,	or	determinate	essence	which	is
immutable	 or	 eternal,	 which	 I	 have	 not	 invented	 and	 which	 in	 no	 way
depends	on	my	mind.	This	is	evident	from	the	fact	that	I	can	demonstrate
various	properties	 of	 this	 triangle,	 for	 example	 that	 the	 sum	of	 its	 three
interior	 angles	 is	 equal	 to	 two	 right	 angles,	 that	 the	 greatest	 angle	 is
opposite	 the	 greatest	 side,	 and	 so	 forth.	 Whether	 I	 desire	 to	 or	 not,	 I
recognize	 very	 clearly	 and	 convincingly	 that	 these	 properties	 are	 in	 the
triangle	although	I	have	never	thought	about	them	before,	and	even	if	this
is	 the	 first	 time	 I	have	 imagined	 a	 triangle.	Nevertheless	no	one	 can	 say
that	 I	 have	 invented	 or	 imagined	 them.”	 Transposed	 to	 such	 simple
“eternal	 verities”	 as	 1	 +	 2	=	3,	 2	 +	 2	=	4,	Descartes’	 everlasting	geometry
becomes	Hermite’s	superhuman	arithmetic.

One	arithmetical	investigation	of	Hermite’s,	although	rather	technical,
may	 be	mentioned	 here	 as	 an	 example	 of	 the	 prophetic	 aspect	 of	 pure
mathematics.	Gauss,	we	recall,	introduced	complex	integers	(numbers	of	the



form	a	 +	bi,	where	a,	b	 are	 rational	 integers	 and	 i	 denotes	 	 into	 the
higher	 arithmetic	 in	 order	 to	 give	 the	 law	 of	 biquadratic	 reciprocity	 its
simplest	expression.	Dirichlet	and	other	followers	of	Gauss	then	discussed
quadratic	forms	in	which	the	rational	integers	appearing	as	variables	and
coefficients	are	replaced	by	Gaussian	complex	integers.	Hermite	passed	to
the	 general	 case	 of	 this	 situation	 and	 investigated	 the	 representation	 of
integers	 in	what	 are	 today	 called	Hermitian	 forms.	 An	 example	 of	 such	 a
form	 (for	 the	 special	 case	 of	 two	 complex	 variables	 x1,	 x2	 and	 their
“conjugates”	 	instead	of	n	variables)	is

in	which	the	bar	over	a	letter	denoting	a	complex	number	indicates	the
conjugate	 of	 that	 number;	 namely,	 if	 x	 +	 iy	 is	 the	 complex	 number,	 its
“conjugate”	is	x—iy;	and	the	coefficients	a11,	a12,	a21	a22	are	such	that	aij	=
āji,	 for	 (i,	 j)	 =	 (1,	 1),	 (1,	 2),	 (2,	 1),	 (2,	 2),	 so	 that	 a12	 and	 a21	 are
conjugates,	and	each	of	a11,	a22	 is	 its	own	conjugate	(so	 that	a11,	a22	are
real	numbers).	It	is	easily	seen	that	the	entire	form	is	real	(free	of	i)	if	all
products	 are	 multiplied	 out,	 but	 it	 is	 most	 “naturally”	 discussed	 in	 the
shape	given.

When	Hermite	 invented	such	 forms	he	was	 interested	 in	 finding	what
numbers	 are	 represented	 by	 the	 forms.	 Over	 seventy	 years	 later	 it	 was
found	 that	 the	 algebra	 of	 Hermitian	 forms	 is	 indispensable	 in
mathematical	 physics,	 particularly	 in	 the	 modern	 quantum	 theory.
Hermite	had	no	 idea	 that	his	pure	mathematics	would	prove	valuable	 in
science	 long	after	his	death-—indeed,	 like	Archimedes,	he	never	seemed
to	care	much	 for	 the	 scientific	 applications	of	mathematics.	But	 the	 fact
that	 Hermite’s	 work	 has	 given	 physics	 a	 useful	 tool	 is	 perhaps	 another
argument	favoring	the	side	that	believes	mathematicians	best	 justify	their
abstract	existence	when	left	to	their	own	inscrutable	devices.

Leaving	aside	Hermite’s	splendid	discoveries	in	the	theory	of	algebraic
invariants	 as	 too	 technical	 for	 discussion	 here,	 we	 shall	 pass	 on	 in	 a
moment	to	two	of	his	most	spectacular	achievements	in	other	fields.	The
high	 esteem	 in	 which	 Hermite’s	 work	 in	 invariants	 was	 held	 by	 his
contemporaries	 may	 however	 be	 indicated	 by	 Sylvester’s	 characteristic
remark	 that	 “Cayley,	Hermite,	 and	 I	 constitute	 an	 In-variantive	 Trinity.”
Who	 was	 who	 in	 this	 astounding	 trinity	 Sylvester	 omitted	 to	 state;	 but



perhaps	 this	 oversight	 is	 immaterial,	 as	 each	 member	 of	 such	 a	 trefoil
would	be	capable	of	transforming	himself	into	himself	or	into	either	of	his
coinvariantive	beings.

*		*		*

The	 two	 fields	 in	 which	 Hermite	 found	 what	 are	 perhaps	 the	 most
striking	individual	results	in	all	his	beautiful	work	are	those	of	the	general
equation	of	 the	 fifth	degree	and	 transcendental	numbers.	The	nature	of
what	 he	 found	 in	 the	 first	 is	 clearly	 indicated	 in	 the	 introduction	 to	his
short	note	Sur	la	rèsolution	de	lèquation	du	cinquième	degré	(On	the	Solution
of	 the	 [general]	 Equation	 of	 the	 Fifth	Degree;	 published	 in	 the	Comptes
rendus	de	l‘Académie	des	Sciences	for	1858,	when	Hermite	was	thirty	six).

“It	 is	 known	 that	 the	 general	 equation	 of	 the	 fifth	 degree	 can	 be
reduced,	 by	 a	 substitution	 [on	 the	 unknown	 x]	 whose	 coefficients	 are
determined	 without	 using	 any	 irrationalities	 other	 than	 square	 roots	 or
cube	roots,	to	the	form

x5—x—a	=	0.

[That	is,	if	we	can	solve	 this	equation	for	x,	 then	we	can	solve	the	general
equation	of	the	fifth	degree.]

“This	 remarkable	 result,	 due	 to	 the	English	mathematician	 Jerrard,	 is
the	most	 important	 step	 that	 has	 been	 taken	 in	 the	 algebraic	 theory	 of
equations	of	the	fifth	degree	since	Abel	proved	that	a	solution	by	radicals
is	impossible.	This	impossibility	shows	in	fact	the	necessity	for	introducing
some	new	 analytic	 element	 [some	 new	 kind	 of	 function]	 in	 seeking	 the
solution,	and,	on	this	account,	it	seems	natural	to	take	as	an	auxiliary	the
roots	of	the	very	simple	equation	we	have	just	mentioned.	Nevertheless,	in
order	to	legitimize	its	use	rigorously	as	an	essential	element	in	the	solution
of	the	general	equation,	it	remains	to	see	if	this	simplicity	of	form	actually
permits	us	to	arrive	at	some	idea	of	the	nature	of	its	roots,	to	grasp	what	is
peculiar	 and	 essential	 in	 the	 mode	 of	 existence	 of	 these	 quantities,	 of
which	nothing	 is	known	beyond	the	 fact	 that	 they	are	not	expressible	by
radicals.

“Now	it	 is	very	remarkable	 that	 Jerrard’s	equation	 lends	 itself	with	 the
greatest	ease	to	this	research,	and	is,	 in	the	sense	which	we	shall	explain,
susceptible	of	an	actual	analytic	solution.	For	we	may	indeed	conceive	the



question	 of	 the	 algebraic	 solution	 of	 equations	 from	 a	 point	 of	 view
different	 from	that	which	 for	 long	has	been	 indicated	by	 the	 solution	of
equations	 of	 the	 first	 four	 degrees,	 and	 to	 which	 we	 are	 especially
committed.

“Instead	 of	 expressing	 the	 closely	 interconnected	 system	 of	 roots,
considered	as	 functions	of	 the	coefficients,	by	a	 formula	 involving	many-
valued	radicals,I	we	may	seek	to	obtain	the	roots	expressed	separately	by	as
many	distinct	uniform	[one-valued]	 functions	of	auxiliary	variables,	as	 in
the	case	of	the	third	degree.	In	this	case,	where	the	equation

x3—3x	+	2a	=	0

is	under	discussion,	it	suffices,	as	we	know,	to	represent	the	coefficient	a	by
the	 sine	 of	 an	 angle,	 say	 A,	 in	 order	 that	 the	 roots	 be	 isolated	 as	 the
following	well-determined	functions

[Hermite	 is	 here	 recalling	 the	 familiar	 “trigonometric	 solution”	 of	 the
cubic	 usually	 discussed	 in	 the	 second	 course	 of	 school	 algebra.	 The
“auxiliary	variable”	is	A;	the	“uniform	functions”	are	here	sines.]

“Now	it	 is	an	entirely	similar	fact	which	we	have	to	exhibit	concerning
the	equation

x5—x—a	=	0.

Only,	 instead	 of	 sines	 or	 cosines,	 it	 is	 the	 elliptic	 functions	 which	 it	 is
necessary	to	introduce.	.	.	.”

In	short	order	Hermite	then	proceeds	to	solve	the	general	equation	of	the
fifth	 degree,	 using	 for	 the	 purpose	 elliptic	 functions	 (strictly,	 elliptic
modular	 functions,	 but	 the	 distinction	 is	 of	 no	 importance	 here).	 It	 is
almost	 impossible	 to	 convey	 to	 a	 nonmathematician	 the	 spectacular
brilliance	of	such	a	feat;	 to	give	a	very	 inadequate	simile,	Hermite	found
the	 famous	 “lost	 chord”	when	no	mortal	had	 the	 slightest	 suspicion	 that
such	an	elusive	thing	existed	anywhere	in	time	and	space.	Needless	to	say
his	 totally	 unforeseen	 success	 created	 a	 sensation	 in	 the	 mathematical
world.	Better,	it	inaugurated	a	new	department	of	algebra	and	analysis	in
which	the	grand	problem	is	to	discover	and	investigate	those	functions	in



terms	 of	 which	 the	 general	 equation	 of	 the	 nth	 degree	 can	 be	 solved
explicitly	in	finite	form.	The	best	result	so	far	obtained	is	that	of	Hermite’s
pupil,	 Poincaré	 (in	 the	 1880’s),	 who	 created	 the	 functions	 giving	 the
required	solution.	These	turned	out	to	be	a	“natural”	generalization	of	the
elliptic	 functions.	 The	 characteristic	 of	 those	 functions	 that	 was
generalized	 was	 periodicity.	 Further	 details	 would	 take	 us	 too	 far	 afield
here,	 but	 if	 there	 is	 space	 we	 shall	 recur	 to	 this	 point	 when	 we	 reach
Poincaré.

Hermite’s	 other	 sensational	 isolated	 result	 was	 that	 which	 established
the	 transcendence	 (explained	 in	 a	 moment)	 of	 the	 number	 denoted	 in
mathematical	analysis	by	the	letter	e,	namely

where	1!	means	1,	2!	=	1	×	2,	3!	=	1	×	2	×	3,	4!	=	1	×	2	×	3	×	4,	and	so	on;
this	number	 is	 the	“base”	of	 the	 so-called	“natural”	 system	of	 logarithms,
and	is	approximately	2.718281828.	.	.	.	It	has	been	said	that	it	is	impossible
to	conceive	of	a	universe	in	which	e	and	π	(the	ratio	of	the	circumference
of	a	circle	to	its	diameter)	are	lacking.	However	that	may	be	(as	a	matter	of
fact	 it	 is	 false),	 it	 is	 a	 fact	 that	 e	 turns	 up	 everywhere	 in	 current
mathematics,	pure	 and	applied.	Why	 this	 should	be	 so,	 at	 least	 so	 far	 as
applied	 mathematics	 is	 concerned,	 may	 be	 inferred	 from	 the	 following
fact:	ex,	considered	as	a	function	of	x,	is	the	only	function	of	x	whose	rate	of
change	with	 respect	 to	x	 is	 equal	 to	 the	 function	 itself—that	 is,	 ex	 is	 the
only	function	which	is	equal	to	its	derivative.II

The	 concept	 of	 “transcendence”	 is	 extremely	 simple,	 also	 extremely
important.	 Any	 root	 of	 an	 algebraic	 equation	 whose	 coefficients	 are
rational	 integers	 	 is	 called	an	algebraic	number.	Thus	
2.78	 are	 algebraic	 numbers,	 because	 they	 are	 roots	 of	 the	 respective
algebraic	equations	x2	+	1	=	0,	50x	−139	=	0,	in	which	the	coefficients	(1,	1
for	 the	 first,	 50,	 −139	 for	 the	 second)	 are	 rational	 integers.	A	 “number”
which	 is	 not	 algebraic	 is	 called	 transcendental.	 Otherwise	 expressed,	 a
transcendental	 number	 is	 one	which	 satisfies	no	 algebraic	 equation	 with
rational	integer	coefficients.

Now,	given	any	“number”	constructed	according	to	some	definite	law,	it
is	a	meaningful	question	to	ask	whether	it	 is	algebraic	or	transcendental.
Consider,	for	example,	the	following	simply	defined	number,



in	which	 the	 exponents	 2,	 6,	 24,	 120,	 .	 .	 .	 are	 the	 successive	 “factorials,”
namely	2	=	1	×	2,	6	=	1	×	2	×	3,	24	=	1	×	2	×	3	×	4,	120	=	1	×	2	×	3	×	4	×
5,	 .	 .	 .	 ,	 and	 the	 indicated	 series	 continues	 “to	 infinity”	 according	 to	 the

same	law	as	that	for	the	terms	given.	The	next	term	is	 	the	sum	of	the

first	three	terms	is	.1	+	.01	+	.000001,	or	.110001,	and	it	can	be	proved	that
the	series	does	actually	define	some	definite	number	which	is	less	than	.12.
Is	 this	 number	 a	 root	 of	 any	 algebraic	 equation	 with	 rational	 integer
coefficients?	The	answer	is	no,	although	to	prove	this	without	having	been
shown	how	to	go	about	it	is	a	severe	test	of	high	mathematical	ability.	On
the	other	hand,	the	number	defined	by	the	infinite	series

is	 algebraic;	 it	 is	 the	 root	 of	 99900	 x—	 1	 =	 0	 (as	may	 be	 verified	 by	 the
reader	 who	 remembers	 how	 to	 sum	 an	 infinite	 convergent	 geometrical
progression).

The	first	 to	prove	 that	certain	numbers	are	 transcendental	was	 Joseph
Liouville	(the	same	man	who	encouraged	Hermite	to	write	to	Jacobi)	who,
in	 1844,	 discovered	 a	 very	 extensive	 class	 of	 transcendental	 numbers,	 of
which	all	those	of	the	form

where	 n	 is	 a	 real	 number	 greater	 than	 1	 (the	 example	 given	 above
corresponds	to	n	=	10),	are	among	the	simplest.	But	it	is	probably	a	much
more	difficult	problem	to	prove	that	a	particular	suspect,	like	e	or	π,	is	or	is
not	 transcendental	 than	 it	 is	 to	 invent	 a	 whole	 infinite	 class	 of
transcendentals:	the	inventive	mathematician	dictates—to	a	certain	extent
—the	working	conditions,	while	the	suspected	number	is	entire	master	of
the	situation,	and	it	is	the	mathematician	in	this	case,	not	the	suspect,	who
takes	orders	which	he	only	dimly	understands.	So	when	Hermite	proved	in
1873	that	e	(defined	a	short	way	back)	is	transcendental,	the	mathematical



world	was	not	only	delighted	but	astonished	at	the	marvellous	ingenuity	of
the	proof.

Since	 Hermite’s	 time	 many	 numbers	 (and	 classes	 of	 numbers)	 have
been	proved	transcendental.	What	is	likely	to	remain	a	high-water	mark	on
the	shores	of	this	dark	sea	for	some	time	may	be	noted	in	passing.	In	1934
the	young	Russian	mathematician	Alexis	Gelfond	proved	that	all	numbers
of	 the	 type	ab,	where	a	 is	 neither	 0	 nor	 1	 and	 b	 is	any	 irrational	 algebraic
number,	are	transcendental.	This	disposes	of	the	seventh	of	David	Hilbert’s
list	of	twenty	three	outstanding	mathematical	problems	which	he	called	to
the	 attention	 of	 mathematicians	 at	 the	 Paris	 International	 Congress	 in
1900.	 Note	 that	 “irrational”	 is	 necessary	 in	 the	 statement	 of	 Gelfond’s
theorem	(if	b	=	n/m,	where	n,	m	are	rational	 integers,	 then	ab,	where	a	 is
any	algebraic	number,	is	a	root	of	xm—an	=	0,	and	it	can	be	shown	that	this
equation	 is	 equivalent	 to	 one	 in	 which	 all	 the	 coefficients	 are	 rational
integers.

Hermite’s	 unexpected	 victory	 over	 the	 obstinate	 e	 inspired
mathematicians	 to	 hope	 that	π	 would	 presently	 be	 subdued	 in	 a	 similar
manner.	For	himself,	however,	Hermite	had	had	enough	of	a	good	thing.
“I	shall	risk	nothing,”	he	wrote	to	Borchardt,	“on	an	attempt	to	prove	the
transcendence	 of	 the	 number	 π.	 If	 others	 undertake	 this	 enterprise,	 no
one	will	be	happier	than	I	at	their	success,	but	believe	me,	my	dear	friend,
it	 will	 not	 fail	 to	 cost	 them	 some	 efforts.”	 Nine	 years	 later	 (in	 1882)
Ferdinand	 Lindemann	 of	 the	University	 of	Munich,	 using	methods	 very
similar	to	those	which	had	sufficed	Hermite	to	dispose	of	e,	proved	that	π
is	 transcendental,	 thus	 settling	 forever	 the	 problem	 of	 “squaring	 the
circle.”	From	what	Lindemann	proved	it	 follows	that	 it	 is	 impossible	with
straightedge	and	compass	alone	to	construct	a	square	whose	area	is	equal
to	that	of	any	given	circle—a	problem	which	had	tormented	generations
of	mathematicians	since	before	the	time	of	Euclid.

As	cranks	are	still	tormented	by	the	problem,	it	may	be	in	order	to	state
concisely	how	Lindemann’s	proof	 settles	 the	matter.	He	proved	 that	π	 is
not	an	algebraic	number.	But	any	geometrical	problem	that	is	solvable	by	the
aid	 of	 straightedge	 and	 compass	 alone,	 when	 restated	 in	 its	 equivalent
algebraic	 form,	 leads	 to	 one	 or	 more	 algebraic	 equations	 with	 rational
integer	coefficients	which	can	be	solved	by	successive	extractions	of	square
roots.	As	π	 satisfies	no	such	equation,	 the	circle	cannot	be	“squared”	with
the	 implements	named.	 If	other	mechanical	 apparatus	 is	permitted,	 it	 is



easy	 to	 square	 the	 circle.	To	 all	 but	mild	 lunatics	 the	problem	has	been
completely	 dead	 for	 over	 half	 a	 century.	 Nor	 is	 there	 any	 merit	 at	 the
present	time	in	computing	Π	to	a	large	number	of	decimal	places—more
accuracy	in	this	respect	is	already	available	than	is	ever	likely	to	be	of	use
to	the	human	race	if	 it	survives	for	a	billion	to	the	billionth	power	years.
Instead	of	trying	to	do	the	impossible,	mystics	may	like	to	contemplate	the
following	useful	relation	between	e,	π,	−1	and	 	till	it	becomes	as	plain
to	them	as	Buddha’s	navel	is	to	a	blind	Hindu	swami,

Anyone	who	can	perceive	 this	mystery	 intuitively	will	not	need	 to	 square
the	circle.

Since	Lindemann	settled	π	the	one	outstanding	unsolved	problem	that
attracts	amateurs	 is	Fermat’s	“Last	Theorem.”	Here	an	amateur	with	real
genius	undoubtedly	has	a	chance.	Lest	this	be	taken	as	an	invitation	to	all
and	sundry	to	swamp	the	editors	of	mathematical	journals	with	attempted
proofs,	 we	 recall	 what	 happened	 to	 Lindemann	when	 he	 boldly	 tackled
the	 famous	 theorem.	 If	 this	 does	 not	 suggest	 that	 more	 than	 ordinary
talent	will	be	required	to	settle	Fermat,	nothing	can.	In	1901	Lindemann
published	 a	memoir	 of	 seventeen	pages	 purporting	 to	 contain	 the	 long-
sought	 proof.	 The	 vitiating	 error	 being	 pointed	 out,	 Lindemann,
undaunted,	 spent	 the	 best	 part	 of	 the	next	 seven	 years	 in	 attempting	 to
patch	the	unpatchable,	and	in	1907	published	sixty	three	pages	of	alleged
proof	 which	 were	 rendered	 nonsensical	 by	 a	 slip	 in	 reasoning	 near	 the
very	beginning.

Great	 as	 were	 Hermite’s	 contributions	 to	 the	 technical	 side	 of
mathematics,	 his	 steadfast	 adherence	 to	 the	 ideal	 that	 science	 is	 beyond
nations	 and	 above	 the	 power	 of	 creeds	 to	 dominate	 or	 to	 stultify	 was
perhaps	 an	 even	more	 significant	 gift	 to	 civilization	 in	 the	 long	 view	 of
things	as	they	now	appear	to	a	harassed	humanity.	We	can	only	look	back
on	his	serene	beauty	of	spirit	with	a	poignant	regret	that	its	like	is	nowhere
to	 be	 found	 in	 the	 world	 of	 science	 today.	 Even	 when	 the	 arrogant
Prussians	 were	 humiliating	 Paris	 in	 the	 Franco-Prussian	 war,	 Hermite,
patriot	 though	 he	 was,	 kept	 his	 head,	 and	 he	 saw	 clearly	 that	 the
mathematics	 of	 “the	 enemy”	 was	 mathematics	 and	 nothing	 else.	 Today,
even	when	a	man	of	science	does	take	the	civilized	point	of	view,	he	is	not



impersonal	about	his	supposed	broadmindedness,	but	aggressive,	as	befits
a	man	on	the	defensive.	To	Hermite	it	was	so	obvious	that	knowledge	and
wisdom	are	not	the	prerogatives	of	any	sect,	any	creed,	or	any	nation	that
he	 never	 bothered	 to	 put	 his	 instinctive	 sanity	 into	 words.	 In	 respect	 of
what	 Hermite	 knew	 by	 instinct	 our	 generation	 is	 two	 centuries	 behind
him.	He	died,	loved	the	world	over,	on	January	14,	1901.

I.	For	example,	as	in	the	simple	quadratic	x2—a	=	0:	the	roots	are	 	and	
the	 “many-valuedness”	 of	 the	 radical	 involved,	 here	 a	 square	 root,	 or	 irrationality	 of	 the	 second
degree,	appears	in	the	double	sign,	±,	when	we	say	briefly	that	the	two	roots	are	 	The	formula
giving	the	 three	 roots	of	cubic	equations	 involves	 the	 three-valued	 irrationality	 	which	has	 the
three	values	

II.	 Strictly,	aex,	where	a	 does	 not	 depend	upon	 x,	 is	 the	most	 general,	 but	 the	 “multiplicative
constant”	a	is	trivial	here.



CHAPTER	TWENTY	FIVE

The	Doubter

KRONECKER

All	results	of	the	profoundest	mathematical	investigation	must	ultimately	be	expressible	in	the	simple	form	of
properties	of	the	integers.—LEOPOLD	KRONECKER

PROFESSIONAL	MATHEMATICIANS	who	could	properly	be	called	business	men
are	extremely	rare.	The	one	who	most	closely	approximates	to	this	ideal	is
Kronecker	 (1823-1891),	 who	 did	 so	 well	 for	 himself	 by	 the	 time	 he	 was
thirty	 that	 thereafter	 he	 was	 enabled	 to	 devote	 his	 superb	 talents	 to
mathematics	 in	 considerably	 greater	 comfort	 than	most	mathematicians
can	afford.

The	 obverse	 of	 Kronecker’s	 career	 is	 to	 be	 found—according	 to	 a
tradition	 familiar	 to	 American	 mathematicians—in	 the	 exploits	 of	 John
Pierpont	 Morgan,	 founder	 of	 the	 banking	 house	 of	 Morgan	 and
Company.	 If	 there	 is	 anything	 in	 this	 tradition,	Morgan	 as	 a	 student	 in
Germany	 showed	 such	 extraordinary	 mathematical	 ability	 that	 his
professors	tried	to	induce	him	to	follow	mathematics	as	his	life	work	and
even	offered	him	a	university	position	in	Germany	which	would	have	sent
him	 off	 to	 a	 flying	 start.	 Morgan	 declined	 and	 dedicated	 his	 gifts	 to
finance,	with	results	 familiar	 to	all.	Speculators	(in	academic	studies,	not
Wall	Street)	may	amuse	themselves	by	reconstructing	world	history	on	the
hypothesis	that	Morgan	had	stuck	to	mathematics.

What	might	have	happened	to	Germany	had	Kronecker	not	abandoned
finance	 for	 mathematics	 also	 offers	 a	 wide	 field	 for	 speculation.	 His
business	 abilities	were	of	 a	high	order;	he	was	 an	 ardent	patriot	with	 an
uncanny	 insight	 into	 European	 diplomacy	 and	 a	 shrewd	 cynicism—his
admirers	 called	 it	 realism—regarding	 the	 unexpressed	 sentiments
cherished	by	the	great	Powers	for	one	another.



At	first	a	liberal	like	so	many	intellectual	young	Jews,	Kronecker	quickly
became	 a	 rock-ribbed	 conservative	 when	 he	 saw	 which	 side	 his	 own
abundant	 bread	 was	 buttered	 on—after	 his	 financial	 exploits,	 and
proclaimed	 himself	 a	 loyal	 supporter	 of	 that	 callous	 old	 truth-doctor
Bismarck.	The	 famous	episode	of	 the	Ems	 telegram	which,	 according	 to
some,	was	 the	electric	 spark	 that	 touched	off	 the	Franco-Prussian	war	 in
1870,	had	Kronecker’s	warm	approval,	and	his	grasp	of	the	situation	was	so
firm	that	before	the	battle	of	Weissenburg,	when	even	the	military	geniuses
of	Germany	were	doubtful	as	to	the	outcome	of	their	bold	challenging	of
France,	 Kronecker	 confidently	 predicted	 the	 success	 of	 the	 entire
campaign	and	was	proved	right	 in	detail.	At	 the	 time,	and	 indeed	all	his
life,	he	was	on	cordial	terms	with	the	leading	French	mathematicians,	and
he	was	clear-headed	enough	not	to	let	his	political	opinions	cloud	his	just
perception	 of	 his	 scientific	 rivals’	 merits.	 It	 is	 perhaps	 as	 well	 that	 so
realistic	a	man	as	Kronecker	cast	his	lot	with	mathematics.

Leopold	Kronecker’s	life	was	easy	from	the	day	of	his	birth.	The	son	of
prosperous	 Jewish	parents,	he	was	born	on	December	 7,	 1823,	 at	Liegnitz,
Prussia.	 By	 an	 unaccountable	 oversight	 Kronecker’s	 official	 biographers
(Heinrich	 Weber	 and	 Adolf	 Kneser)	 omit	 all	 mention	 of	 Leopold’s
mother,	 although	 he	 probably	 had	 one,	 and	 concentrate	 on	 the	 father,
who	 owned	 a	 flourishing	 mercantile	 business.	 The	 father	 was	 a	 well
educated	 man	 with	 an	 unquenchable	 thirst	 for	 philosophy	 which	 he
passed	 on	 to	 Leopold.	 There	 was	 another	 son,	 Hugo,	 seventeen	 years
younger	 than	 Leopold,	 who	 became	 a	 distinguished	 physiologist	 and
professor	 at	 Berne.	 Leopold’s	 early	 education	 under	 a	 private	 tutor	 was
supervised	by	the	father;	Hugo’s	upbringing	later	became	the	loving	duty
of	Leopold.

In	the	second	stage	of	his	education	at	 the	preparatory	school	 for	 the
Gymnasium	Leopold	was	 strongly	 influenced	 by	 the	 co-rector	Werner,	 a
man	 with	 philosophical	 and	 theological	 leanings,	 who	 later	 taught
Kronecker	 when	 he	 entered	 the	 Gymnasium.	 Among	 other	 things
Kronecker	 imbibed	 from	 Werner	 was	 a	 liberal	 draught	 of	 Christian
theology,	 for	 which	 he	 acquired	 a	 lifelong	 enthusiasm.	With	 what	 looks
like	his	usual	caution,	Kronecker	did	not	embrace	 the	Christian	faith	 till
practically	on	his	deathbed	when,	having	seen	that	it	did	his	six	children
no	 noticeable	 mischief,	 he	 permitted	 himself	 to	 be	 converted	 from
Judaism	to	evangelical	Christianity	in	his	sixty	eighth	year.



Another	of	Kronecker’s	teachers	at	the	Gymnasium	also	influenced	him
profoundly	and	became	his	lifelong	friend,	Ernst	Eduard	Kummer	(1810-
1893),	 subsequently	professor	 at	 the	University	of	Berlin	 and	one	 of	 the
most	original	mathematicians	Germany	has	produced,	of	whom	more	will
be	 said	 in	 connection	 with	 Dedekind.	 These	 three,	 Kronecker	 senior,
Werner,	 and	 Kummer,	 capitalized	 Leopold’s	 immense	 native	 abilities,
formed	his	mind,	 and	 charted	 the	 future	 course	of	his	 life	 so	 cunningly
that	he	could	not	have	departed	from	it	if	he	had	wished.

Already	 in	 this	 early	 stage	 of	 his	 education	 we	 note	 an	 outstanding
feature	of	Kronecker’s	genial	character,	his	ability	to	get	along	with	people
and	his	instinct	for	forming	lasting	friendships	with	men	who	had	risen	in
the	 world	 or	 were	 to	 rise,	 and	 who	 would	 be	 useful	 to	 him	 either	 in
business	 or	 mathematics.	 This	 genius	 for	 friendships	 of	 the	 right	 sort,
which	is	one	of	the	successful	business	man’s	distinguishing	traits,	was	one
of	Kronecker’s	more	 valuable	 assets	 and	he	never	mislaid	 it.	He	was	not
consciously	 mercenary,	 nor	 was	 he	 a	 snob;	 he	 was	 merely	 one	 of	 those
lucky	 mortals	 who	 is	 more	 at	 ease	 with	 the	 successful	 than	 with	 the
unsuccessful.

Kronecker’s	 performance	 at	 school	was	 uniformly	 brilliant	 and	many-
sided.	In	addition	to	the	Greek	and	Latin	classics	which	he	mastered	with
ease	 and	 for	 which	 he	 retained	 a	 lifelong	 liking,	 he	 shone	 in	 Hebrew,
philosophy,	 and	 mathematics.	 His	 mathematical	 talent	 appeared	 early
under	 the	 expert	 guidance	 of	 Kummer,	 from	whom	he	 received	 special
instruction.	 Young	 Kronecker	 however	 did	 not	 concentrate	 to	 any	 great
extent	on	mathematics,	although	it	was	obvious	that	his	greatest	talent	lay
in	 that	 field,	 but	 set	 himself	 to	 acquiring	 a	 broad	 liberal	 education
commensurate	with	his	manifold	abilities.	In	addition	to	his	formal	studies
he	 took	music	 lessons	and	became	an	accomplished	pianist	 and	vocalist.
Music,	he	declared	when	he	was	an	old	man,	 is	 the	 finest	of	all	 the	 fine
arts,	 with	 the	 possible	 exception	 of	 mathematics,	 which	 he	 likened	 to
poetry.	These	many	 interests	he	retained	 throughout	his	 life.	 In	none	of
them	 was	 he	 a	 mere	 dabbler:	 his	 love	 of	 the	 classics	 of	 antiquity	 bore
tangible	 fruit	 in	 his	 affiliation	 with	 Graeca,	 a	 society	 dedicated	 to	 the
translation	and	popularization	of	the	Greek	classics;	his	keen	appreciation
of	 art	 made	 him	 an	 acute	 critic	 of	 painting	 and	 sculpture,	 and	 his
beautiful	 house	 in	 Berlin	 became	 a	 rendezvous	 for	 musicians,	 among
them	Felix	Mendelssohn.



Entering	 the	 University	 of	 Berlin	 in	 the	 spring	 of	 1841,	 Kronecker
continued	his	broad	education	but	began	to	concentrate	on	mathematics.
Berlin	 at	 that	 time	 boasted	 Dirichlet	 (1805-1859),	 Jacobi	 (18041851)	 and
Steiner	 (1796-1863)	 on	 its	 mathematical	 faculty;	 Eisenstein	 (1823-1852),	 the
same	age	as	Kronecker,	also	was	about,	and	the	two	became	friends.

The	 influence	 of	 Dirichlet	 on	 Kronecker’s	 mathematical	 tastes
(particularly	 in	 the	 application	 of	 analysis	 to	 the	 theory	 of	 numbers)	 is
clear	 all	 through	 his	 mature	 writings.	 Steiner	 seems	 to	 have	 made	 no
impression	on	him;	Kronecker	had	no	 feeling	 for	 geometry.	 Jacobi	 gave
him	 a	 taste	 for	 elliptic	 functions	 which	 he	 was	 to	 cultivate	 with	 striking
originality	 and	 brilliant	 success,	 chiefly	 in	 novel	 applications	 of	 magical
beauty	to	the	theory	of	numbers.

Kronecker’s	 university	 career	was	 a	 repetition	on	 a	 larger	 scale	 of	 his
years	at	school:	he	attended	lectures	on	the	classics	and	the	sciences	and
indulged	his	bent	for	philosophy	by	profounder	studies	than	any	he	had	as
yet	undertaken,	particularly	in	the	system	of	Hegel.	The	last	is	emphasized
because	 some	 curious	 and	 competent	 reader	may	 be	moved	 to	 seek	 the
origin	of	Kronecker’s	mathematical	heresies	in	the	abstrusities	of	Hegel’s
dialectic—a	 quest	 wholly	 beyond	 the	 powers	 of	 the	 present	 writer.
Nevertheless	 there	 is	 a	 strange	 similarity	 between	 some	 of	 the	 weird
unorthodoxies	 of	 recent	 doubts	 concerning	 the	 self-consistency	 of
mathematics—doubts	 for	 which	 Kronecker’s	 “revolution”	 was	 partly
responsible—and	the	subtleties	of	Hegel’s	system.	The	ideal	candidate	for
such	an	undertaking	would	be	a	Marxian	communist	with	a	sound	training
in	Polish	many-valued	logic,	though	in	what	incense	tree	this	rare	bird	is	to
be	sought	God	only	knows.

Following	 the	 usual	 custom	 of	 German	 students,	 Kronecker	 did	 not
spend	 all	 his	 time	 at	 Berlin	 but	 moved	 about.	 Part	 of	 his	 course	 was
pursued	 at	 the	 University	 of	 Bonn,	 where	 his	 old	 teacher	 and	 friend
Kummer	 had	 taken	 the	 chair	 of	 mathematics.	 During	 Kronecker’s
residence	at	Bonn	the	University	authorities	were	in	the	midst	of	a	futile
war	to	suppress	the	student	societies	whose	chief	object	was	the	fostering
of	 drinking,	 duelling,	 and	 brawling	 in	 general.	 With	 his	 customary
astuteness,	Kronecker	allied	himself	secretly	with	the	students	and	thereby
made	many	friends	who	were	later	to	prove	useful.

*		*		*



Kronecker’s	 dissertation,	 accepted	 by	 Berlin	 for	 his	 Ph.D.	 in	 1845,	 was
inspired	by	Kummer’s	work	 in	 the	 theory	of	numbers	and	dealt	with	 the
units	 in	certain	algebraic	number	fields.	Although	the	problem	is	one	of
extreme	difficulty	when	it	comes	to	actually	exhibiting	the	units,	its	nature
can	 be	 understood	 from	 the	 following	 rough	 de	 scription	 of	 the	 general
problem	of	units	(for	any	algebraic	number	field,	not	merely	for	the	special
fields	 which	 interested	 Kummer	 and	 Kronecker).	 This	 sketch	 may	 also
serve	 to	make	more	 intelligible	 some	of	 the	allusions	 in	 the	present	and
subsequent	chapters	to	the	work	of	Kummer,	Kronecker,	and	Dedekind	in
the	 higher	 arithmetic.	 The	 matter	 is	 quite	 simple	 but	 requires	 several
preliminary	definitions.

The	 common	 whole	 numbers	 1,	 2,	 3,	 .	 .	 .	 are	 called	 the	 (positive)
rational	integers.	If	m	is	any	rational	integer,	it	is	the	root	of	an	algebraic
equation	of	the	first	degree,	whose	coefficients	are	rational	integers,	namely
x—m	=	0.	This,	among	other	properties	of	the	rational	integers,	suggested
the	generalization	 of	 the	 concept	of	 integers	 to	 the	 “numbers”	defined	 as
roots	of	algebraic	equations.	Thus	if	r	is	a	root	of	the	equation

xn	+	a1xn-1	+	.	.	.	+	an-1x	+	an	=	0,

where	the	a’s	are	rational	 integers	(positive	or	negative),	and	if	 further	r
satisfies	 no	 equation	 of	 degree	 less	 than	n,	 all	 of	 whose	 coefficients	 are
rational	 integers	 and	whose	 leading	coefficient	 is	1	 (as	 it	 is	 in	 the	above
equation,	 namely	 the	 coefficient	 of	 the	 highest	 power,	 xn,	 of	 x	 in	 the
equation	is	1),	then	r	is	called	an	algebraic	integer	of	degree	n.	For	example,	

	is	an	algebraic	integer	of	degree	2,	because	it	is	a	root	of	x2	−2x	+
6	 =	 0,	 and	 is	 not	 a	 root	 of	 any	 equation	 of	 degree	 less	 than	 2	 with
coefficients	 of	 the	 prescribed	 kind;	 in	 fact	 	 is	 the	 root	 of	

	 and	 the	 last	 coefficient,	 	 is	 not	 a	 rational
integer.

If	in	the	above	definition	of	an	algebraic	integer	of	degree	n	we	suppress
the	 requirement	 that	 the	 leading	coefficient	be	1,	 and	 say	 that	 it	 can	be
any	rational	 integer	(other	 than	zero,	which	 is	considered	an	 integer),	a
root	 of	 the	 equation	 is	 then	 called	 an	algebraic	 number	 of	degree	 n.	 Thus	

	 is	 an	 algebraic	 number	 of	 degree	 2,	 but	 is	 not	 an	 algebraic
integer;	it	is	a	root	of	2x2—2x	+	3	=	0.



Another	 concept,	 that	 of	 an	 algebraic	 number	 field	 of	 degree	 n	 is	 now
introduced:	 if	 r	 is	 an	 algebraic	 number	 of	 degree	 n,	 the	 totality	 of	 all
expressions	 that	 can	 be	 constructed	 from	 r	 by	 repeated	 additions,
subtractions,	multiplications,	and	divisions	(division	by	zero	is	not	defined
and	hence	is	not	attempted	or	permitted),	is	called	the	algebraic	number	field
generated	by	r,	and	may	be	denoted	by	F[r].	For	example,	from	r	we	get	r	+	r,
or	2r;	from	this	and	r	we	get	2r/r	or	2,	2r—r	or	r,	2r	×	r	or	2r2,	etc.	The
degree	of	this	F[r]	is	w.

It	can	be	proved	 that	every	member	of	F[r]	 is	of	 the	 form	 c0rn-l	+c1rn-2
+	.	.	.+	cn-1,	where	the	c’s	are	rational	numbers,	and	further	every	member	of	F[r]	is
an	algebraic	number	of	degree	not	greater	 than	n	 (in	 fact	 the	degree	 is
some	 divisor	 of	 n).	 Some,	 but	 not	 all,	 algebraic	 numbers	 in	 F[r]	 will	 be
algebraic	integers.

The	central	problem	of	the	theory	of	algebraic	numbers	is	to	investigate
the	 laws	 of	 arithmetical	 divisibility	 of	 algebraic	 integers	 in	 an	 algebraic
number	field	of	degree	n.	To	make	this	problem	definite	it	is	necessary	to
lay	down	exactly	what	is	meant	by	“arithmetical	divisibility,”	and	for	this	we
must	understand	the	like	for	the	rational	integers.

We	say	that	one	rational	integer,	m,	is	divisible	by	another,	d,	if	we	can
find	a	rational	integer,	q,	such	that	m	=	q	×	d;	d	(also	q)	is	called	a	divisor	of
m.	For	example	6	is	a	divisor	of	12,	because	12	=	2	×	6;	5	is	not	a	divisor	of
12	because	there	does	not	exist	a	rational	integer	q	such	that	12	=	q	×	5.

A	(positive)	rational	prime	is	a	rational	integer	greater	than	1	whose	only
positive	 divisors	 are	 1	 and	 the	 integer	 itself.	When	we	 try	 to	 extend	 this
definition	 to	 algebraic	 integers	we	 soon	 see	 that	 we	have	 not	 found	 the
root	 of	 the	matter,	 and	 we	must	 seek	 some	 property	 of	 rational	 primes
which	 can	 be	 carried	 over	 to	 algebraic	 integers.	 This	 property	 is	 the
following:	 if	 a	 rational	prime	p	divides	 the	product	a	 ×	b	 of	 two	 rational
integers,	then	(it	can	be	proved	that)	p	divides	at	least	one	of	the	factors	a,
b	of	the	product.

Considering	the	unit,	1,	of	rational	arithmetic,	we	notice	that	1	has	the
peculiar	property	that	it	divides	every	rational	integer;	−1	also	has	the	same
property,	and	1,-1	are	the	only	rational	integers	having	this	property.

These	and	other	clues	suggest	something	simple	that	will	work,	and	we
lay	down	the	following	definitions	as	the	basis	for	a	theory	of	arithmetical
divisibility	 for	 algebraic	 integers.	 We	 shall	 suppose	 that	 all	 the	 integers
considered	lie	in	an	algebraic	number	field	of	degree	n.



If	r,	s,	t	are	algebraic	integers	such	that	r	=	s	×	t,	each	of	s,	t	 is	called	a
divisor	of	r.

If	 j	 is	 an	 algebraic	 integer	which	divides	 every	 algebraic	 integer	 in	 the
field,	j	is	called	a	unit	(in	that	field).	A	given	field	may	contain	an	infinity
of	units,	 in	distinction	 to	 the	pair	1,	−1	 for	 the	 rational	 field,	 and	 this	 is
one	of	the	things	that	breeds	difficulties.

The	 next	 introduces	 a	 radical	 and	 disturbing	 distinction	 between
rational	integers	and	algebraic	integers	of	degree	greater	than	1.

An	algebraic	integer	other	than	a	unit	whose	only	divisors	are	units	and
the	 integer	 itself,	 is	 called	 irreducible.	 An	 irreducible	 algebraic	 integer
which	 has	 the	 property	 that	 if	 it	 divides	 the	 product	 of	 two	 algebraic
integers,	then	it	divides	at	least	one	of	the	factors,	is	called	a	prime	algebraic
integer.	All	primes	are	irreducibles,	but	not	all	irreducibles	are	primes	in
some	algebraic	number	fields,	for	example	in	 as	will	be	seen	in	a
moment.	In	the	common	arithmetic	of	1,	2,	3	.	.	.	the	irreducibles	and	the
primes	are	the	same.

In	 the	 chapter	 on	 Fermat	 the	 fundamental	 theorem	 of	 (rational)
arithmetic	was	mentioned:	a	 rational	 integer	 is	 the	product	of	(rational)
primes	in	only	one	way.	From	this	theorem	springs	all	the	intricate	theory	of
divisibility	 for	 rational	 integers.	Unfortunately	 the	 fundamental	 theorem
does	not	hold	 in	all	 algebraic	number	 fields	of	degree	greater	 than	one,
and	the	result	is	chaos.

To	 give	 an	 instance	 (it	 is	 the	 stock	 example	 usually	 exhibited	 in	 text
books	on	the	subject),	in	the	field	 	we	have

each	of	 	is	a	prime	in	this	field	(as	may	be	verified
with	some	ingenuity),	so	that	6,	in	this	field,	is	not	uniquely	decomposable
into	a	product	of	primes.

It	 may	 be	 stated	 here	 that	 Kronecker	 overcame	 this	 difficulty	 by	 a
beautiful	method	which	is	too	detailed	to	be	explained	untechnically,	and
that	Dedekind	 did	 likewise	 by	 a	 totally	 different	method	 which	 is	much
easier	 to	 grasp,	 and	 which	 will	 be	 noted	 when	 we	 consider	 his	 life.
Dedekind’s	method	is	the	one	in	widest	use	today,	but	this	does	not	imply
that	Kronecker’s	is	less	powerful,	nor	that	it	will	not	come	into	favor	when
more	arithmeticians	become	familiar	with	it.



*		*		*

In	his	dissertation	of	1845	Kronecker	attacked	the	theory	of	the	units	in
certain	 special	 fields—those	 defined	 by	 the	 equations	 arising	 from	 the
algebraic	formulation	of	Gauss’	problem	to	divide	the	circumference	of	a
circle	 into	 n	 equal	 parts	 or,	 what	 is	 the	 same,	 to	 construct	 a	 regular
polygon	of	n	sides.

We	can	now	close	up	one	part	of	the	account	opened	by	Fermat.
In	 struggling	 to	 prove	 Fermat’s	 “Last	 Theorem”	 that	 xn	 +	 yn	 =	 zn	 is

impossible	in	rational	integers	x,	y,	z	(none	zero)	if	n	is	an	integer	greater
than	2,	arithmeticians	took	what	looks	like	a	natural	step	and	resolved	the
left-hand	side,	xn	+	yn,	into	its	n	factors	of	the	first	degree	(as	is	done	in	the
usual	 second	 course	 of	 school	 algebra).	 This	 led	 to	 the	 exhaustive
investigation	 of	 the	 algebraic	 number	 field	 mentioned	 above	 in
connection	with	Gauss’	problem—after	serious	but	readily	understandable
mistakes	had	been	made.

The	 problem	 at	 first	 was	 studded	 with	 pitfalls,	 into	 which	 many	 a
competent	mathematician	and	at	 least	one	great	one—Cauchy—tumbled
headlong.	 Cauchy	 assumed	 as	 a	 matter	 of	 course	 that	 in	 the	 algebraic
number	 field	 concerned	 the	 fundamental	 theorem	 of	 arithmetic	 must
hold.	After	several	exciting	but	premature	communications	to	the	French
Academy	of	Sciences,	he	admitted	his	error.	Being	restlessly	interested	in	a
large	 number	 of	 other	 problems	 at	 the	 time,	 Cauchy	 turned	 aside	 and
failed	to	make	the	great	discovery	which	was	well	within	the	capabilities	of
his	prolific	genius	and	left	the	field	to	Kummer.	The	central	difficulty	was
serious:	here	was	a	 species	of	 “integers”—those	of	 the	 field	concerned—
which	defied	the	fundamental	theorem	of	arithmetic;	how	reduce	them	to
law	and	order?

The	solution	of	this	problem	by	the	invention	of	a	totally	new	kind	of
“number”	 appropriate	 to	 the	 situation,	 which	 (in	 terms	 of	 these
“numbers”)	 automatically	 restored	 the	 fundamental	 theorem	 of
arithmetic,	 ranks	with	 the	creation	of	non-Euclidean	geometry	as	one	of
the	outstanding	scientific	achievements	of	the	nineteenth	century,	and	it	is
well	up	in	the	high	mathematical	achievements	of	all	history.	The	creation
of	 the	 new	 “numbers”—so-called	 “ideal	 numbers”—was	 the	 invention	 of
Kummer	 in	 1845.	 These	 new	 “numbers”	 were	 not	 constructed	 for	 all



algebraic	number	fields	but	only	for	those	fields	arising	from	the	division
of	the	circle.

Kummer	too	had	fallen	afoul	of	the	net	which	snared	Cauchy,	and	for	a
time	 he	 believed	 that	 he	 had	 proved	 Fermat’s	 “Last	 Theorem.”	 Then
Dirichlet,	 to	 whom	 the	 supposed	 proof	 was	 submitted	 for	 criticism,
pointed	 out	 by	means	 of	 an	 example	 that	 the	 fundamental	 theorem	 of
arithmetic,	 contrary	 to	Kummer’s	 tacit	 assumption,	 does	not	 hold	 in	 the
field	concerned.	This	failure	of	Kummer’s	was	one	of	the	most	fortunate
things	 that	 ever	happened	 in	mathematics.	Like	Abel’s	 initial	mistake	 in
the	matter	 of	 the	 general	 quintic,	 Kummer’s	 turned	 him	 into	 the	 right
track,	and	he	invented	his	“ideal	numbers.”

Kummer,	Kronecker,	 and	Dedekind	 in	 their	 invention	of	 the	modern
theory	 of	 algebraic	 numbers,	 by	 enlarging	 the	 scope	 of	 arithmetic	 ad
infinitum	and	bringing	algebraic	equations	within	the	purview	of	number,
did	for	the	higher	arithmetic	and	the	theory	of	algebraic	equations	what
Gauss,	 Lobatchewsky,	 Johann	 Bolyai,	 and	 Riemann	 did	 for	 geometry	 in
emancipating	it	from	slavery	in	Euclid’s	too	narrow	economy.	And	just	as
the	 inventors	 of	 non-Euclidean	 geometry	 revealed	 vast	 and	 hitherto
unsuspected	horizons	to	geometry	and	physical	science,	so	the	creators	of
the	 theory	 of	 algebraic	 numbers	 uncovered	 an	 entirely	 new	 light,
illuminating	 the	 whole	 of	 arithmetic	 and	 throwing	 the	 theories	 of
equations,	of	systems	of	algebraic	curves	and	surfaces,	and	the	very	nature
of	number	itself,	 into	sharp	relief	against	a	firm	background	of	shiningly
simple	postulates.

The	creation	of	“ideals”—Dedekind’s	inspiration	from	Kummer’s	vision
of	 “ideal	numbers”—renovated	not	only	 arithmetic	but	 the	whole	of	 the
algebra	which	springs	from	the	theory	of	algebraic	equations	and	systems
of	 such	 equations,	 and	 it	 proved	 also	 a	 reliable	 clue	 to	 the	 inner
significance	of	the	“enumerative	geometry”I	of	Plücker,	Cayley	and	others,
which	absorbed	so	large	a	fraction	of	the	energies	of	the	geometers	of	the
nineteenth	century	who	busied	themselves	with	the	intersections	of	nets	of
curves	and	surfaces.	And	last,	if	Kronecker’s	heresy	against	Weierstrassian
analysis	(noted	later)	is	some	day	to	become	a	stale	orthodoxy,	as	all	not
utterly	insane	heresies	sooner	or	later	do,	these	renovations	of	our	familiar
integers,	 1,	 2,	 3,	 .	 .	 .	 ,	 on	 which	 all	 analysis	 strives	 to	 base	 itself,	 may
ultimately	indicate	extensions	of	analysis,	and	the	Pythagorean	speculation



may	 envisage	 generative	 properties	 of	 “number”	 that	 Pythagoras	 never
dreamed	of	in	all	his	wild	philosophy.

Kronecker	entered	 this	beautifully	difficult	 field	of	 algebraic	numbers
in	1845	at	 the	age	of	 twenty	two	with	his	 famous	dissertation	De	Unitatibus
Complexis	(On	Complex	Units).	The	particular	units	he	discussed	were	those
in	 algebraic	 number	 fields	 arising	 from	 the	 Gaussian	 problem	 of	 the
division	of	the	circumference	of	a	circle	into	n	equal	arcs.	For	this	work	he
got	his	Ph.D.

The	German	universities	used	to	have—and	may	still	have—a	laudable
custom	in	connection	with	the	taking	of	a	Ph.D.:	the	successful	candidate
was	 in	honor	bound	to	fling	a	party—usually	a	prolonged	beer	bust	with
all	 the	 trimmings—for	 his	 examiners.	 At	 such	 festivities	 a	 mock
examination	 consisting	 of	 ridiculous	 questions	 and	 more	 ridiculous
answers	was	 sometimes	part	of	 the	 fun.	Kronecker	 invited	practically	 the
whole	 faculty,	 including	 the	Dean,	 and	 the	memory	 of	 that	 undignified
feast	 in	 celebration	 of	 his	 degree	 was,	 he	 declared	 in	 later	 years,	 the
happiest	of	his	life.

In	at	 least	one	respect	Kronecker	and	his	 scientific	enemy	Weierstrass
were	much	alike:	they	were	both	very	great	gentlemen,	as	even	those	who
did	not	particularly	care	for	either	admitted.	But	in	nearly	everything	else
they	were	almost	comically	different.	The	climax	of	Kronecker’s	career	was
his	prolonged	mathematical	war	against	Weierstrass,	in	which	quarter	was
neither	given	nor	asked.	One	was	a	born	algebraist,	the	other	almost	made
a	 religion	 of	 analysis.	 Weierstrass	 was	 large	 and	 rambling,	 Kronecker	 a
compact,	 diminutive	 man,	 not	 over	 five	 feet	 tall,	 but	 perfectly
proportioned	 and	 sturdy.	 After	 his	 student	 days	Weierstrass	 gave	 up	 his
fencing;	 Kronecker	 was	 always	 an	 expert	 gymnast	 and	 swimmer	 and	 in
later	life	a	good	mountaineer.

Eyewitnesses	of	the	battles	between	this	curiously	mismatched	pair	tell
how	the	big	fellow,	annoyed	by	the	persistence	of	 the	 little	 fellow,	would
stand	 shaking	 himself	 like	 a	 good-natured	 St.	 Bernard	 dog	 trying	 to	 rid
himself	 of	 a	 determined	 fly,	 only	 to	 excite	 his	 persecutor	 to	 more
ingenious	attacks,	 till	Weierstrass,	 giving	up	 in	despair,	would	amble	off,
Kronecker	at	his	heels	still	talking	maddeningly.	But	for	all	their	scientific
differences	 the	 two	 were	 good	 friends,	 and	 both	 were	 great



mathematicians	 without	 a	 particle	 of	 the	 “great	man”	 complex	 that	 too
often	inflates	the	shirts	of	the	would-be	mighty.

Kronecker	was	blessed	with	a	 rich	uncle	 in	 the	banking	business.	The
uncle	also	controlled	extensive	farming	enterprises.	All	this	fell	into	young
Kronecker’s	hands	 for	 administration	on	 the	death	of	 the	uncle,	 shortly
after	the	budding	mathematician	had	taken	his	degree	at	the	age	of	twenty
two.	The	eight	 years	 from	 1845	 to	1853	were	 spent	 in	managing	 the	estate
and	running	 the	business,	which	Kronecker	did	with	great	 thoroughness
and	financial	success.	To	manage	the	landed	property	efficiently	he	even
mastered	the	principles	of	agriculture.

In	1848,	at	the	age	of	twenty	five,	the	energetic	young	business	man	very
prudently	 fell	 in	 love	with	his	cousin,	Fanny	Prausnitzer,	daughter	of	 the
defunct	 wealthy	 uncle,	 married	 her,	 and	 settled	 down	 to	 raise	 a	 family.
They	had	 six	children,	 four	of	whom	survived	 their	parents.	Kronecker’s
married	 life	 was	 ideally	 happy,	 and	 he	 and	 his	 wife—a	 gifted,	 pleasant
woman—brought	up	their	children	with	the	greatest	devotion.	The	death
of	Kronecker’s	wife	a	few	months	before	his	own	last	illness	was	the	blow
which	broke	him.

During	 his	 eight	 years	 in	 business	 Kronecker	 produced	 no
mathematics.	But	that	he	did	not	stagnate	mathematically	is	shown	by	his
publication	in	1853	of	a	fundamental	memoir	on	the	algebraic	solution	of
equations.	 All	 through	 his	 activity	 as	 a	 man	 of	 affairs	 Kronecker	 had
maintained	 a	 lively	 scientific	 correspondence	 with	 his	 former	 master,
Kummer,	and	on	escaping	from	business	in	1853	he	visited	Paris,	where	he
made	 the	 acquaintance	 of	 Hermite	 and	 other	 leading	 French
mathematicians.	Thus	he	did	not	sever	communications	with	the	scientific
world	when	circumstances	forced	him	into	business,	but	kept	his	soul	alive
by	 making	 mathematics	 rather	 than	 whist,	 pinochle,	 or	 checkers	 his
hobby.

In	 1853,	 when	 Kronecker’s	 memoir	 on	 the	 algebraic	 solvability	 of
equations	 (the	 nature	 of	 the	 problem	 was	 discussed	 in	 the	 chapters	 on
Abel	 and	 Galois)	 was	 published,	 the	 Galois	 theory	 of	 equations	 was
understood	by	very	 few.	Kronecker’s	attack	was	characteristic	of	much	of
his	finest	work.	Kronecker	had	mastered	the	Galois	theory,	indeed	he	was
probably	 the	 only	 mathematician	 of	 the	 time	 (the	 late	 1840’s)	 who	 had
penetrated	deeply	into	Galois’	ideas;	Liouville	had	contented	himself	with



a	 sufficient	 insight	 into	 the	 theory	 to	enable	him	to	edit	 some	of	Galois’
remains	intelligently.

A	 distinguishing	 feature	 of	 Kronecker’s	 attack	 was	 its	 comprehensive
thoroughness.	In	this,	as	in	other	investigations	in	algebra	and	the	theory
of	numbers,	Kronecker	 took	 the	 refined	gold	of	his	 predecessors,	 toiled
over	it	like	an	inspired	jeweler,	added	gems	of	his	own,	and	made	from	the
precious	raw	material	a	flawless	work	of	art	with	the	unmistakable	impress
of	his	artistic	individuality	upon	it.	He	delighted	in	perfect	things;	a	few	of
his	pages	will	often	exhibit	a	complete	development	of	one	isolated	result
with	all	its	implications	immanent	but	not	loading	the	unique	theme	with
expressed	 detail.	 Consequently	 even	 the	 shortest	 of	 his	 papers	 has
suggested	important	developments	to	his	successors,	and	his	longer	works
are	inexhaustible	mines	of	beautiful	things.

Kronecker	 was	 what	 is	 called	 an	 “algorist”	 in	 most	 of	 his	 works.	 He
aimed	 to	 make	 concise,	 expressive	 formulas	 tell	 the	 story	 and
automatically	reveal	the	action	from	one	step	to	the	next	so	that,	when	the
climax	 was	 reached,	 it	 was	 possible	 to	 glance	 back	 over	 the	 whole
development	and	see	the	apparent	inevitability	of	the	conclusion	from	the
premises.	Details	and	accessory	aids	were	ruthlessly	pruned	away	until	only
the	 main	 trunk	 of	 the	 argument	 stood	 forth	 in	 naked	 strength	 and
simplicity.	 In	 short,	 Kronecker	 was	 an	 artist	 who	 used	 mathematical
formulas	as	his	medium.

After	Kronecker’s	works	on	 the	Galois	 theory	 the	 subject	passed	 from
the	private	ownership	of	a	few	into	the	common	property	of	all	algebraists,
and	 Kronecker	 had	 wrought	 so	 artistically	 that	 the	 next	 phase	 of	 the
theory	of	equations—the	current	postulational	 formulation	of	 the	theory
and	 its	 extensions—can	 be	 traced	 back	 to	 him.	His	 aim	 in	 algebra,	 like
that	of	Weierstrass	 in	analysis,	was	 to	 find	the	“natural”	way—a	matter	of
intuition	 and	 taste	 rather	 than	 scientific	 definition—to	 the	 heart	 of	 his
problems.

The	 same	artistry	and	 tendency	 to	unification	appeared	 in	another	of
his	most	celebrated	papers,	which	occupies	only	a	couple	of	pages	 in	his
collected	works,	On	the	Solution	of	the	General	Equation	of	the	Fifth	Degree,	first
published	 in	 1858.	 Hermite,	 we	 recall,	 had	 given	 the	 first	 solution,	 by
means	of	elliptic	(modular)	functions	in	the	same	year.	Kronecker	attains
Hermite’s	solution—or	what	is	practically	the	same—by	applying	the	ideas
of	 Galois	 to	 the	 problem,	 thereby	 making	 the	 miracle	 appear	 more



“natural.”	 In	another	paper,	 also	 short,	over	which	he	has	 spent	most	of
his	 time	 for	 five	 years,	 he	 returns	 to	 the	 subject	 in	 1861,	 and	 seeks	 the
reason	 why	 the	 general	 equation	 of	 the	 fifth	 degree	 is	 solvable	 in	 the
manner	 in	 which	 it	 is,	 thus	 taking	 a	 step	 beyond	 Abel	 who	 settled	 the
question	of	solvability	“by	radicals.”

Much	 of	 Kronecker’s	 work	 has	 a	 distinct	 arithmetical	 tinge,	 either	 of
rational	 arithmetic	 or	 of	 the	 broader	 arithmetic	 of	 algebraic	 numbers.
Indeed,	if	his	mathematical	activity	had	any	guiding	clue,	it	may	be	said	to
have	been	his	desire,	perhaps	subconscious,	to	arithmetize	all	mathematics,
from	algebra	to	analysis.	“God	made	the	integers,”	he	said,	“all	the	rest	is
the	work	of	man.”	Kronecker’s	demand	that	analysis	be	replaced	by	finite
arithmetic	 was	 the	 root	 of	 his	 disagreement	 with	 Weierstrass.	 Universal
arithmetization	may	be	too	narrow	an	ideal	for	the	luxuriance	of	modern
mathematics,	 but	 at	 least	 it	has	 the	merit	 of	 greater	 clarity	 than	 is	 to	be
found	in	some	others.

Geometry	 never	 seriously	 attracted	 Kronecker.	 The	 period	 of
specialization	was	already	well	advanced	when	Kronecker	did	most	of	his
work,	 and	 it	 would	 probably	 have	 been	 impossible	 for	 any	man	 to	 have
done	 the	 profoundly	 perfect	 sort	 of	 work	 that	 Kronecker	 did	 as	 an
algebraist	 and	 in	his	 own	peculiar	 type	of	 analysis	 and	 at	 the	 same	 time
have	accomplished	anything	of	significance	in	other	fields.	Specialization
is	frequently	damned,	but	it	has	its	virtues.

A	 distinguishing	 feature	 of	many	 of	 Kronecker’s	 technical	 discoveries
was	 the	 intimate	way	 in	which	he	wove	 together	 the	 three	 strands	of	his
greatest	 interests—the	 theory	 of	 numbers,	 the	 theory	 of	 equations,	 and
elliptic	 functions—into	 one	 beautiful	 pattern	 in	 which	 unforeseen
symmetries	were	revealed	as	the	design	developed	and	many	details	were
unexpectedly	 imaged	in	others	far	away.	Each	of	the	tools	with	which	he
worked	 seemed	 to	 have	 been	 designed	 by	 fate	 for	 the	 more	 efficient
functioning	of	the	others.	Not	content	to	accept	this	mysterious	unity	as	a
mere	 mystery,	 Kronecker	 sought	 and	 found	 its	 underlying	 structure	 in
Gauss’	theory	of	binary	quadratic	forms,	in	which	the	main	problem	is	to
investigate	 the	 solutions	 in	 integers	 of	 indeterminate	 equations	 of	 the
second	degree	in	two	unknowns.

Kronecker’s	great	work	in	the	theory	of	algebraic	numbers	was	not	part
of	this	pattern.	In	another	direction	he	also	departed	occasionally	from	his
principal	 interests	 when,	 according	 to	 the	 fashion	 of	 his	 times,	 he



occupied	 himself	 with	 the	 purely	 mathematical	 aspects	 of	 certain
problems	 (in	 the	 theory	 of	 attraction	 as	 in	 Newton’s	 gravitation)	 of
mathematical	physics.	His	contributions	in	this	field	were	of	mathematical
rather	than	physical	interest.

*		*		*

Up	 till	 the	 last	 decade	 of	 his	 life	 Kronecker	 was	 a	 free	 man	 with
obligations	to	no	employer.	Nevertheless	he	voluntarily	assumed	scientific
duties,	for	which	he	received	no	remuneration,	when	he	availed	himself	of
his	 privilege	 as	 a	 member	 of	 the	 Berlin	 Academy	 to	 lecture	 at	 the
University	of	Berlin.	From	1861	to	1883	he	conducted	regular	courses	at	the
university,	 principally	 on	 his	 personal	 researches,	 after	 the	 necessary
introductions.	 In	 1883	 Kummer,	 then	 at	 Berlin,	 retired,	 and	 Kronecker
succeeded	his	old	master	as	ordinary	professor.	At	this	period	of	his	life	he
travelled	 extensively	 and	 was	 a	 frequent	 and	 welcome	 participant	 in
scientific	meetings	in	Great	Britain,	France,	and	Scandinavia.

Throughout	his	career	as	a	mathematical	lecturer	Kronecker	competed
with	Weierstrass	 and	other	celebrities	whose	 subjects	were	more	popular
than	his	own.	Algebra	and	the	theory	of	numbers	have	never	appealed	to
so	wide	an	audience	as	have	geometry	and	analysis,	possibly	because	 the
connections	of	the	latter	with	physical	science	are	more	apparent.

Kronecker	took	his	aristocratic	isolation	good-naturedly	and	even	with	a
certain	 satisfaction.	 His	 beautifully	 clear	 introductions	 deluded	 his
auditors	into	a	belief	that	the	subsequent	course	of	lectures	would	be	easy
to	 follow.	 This	 belief	 evaporated	 rapidly	 as	 the	 course	 progressed,	 until
after	three	sessions	all	but	a	faithful	and	obstinate	few	had	silently	stolen
away—many	 of	 them	 to	 listen	 to	 Weierstrass.	 Kronecker	 rejoiced.	 A
curtain	could	now	be	drawn	across	the	room	behind	the	first	few	rows	of
chairs,	he	 joked,	 to	bring	 lecturer	and	auditors	 into	cosier	 intimacy.	The
few	disciples	he	retained	followed	him	devotedly,	walking	home	with	him
to	continue	the	discussions	of	 the	 lecture	room	and	frequently	affording
the	crowded	sidewalks	of	Berlin	the	diverting	spectacle	of	an	excited	little
man	 talking	with	his	whole	body—especially	his	hands—to	 a	 spellbound
group	of	 students	 blocking	 the	 traffic.	His	house	was	 always	 open	 to	his
pupils,	for	Kronecker	really	liked	people,	and	his	generous	hospitality	was
one	of	the	greatest	satisfactions	of	his	life.	Several	of	his	students	became



eminent	 mathematicians,	 but	 his	 “school”	 was	 the	 whole	 world	 and	 he
made	no	effort	to	acquire	an	artifically	large	following.

The	 last	 is	 characteristic	 of	 Kronecker’s	 own	 most	 startlingly
independent	work.	In	an	atmosphere	of	confident	belief	in	the	soundness
of	 analysis	 Kronecker	 assumed	 the	 unpopular	 rôle	 of	 the	 philosophical
doubter.	 Not	 many	 of	 the	 great	 mathematicians	 have	 taken	 philosophy
seriously;	 in	 fact	 the	 majority	 seem	 to	 have	 regarded	 philosophical
speculations	 with	 repugnance,	 and	 any	 epistemological	 doubt	 affecting
the	 soundness	 of	 their	 work	 has	 usually	 been	 ignored	 or	 impatiently
brushed	aside.

With	Kronecker	it	was	different.	The	most	original	part	of	his	work,	in
which	he	was	a	true	pioneer,	was	a	natural	outgrowth	of	his	philosophical
inclinations.	His	 father,	Werner,	 Kummer,	 and	 his	 own	 wide	 reading	 in
philosophical	 literature	had	 influenced	him	 in	 the	direction	of	 a	 critical
outlook	 on	 all	 human	 knowledge,	 and	 when	 he	 contemplated
mathematics	 from	 this	 questioning	 point	 of	 view	 he	 did	 not	 spare	 it
because	 it	 happened	 to	 be	 the	 field	 of	 his	 own	 particular	 interest,	 but
infused	 it	 with	 an	 acid,	 beneficial	 skepticism.	 Although	 but	 little	 of	 this
found	its	way	 into	print	 it	annoyed	some	of	his	contemporaries	 intensely
and	it	has	survived.	The	doubter	did	not	address	himself	to	the	living	but,
as	he	said,	“to	those	who	shall	come	after	me.”	Today	these	followers	have
arrived,	and	due	to	their	united	efforts—although	they	often	succeed	only
in	 contradicting	one	 another—we	 are	 beginning	 to	 get	 a	 clearer	 insight
into	the	nature	and	meaning	of	mathematics.

Weierstrass	(Chapter	22)	would	have	constructed	mathematical	analysis
on	 his	 conception	 of	 irrationals	 as	 defined	 by	 infinite	 sequences	 of
rationals.	 Kronecker	 not	 only	 disputes	 Weierstrass;	 he	 would	 nullify
Eudoxus.	 For	 him	 as	 for	 Pythagoras	 only	 the	 God-given	 integers	 1,	 2,
3,	 .	 .	 .	 ,”	“exist”;	all	 the	rest	 is	a	futile	attempt	of	mankind	to	improve	on
the	 creator.	Weierstrass	 on	 the	 other	 hand	 believed	 that	 he	 had	 at	 last
made	 the	 square	root	of	2	as	comprehensible	and	as	 safe	 to	handle	as	2
itself;	Kronecker	denied	that	the	square	root	of	2	“exists,”	and	he	asserted
that	it	is	impossible	to	reason	consistently	with	or	about	the	Weierstrassian
construction	 for	 this	 root	 or	 for	 any	 other	 irrational.	 Neither	 his	 older
colleagues	nor	the	young	to	whom	Kronecker	addressed	himself	gave	his
revolutionary	idea	a	very	enthusiastic	welcome.



Weierstrass	himself	seems	to	have	felt	uneasy;	certainly	he	was	hurt.	His
strong	emotion	 is	released	mostly	 in	one	tremendous	German	sentenceII

like	a	fugue,	which	it	is	almost	impossible	to	preserve	in	English.	“But	the
worst	of	it	is,”	he	complains,	“that	Kronecker	uses	his	authority	to	proclaim
that	 all	 those	 who	 up	 to	 now	 have	 labored	 to	 establish	 the	 theory	 of
functions	 are	 sinners	 before	 the	 Lord.	When	 a	 whimsical	 eccentric	 like
Christoffel	[the	man	whose	somewhat	neglected	work	was	to	become,	years
after	his	death,	an	important	tool	in	differential	geometry	as	it	is	cultivated
today	in	the	mathematics	of	relativity]	says	that	in	twenty	or	thirty	years	the
present	 theory	of	 functions	will	be	buried	and	 that	 the	whole	of	analysis
will	be	 referred	 to	 the	 theory	of	 forms,	we	 reply	with	a	 shrug.	But	when
Kronecker	delivers	himself	of	the	following	verdict	which	I	repeat	word	for
word:	 ‘If	 time	 and	 strength	 are	 granted	 me,	 I	 myself	 will	 show	 the
mathematical	world	that	not	only	geometry,	but	also	arithmetic	can	point
the	way	 to	 analysis,	 and	 certainly	 a	more	 rigorous	way.	 If	 I	 cannot	 do	 it
myself	 those	 who	 come	 after	 me	 will	 .	 .	 .	 and	 they	 will	 recognize	 the
incorrectness	of	all	those	conclusions	with	which	so-called	analysis	works	at
present’—such	 a	 verdict	 from	 a	 man	 whose	 eminent	 talent	 and
distinguished	performance	in	mathematical	research	I	admire	as	sincerely
and	with	as	much	pleasure	as	all	his	colleagues,	is	not	only	humiliating	for
those	whom	he	 adjures	 to	 acknowledge	 as	 an	 error	 and	 to	 forswear	 the
substance	 of	 what	 has	 constituted	 the	 object	 of	 their	 thought	 and
unremitting	 labor,	but	 it	 is	 a	direct	appeal	 to	 the	 younger	generation	 to
desert	their	present	leaders	and	rally	around	him	as	the	disciple	of	a	new
system	which	must	be	founded.	Truly	it	is	sad,	and	it	fills	me	with	a	bitter
grief,	to	see	a	man,	whose	glory	is	without	flaw,	let	himself	be	driven	by	the
well	justified	feeling	of	his	own	worth	to	utterances	whose	injurious	effect
upon	others	he	seems	not	to	perceive.

“But	enough	of	these	things,	on	which	I	have	touched	only	to	explain	to
you	the	reason	why	I	can	no	longer	take	the	same	joy	that	I	used	to	take	in
my	 teaching,	 even	 if	my	 health	 were	 to	 permit	me	 to	 continue	 it	 a	 few
years	longer.	But	you	must	not	speak	of	it;	I	should	not	like	others,	who	do
not	 know	 me	 as	 well	 as	 you,	 to	 see	 in	 what	 I	 say	 the	 expression	 of	 a
sentiment	which	is	in	fact	foreign	to	me.”

Weierstrass	was	 seventy	and	 in	poor	health	when	he	wrote	 this.	Could
he	 have	 lived	 till	 today	 he	 would	 have	 seen	 his	 own	 great	 system	 still
flourishing	 like	 the	 proverbial	 green	 bay	 tree.	 Kronecker’s	 doubts	 have



done	much	to	instigate	a	critical	re-examination	of	the	foundations	of	all
mathematics,	 but	 they	 have	 not	 yet	 destroyed	 analysis.	 They	 go	 deeper,
and	if	anything	of	far-reaching	significance	is	to	be	replaced	by	something
firmer	but	as	yet	unknown,	it	seems	likely	that	a	good	part	of	Kronecker’s
own	 work	 will	 go	 too,	 for	 the	 critical	 attack	 which	 he	 foresaw	 has
uncovered	weaknesses	where	he	 suspected	nothing.	Time	makes	 fools	of
us	all.	Our	only	comfort	is	that	greater	shall	come	after	us.

Kronecker’s	 “revolution,”	 as	 his	 contemporaries	 called	 his	 subversive
assault	 on	 analysis,	 would	 banish	 all	 but	 the	 positive	 integers	 from
mathematics.	 Geometry	 since	 Descartes	 has	 been	 largely	 an	 affair	 of
analysis	 applied	 to	 ordered	 pairs,	 triples,	 .	 .	 .	 of	 real	 numbers	 (the
“numbers”	 which	 correspond	 to	 the	 distances	 measured	 on	 a	 given
straight	 line	 from	 a	 fixed	 point	 on	 the	 line);	 hence	 it	 too	 would	 come
under	the	sway	of	Kronecker’s	program.	So	familiar	a	concept	as	that	of	a
negative	 integer,	 −2	 for	 instance,	 would	 not	 appear	 in	 the	mathematics
Kronecker	prophesied,	nor	would	common	fractions.

Irrationals,	 as	 Weierstrass	 points	 out,	 roused	 Kronecker’s	 special
displeasure.	To	speak	of	x2—	2	=	0	having	a	root	would	be	meaningless.	All
of	 these	 dislikes	 and	 objections	 are	 of	 course	 themselves	 meaningless
unless	 they	 can	 be	 backed	 by	 a	 definite	 program	 to	 replace	 what	 is
rejected.

Kronecker	actually	did	 this,	 at	 least	 in	outline,	 and	 indicated	how	 the
whole	of	algebra	and	the	theory	of	numbers,	including	algebraic	numbers,
can	be	reconstructed	in	accordance	with	his	demand.	To	get	rid	of	
for	 example,	 we	 need	 only	 put	 a	 letter	 for	 it	 temporarily,	 say	 i,	 and
consider	polynomials	containing	i	and	other	letters,	say	x,	y,	z,	.	.	.	.	Then
we	manipulate	these	polynomials	as	 in	elementary	algebra,	treating	 i	 like
any	of	the	other	letters,	till	the	last	step,	when	every	polynomial	containing
i	is	divided	by	i2	+	1	and	everything	but	the	remainder	obtained	from	this
division	 is	discarded.	Anyone	who	remembers	a	 little	elementary	algebra
may	readily	convince	himself	that	this	leads	to	all	the	familiar	properties	of
the	mysteriously	misnamed	 “imaginary”	 numbers	 of	 the	 text	 books.	 In	 a
similar	manner	negatives	and	 fractions	and	all	 algebraic	numbers	(other
than	 the	positive	 rational	 integers)	 are	 eliminated	 from	mathematics—if
desired—and	 only	 the	 blessed	 positive	 integers	 remain.	 The	 inspiration
about	discarding	 	goes	back	to	Cauchy	in	1847.	This	was	the	germ	of
Kronecker’s	program.



Those	 who	 dislike	 Kronecker’s	 “revolution”	 call	 it	 a	 Putsch,	 which	 is
more	like	a	drunken	brawl	than	an	orderly	revolution.	Nevertheless	it	has
led	in	recent	years	to	two	constructively	critical	movements	in	the	whole	of
mathematics:	the	demand	that	a	construction	in	a	finite	number	of	steps
be	given	or	proved	to	be	possible	for	any	“number”	or	other	mathematical
“entity”	 whose	 “existence”	 is	 indicated,	 and	 the	 banishment	 from
mathematics	 of	 all	 definitions	 that	 cannot	 be	 stated	 explicitly	 in	 a	 finite
number	of	words.	Insistence	upon	these	demands	has	already	done	much
to	clarify	our	conception	of	the	nature	of	mathematics,	but	a	vast	amount
remains	to	be	done.	As	this	work	is	still	in	progress	we	shall	defer	further
consideration	 of	 it	 until	 we	 come	 to	Cantor,	 when	 it	 will	 be	 possible	 to
exhibit	examples.

Kronecker’s	 disagreement	 with	 Weierstrass	 should	 not	 leave	 an
unpleasant	 impression,	 as	 it	may	do	 if	we	 ignore	 the	 rest	of	Kronecker’s
generous	 life.	 Kronecker	 had	 no	 intention	 of	 wounding	 his	 kindly	 old
senior;	he	merely	let	his	tongue	run	away	with	him	in	the	heat	of	a	purely
mathematical	 argument,	 and	 Weierstrass,	 when	 he	 was	 in	 good	 spirits,
laughed	the	whole	attack	off,	as	he	should	have	done,	knowing	well	 that
just	 as	 he	 had	 improved	 on	 Eudoxus,	 so	 his	 successors	 would	 probably
improve	 upon	 him.	 Possibly	 if	 Kronecker	 had	 been	 six	 or	 seven	 inches
taller	than	he	was	he	would	not	have	felt	constrained	to	overemphasize	his
objections	 to	 analysis	 so	 vociferously.	 Much	 of	 the	 whole	 wordy	 dispute
sounds	 suspiciously	 like	 the	 overcorrection	 of	 an	 unjustified	 inferiority
complex.

The	reaction	of	many	mathematicians	 to	Kronecker’s	“revolution”	was
summed	up	by	Poincaré	when	he	said	that	Kronecker	had	been	enabled	to
do	 so	 much	 fine	 mathematics	 because	 he	 frequently	 forgot	 his	 own
mathematical	philosophy.	Like	not	a	few	epigrams	this	one	is	 just	untrue
enough	to	be	witty.

Kronecker	died	of	a	bronchial	illness	in	Berlin	on	December	29,	1891,
in	his	sixty	ninth	year.

I.	One	 problem	 in	 this	 subject:	 an	 algebraic	 curve	may	 have	 loops	 on	 it,	 or	 places	 where	 the
curve	crosses	its	tangents;	given	the	degree	of	the	curve,	how	many	such	points	are	there?	Or	if	we
cannot	answer	that,	what	equations	connecting	the	number	of	these	and	other	exceptional	points
must	hold?	Similarly	for	surfaces.

II.	In	a	letter	to	Sonja	Kowalewski,	1885.



CHAPTER	TWENTY	SIX

Anima	Candida

RIEMANN

A	geometer	like	Riemann	might	almost	have	foreseen	the	more	important	features	of	the	actual	world.—A.	S.
EDDINGTON

IT	HAS	BEEN	SAID	OF	coleridge	that	he	wrote	but	little	poetry	of	the	highest
order	of	excellence,	but	that	that	little	should	be	bound	in	gold.	The	like
has	been	said	of	Bernhard	Riemann,	the	mathematical	fruits	of	whose	all
too	brief	summer	fill	only	one	octavo	volume.	It	may	also	be	truly	said	of
Riemann	 that	 he	 touched	 nothing	 that	 he	 did	 not	 in	 some	 measure
revolutionize.	One	of	the	most	original	mathematicians	of	modern	times,
Riemann	unfortunately	inherited	a	poor	constitution,	and	he	died	before
he	had	reaped	a	 tithe	of	 the	golden	harvests	 in	his	 fertile	mind.	Had	he
been	 born	 a	 century	 later	 than	 he	 was,	medical	 science	 could	 probably
have	leased	him	twenty	or	thirty	more	years	of	life,	and	mathematics	would
not	now	be	waiting	for	his	successor.

Georg	Friedrich	Bernhard	Riemann,	the	son	of	a	Lutheran	pastor,	and
the	 second	 of	 six	 children	 (two	 boys,	 four	 girls),	 was	 born	 in	 the	 little
village	 of	 Breselenz,	 in	Hanover,	 Germany,	 on	 September	 17,	 1826.	His
father	had	fought	in	the	Napoleonic	wars,	and	on	settling	down	to	a	less
barbarous	mode	of	living	had	married	Charlotte	Ebell,	daughter	of	a	court
councillor.	 Hanover	 in	 1826	 was	 not	 exactly	 prosperous,	 and	 the
circumstances	of	an	obscure	country	parson	with	a	wife	and	six	children	to
feed	and	clothe	were	far	from	affluent.	It	is	claimed	by	some	biographers,
apparently	with	justice,	that	the	frail	health	and	early	deaths	of	most	of	the
Riemann	children	were	the	result	of	undernourishment	in	their	youth	and
were	not	due	to	poor	stamina.	The	mother	also	died	before	her	children
were	grown.



In	 spite	 of	 poverty	 the	 home	 life	 was	 happy,	 and	 Riemann	 always
retained	the	warmest	affection—and	homesickness,	when	he	was	absent—
for	all	his	 lovable	family.	From	his	earliest	years	he	was	a	 timid,	diffident
soul	with	a	horror	of	speaking	in	public	or	attracting	attention	to	himself.
In	 later	 life	 this	 chronic	 shyness	 proved	 a	 very	 serious	 handicap	 and
occasioned	 him	 much	 agonized	 misery	 till	 he	 overcame	 it	 by	 diligent
preparation	 for	 every	 public	 utterance	 he	 was	 likely	 to	 make.	 The
engaging	 bashfulness	 of	 Riemann’s	 boyhood	 and	 early	manhood,	 which
endeared	him	to	all	who	met	him,	was	in	strange	contrast	to	the	ruthless
boldness	 of	 his	matured	 scientific	 thought.	 Supreme	 in	 the	world	 of	 his
own	 creation,	 he	 realized	 his	 transcendent	 powers	 and	 shrank	 from
nobody,	real	or	imaginary.

While	 Riemann	 was	 still	 an	 infant	 his	 father	 was	 transferred	 to	 the
pastorate	 of	 Quickborn.	 There	 young	 Riemann	 received	 his	 first
instruction,	 from	 his	 father,	 who	 appears	 to	 have	 been	 an	 excellent
teacher.	 From	 the	 very	 first	 lessons	 Bernhard	 showed	 an	 unquenchable
thirst	for	learning.	His	earliest	interests	were	historical,	particularly	in	the
romantic	and	tragic	history	of	Poland.	As	a	boy	of	five	Bernhard	gave	his
father	no	peace	about	unhappy	Poland,	but	demanded	to	be	told	over	and
over	again	the	legend	of	that	heroic	country’s	gallant	(and	at	times	slightly
fatuous)	struggles	for	liberty	and,	in	the	late	Woodrow	Wilson’s	rich,	fruity
phrase,	“self-determination.”

Arithmetic,	 begun	 at	 about	 six,	 offered	 something	 less	 harrowing	 for
the	sensitive	young	boy	to	dwell	on.	His	inborn	mathematical	genius	now
asserted	 itself.	Bernhard	not	only	 solved	all	 the	problems	shoved	at	him,
but	 invented	more	difficult	 teasers	 to	 exasperate	his	 brother	 and	 sisters.
Already	the	creative	impulse	in	mathematics	dominated	the	boy’s	mind.	At
the	 age	of	 ten	he	 received	 instruction	 in	more	 advanced	arithmetic	 and
geometry	 from	 a	 professional	 teacher,	 one	 Schulz,	 a	 fairly	 good
pedagogue.	Schulz	soon	found	himself	following	his	pupil,	who	often	had
better	solutions	than	he.

At	 fourteen	 Riemann	 went	 to	 stay	 with	 his	 grandmother	 at	Hanover,
where	he	entered	his	 first	Gymnasium,	 in	 the	upper	 third	class.	Here	he
endured	his	first	overwhelming	loneliness.	His	shyness	made	him	the	butt
of	 his	 schoolfellows	 and	 drove	 him	 in	 upon	 his	 own	 resources.	 After	 a
temporary	setback	his	schoolwork	was	uniformly	excellent,	but	it	gave	him
no	comfort,	and	his	only	solace	was	the	joy	of	buying	such	inconsiderable



presents	as	his	pocket	money	would	permit,	 to	send	home	to	his	parents
and	brother	and	sisters	on	their	birthdays.	One	present	for	his	parents	he
invented	and	made	himself,	an	original	perpetual	calendar,	much	to	 the
astonishment	 of	 his	 incredulous	 schoolfellows.	 On	 the	 death	 of	 his
grandmother	two	years	later,	Riemann	was	transferred	to	the	Gymnasium
at	Lüneburg,	where	he	studied	till	he	was	prepared,	at	the	age	of	nineteen,
to	 enter	 the	 University	 of	 Göttingen.	 At	 Lüneburg	 Riemann	 was	 within
walking	distance	of	home.	He	took	full	advantage	of	his	opportunities	to
escape	 to	 the	 warmth	 of	 his	 own	 fireside.	 These	 years	 of	 his	 secondary
education,	while	his	health	was	still	fair,	were	the	happiest	of	his	life.	The
tramps	back	and	forth	between	the	Gymnasium	and	Quickborn	taxed	his
strength,	but	 in	 spite	of	his	mother’s	anxiety	 that	he	might	wear	himself
out,	Riemann	continued	 to	over-exert	himself	 in	order	 that	he	might	be
with	his	family	as	often	as	possible.

While	 still	 at	 the	 Gymnasium	 Riemann	 suffered	 from	 the	 itch	 for
finality	and	perfection	which	was	later	to	slow	up	his	scientific	publication.
This	 defect—if	 such	 it	 was—caused	 him	 great	 difficulty	 in	 his	 written
language	exercises	and	at	first	made	it	doubtful	whether	he	would	“pass.”
But	this	same	trait	was	responsible	later	for	the	finished	form	of	two	of	his
masterpieces,	 one	 of	 which	 even	 Gauss	 declared	 to	 be	 perfect.	 Things
improved	when	Seyffer,	the	teacher	of	Hebrew,	took	young	Riemann	into
his	own	house	as	a	boarder	and	ironed	him	out.

The	 two	 studied	 Hebrew	 together,	 Riemann	 frequently	 giving	 more
than	he	took,	as	the	future	mathematician	at	that	time	was	all	set	to	gratify
his	father’s	wishes	and	become	a	great	preacher—as	if	Riemann,	with	his
tongue-tied	bashfulness,	could	ever	have	thumped	hell	and	damnation	or
redemption	 and	 paradise	 out	 of	 any	 pulpit.	 Riemann	 himself	 was
enamored	 of	 the	 pious	 prospect,	 and	 although	 he	 never	 got	 as	 far	 as	 a
probationary	 sermon,	 he	 did	 employ	 his	 mathematical	 talents	 in	 an
attempted	 demonstration,	 in	 the	 manner	 of	 Spinoza,	 of	 the	 truth	 of
Genesis.	Undaunted	by	his	failure,	young	Riemann	persevered	in	his	faith
and	 remained	 a	 sincere	 Christian	 all	 his	 life.	 As	 his	 biographer
(Dedekind)	 states,	 “He	 reverently	 avoided	disturbing	 the	 faith	of	others;
for	him	the	main	thing	in	religion	was	daily	self-examination.”	By	the	end
of	 his	 Gymnasium	 course	 it	 was	 plain	 even	 to	 Riemann	 that	 Great
Headquarters	could	have	but	little	use	for	him	as	a	router	of	the	devil,	but
might	be	able	 to	employ	him	profitably	 in	 the	conquest	of	nature.	Thus



once	 again,	 as	 in	 the	 cases	 of	Boole	 and	Kummer,	 a	 brand	was	plucked
from	the	burning,	ad	majoram	Dei	gloriam.

The	 director	 of	 the	 Gymnasium,	 Schmalfuss,	 having	 observed
Riemann’s	talent	for	mathematics,	had	given	the	boy	the	run	of	his	private
library	and	had	excused	him	from	attending	mathematical	classes.	In	this
way	 Riemann	 discovered	 his	 inborn	 aptitude	 for	 mathematics,	 but	 his
failure	to	realize	immediately	the	extent	of	his	ability	is	so	characteristic	of
his	almost	pathological	modesty	as	to	be	ludicrous.

Schmalfuss	 had	 suggested	 that	 Riemann	 borrow	 some	 mathematical
book	 for	 private	 study.	 Riemann	 said	 that	 would	 be	 nice,	 provided	 the
book	 was	 not	 too	 easy,	 and	 at	 the	 suggestion	 of	 Schmalfuss	 carried	 off
Legendre’s	Théorie	des	Nombres	(Theory	of	Numbers).	This	is	a	mere	trifle
of	859	large	quarto	pages,	many	of	them	crabbed	with	very	close	reasoning
indeed.	 Six	 days	 later	 Riemann	 returned	 the	 book.	 “How	 far	 did	 you
read?”	Schmalfuss	asked.	Without	replying	directly,	Riemann	expressed	his
appreciation	of	Legendre’s	classic.	 “That	 is	certainly	a	wonderful	book.	 I
have	 mastered	 it.”	 And	 in	 fact	 he	 had.	 Some	 time	 later	 when	 he	 was
examined	he	answered	perfectly,	although	he	had	not	seen	the	book	for
months.

No	doubt	this	is	the	origin	of	Riemann’s	interest	in	the	riddle	of	prime
numbers.	Legendre	has	an	empirical	formula	estimating	the	approximate
number	 of	 primes	 less	 than	 any	 preassigned	number;	 one	 of	Riemann’s
profoundest	and	most	suggestive	works	(only	eight	pages	long)	was	to	be
in	 the	 same	general	 field.	 In	 fact	 “Riemann’s	hypothesis,”	 originating	 in
his	 attempt	 to	 improve	 on	 Legendre,	 is	 today	 one	 of	 the	 outstanding
challenges,	if	not	the	outstanding	challenge,	to	pure	mathematicians.

To	 anticipate	 slightly,	 we	 may	 state	 here	 what	 this	 hypothesis	 is.	 It
occurs	 in	 the	 famous	 memoir	 Ueber	 die	 Anzahl	 der	 Primzahlen	 unter	 einer
gegebenen	 Grösse	 (On	 the	 number	 of	 prime	 numbers	 under	 a	 given
magnitude),	 printed	 in	 the	 monthly	 notices	 of	 the	 Berlin	 Academy	 for
November,	1859,	when	Riemann	was	thirty	three.	The	problem	concerned
is	to	give	a	formula	which	will	state	how	many	primes	there	are	less	than
any	given	number	n.	In	attempting	to	solve	this	Riemann	was	driven	to	an
investigation	of	the	infinite	series



in	which	s	is	a	complex	number,	say	 	where	u	and	v
are	 real	 numbers,	 so	 chosen	 that	 the	 series	 converges.	With	 this	 proviso
the	infinite	series	is	a	definite	function	of	s,	say	fζ(5)	(the	Greek	zeta,	f,	is
always	 used	 to	 denote	 this	 function,	 which	 is	 called	 “Riemann’s	 zeta
function”);	and	as	s	varies,	ζ	(s)	continuously	takes	on	different	values.	For
what	values	of	s	will	ζ	(s)	be	zero?	Riemann	conjectured	that	all	such	values	of
s	for	which	u	lies	between	0	and	1	are	of	the	form	½	+	iv,	namely,	all	have
their	real	part	equal	to	½.

This	is	the	famous	hypothesis.	Whoever	proves	or	disproves	it	will	cover
himself	 with	 glory	 and	 incidentally	 dispose	 of	 many	 extremely	 difficult
questions	 in	 the	 theory	 of	 prime	 numbers,	 other	 parts	 of	 the	 higher
arithmetic,	and	in	some	fields	of	analysis.	Expert	opinion	favors	the	truth
of	the	hypothesis.	In	1914	the	English	mathematician	G.	H.	Hardy	proved
that	an	infinity	 of	 values	 of	 s	 satisfy	 the	hypothesis,	 but	 an	 infinity	 is	 not
necessarily	 all.	 A	 decision	 one	 way	 or	 the	 other	 disposing	 of	 Riemann’s
conjecture	would	probably	be	of	greater	interest	to	mathematicians	than	a
proof	or	disproof	of	Fermat’s	Last	Theorem.	Riemann’s	hypothesis	is	not
the	 sort	 of	 problem	 that	 can	 be	 attacked	 by	 elementary	methods.	 It	 has
already	give	rise	to	an	extensive	and	thorny	literature.

Legendre	was	not	the	only	great	mathematician	whose	works	Riemann
absorbed	by	himself—always	with	amazing	speed—at	 the	Gymnasium;	he
became	familiar	with	the	calculus	and	its	ramifications	through	the	study
of	 Euler.	 It	 is	 rather	 surprising	 that	 from	 such	 an	 antiquated	 start	 in
analysis	 (Euler’s	 approach	was	out	of	date	by	 the	middle	 1840’s	 owing	 to
the	work	of	Gauss,	Abel,	 and	Cauchy),	Riemann	 later	 became	 the	 acute
analyst	 that	 he	 did.	 But	 from	 Euler	 he	 may	 have	 picked	 up	 something
which	also	has	its	place	in	creative	mathematical	work,	an	appreciation	of
symmetrical	 formulas	 and	 manipulative	 ingenuity.	 Although	 Riemann
depended	chiefly	on	what	may	be	called	deep	philosophical	ideas—those
which	get	at	 the	heart	of	 a	 theory—for	his	greater	 inspirations,	his	work
nevertheless	is	not	wholly	lacking	in	the	“mere	ingenuity”	of	which	Euler
was	 the	peerless	master	and	which	 it	 is	now	quite	 the	 fashion	to	despise.
The	pursuit	 of	pretty	 formulas	 and	neat	 theorems	 can	no	doubt	quickly
degenerate	 into	 a	 silly	 vice,	 but	 so	 also	 can	 the	 quest	 for	 austere
generalities	 which	 are	 so	 very	 general	 indeed	 that	 they	 are	 incapable	 of
application	 to	 any	 particular.	 Riemann’s	 instinctive	 mathematical	 tact
preserved	him	from	the	bad	taste	of	either	extreme.



In	1846,	 at	 the	 age	 of	 nineteen,	 Riemann	matriculated	 as	 a	 student	 of
philology	and	theology	at	the	University	of	Göttingen.	His	desire	to	please
his	 father	 and	 possibly	 help	 financially	 by	 securing	 a	 paying	 position	 as
quickly	as	possible	dictated	the	choice	of	theology.	But	he	could	not	keep
away	from	the	mathematical	 lectures	of	Stern	on	the	theory	of	equations
and	on	definite	 integrals,	 those	of	Gauss	on	the	method	of	 least	squares,
and	 Goldschmidt’s	 on	 terrestrial	 magnetism.	 Confessing	 all	 to	 his
indulgent	 father,	Riemann	prayed	 for	permission	 to	alter	his	course.	His
father’s	ungrudging	consent	that	Bernhard	follow	mathematics	as	a	career
made	the	young	man	supremely	happy—also	profoundly	grateful.

After	 a	 year	 at	 Göttingen,	 where	 the	 instruction	 was	 decidedly
antiquated,	Riemann	migrated	to	Berlin	to	receive	from	Jacobi,	Dirichlet,
Steiner,	and	Eisenstein	his	initiation	into	new	and	vital	mathematics.	From
all	 of	 these	masters	 he	 learned	much—advanced	mechanics	 and	 higher
algebra	 from	 Jacobi,	 the	 theory	 of	 numbers	 and	 analysis	 from	Dirichlet,
modern	geometry	 from	Steiner,	while	 from	Eisenstein,	 three	 years	older
than	himself,	he	learned	not	only	elliptic	functions	but	self-confidence,	for
he	and	the	young	master	had	a	radical	and	most	energizing	difference	of
opinion	as	to	how	the	theory	should	be	developed.	Eisenstein	insisted	on
beautiful	 formulas,	 somewhat	 in	 the	 manner	 of	 a	 modernized	 Euler;
Riemann	wanted	to	introduce	the	complex	variable	and	derive	the	entire
theory,	 with	 a	 minimum	 of	 calculation,	 from	 a	 few	 simple,	 general
principles.	 Thus,	 no	 doubt,	 originated	 at	 least	 the	 germs	 of	 one	 of
Riemann’s	 greatest	 contributions	 to	 pure	mathematics.	 As	 the	 origin	 of
Riemann’s	 work	 in	 the	 theory	 of	 functions	 of	 a	 complex	 variable	 is	 of
considerable	 importance	 in	 his	 own	 history	 and	 in	 that	 of	 modern
mathematics,	we	shall	glance	at	what	is	known	about	it.

Briefly,	 nothing	 definite.	 The	 definition	 of	 an	 analytic	 function	 of	 a
complex	 variable,	 discussed	 in	 connection	 with	 Gauss’	 anticipation	 of
Cauchy’s	 fundamental	 theorem,	 was	 essentially	 that	 of	 Riemann.	 When
expressed	analytically	instead	of	geometrically	that	definition	leads	to	the
pair	of	partial	differential	equations	II	which	Riemann	took	as	his	point	of
departure	 for	 a	 theory	 of	 functions	 of	 a	 complex	 variable.	According	 to
Dedekind,	“Riemann	recognized	in	these	partial	differential	equations	the
essential	 definition	 of	 an	 [analytic]	 function	 of	 a	 complex	 variable.
Probably	these	ideas,	of	the	highest	importance	for	his	future	career,	were



worked	out	by	him	in	the	fall	vacation	of	1847	 [Riemann	was	 then	 twenty
one]	for	the	first	time.”

Another	 version	 of	 the	 origin	 of	 Riemann’s	 inspiration	 is	 due	 to
Sylvester,	who	tells	the	following	story,	which	is	interesting	even	if	possibly
untrue.	 In	 1896,	 the	 year	 before	his	 death,	 Sylvester	 recalls	 staying	 at	 “a
hotel	on	the	river	at	Nuremberg,	where	I	conversed	outside	with	a	Berlin
bookseller,	bound,	like	myself,	for	Prague.	.	.	.	He	told	me	he	was	formerly
a	 fellow	 pupil	 of	 Riemann,	 at	 the	 University,	 and	 that,	 one	 day,	 after
receipt	of	some	numbers	of	the	Comptes	rendus	 from	Paris,	 the	 latter	shut
himself	 up	 for	 some	 weeks,	 and	 when	 he	 returned	 to	 the	 society	 of	 his
friends,	said	(referring	to	the	newly	published	papers	of	Cauchy),	’This	is
a	new	mathematic.’ ”

Riemann	 spent	 two	 years	 at	 the	 University	 of	 Berlin.	 During	 the
political	upheaval	of	1848	he	served	with	the	loyal	student	corps	and	had
one	weary	spell	of	sixteen	hours’	guard	duty	protecting	the	jittery	if	sacred
person	of	the	king	in	the	royal	palace.	In	1849	he	returned	to	Göttingen
to	complete	his	mathematical	training	for	the	doctorate.	His	interests	were
unusually	broad	for	the	pure	mathematician	he	is	commonly	rated	to	be,
and	in	fact	he	devoted	as	much	of	his	time	to	physical	science	as	he	did	to
mathematics.

From	 this	 distance	 it	 seems	 as	 though	 Riemann’s	 real	 interest	 was	 in
mathematical	 physics,	 and	 it	 is	 quite	 possible	 that	 had	 he	 been	 granted
twenty	or	 thirty	more	years	of	 life	he	would	have	become	the	Newton	or
Einstein	 of	 the	 nineteenth	 century.	 His	 physical	 ideas	 were	 bold	 in	 the
extreme	 for	 his	 time.	 Not	 till	 Einstein	 realized	 Riemann’s	 dream	 of	 a
geometrized	 (macroscopic)	 physics	 did	 the	 physics	 which	 Riemann
foreshadowed—somewhat	 obscurely,	 it	 may	 be—appear	 reasonable	 to
physicists.	 In	 this	 direction	 his	 only	 understanding	 follower	 till	 our	 own
century	was	 the	English	mathematician	William	Kingdon	Clifford	 (1845-
1879),	who	also	died	long	before	his	time.

During	his	last	three	semesters	at	Göttingen	Riemann	attended	lectures
on	philosophy	and	followed	the	course	of	Wilhelm	Weber	in	experimental
physics	 with	 the	 greatest	 interest.	 The	 philosophical	 and	 psychological
fragments	 left	 by	 Riemann	 at	 his	 death	 show	 that	 as	 a	 philosophical
thinker	he	was	 as	original	 as	he	was	 in	mathematics	 and	 science.	Weber
recognized	Riemann’s	 scientific	genius	and	became	his	warm	friend	and
helpful	 counsellor.	 To	 a	 far	 higher	 degree	 than	 the	 majority	 of	 great



mathematicians	 who	 have	 written	 on	 physical	 science,	 Riemann	 had	 a
feeling	 for	 what	 is	 important—or	 likely	 to	 be	 so—in	 physics,	 and	 this
feeling	is	no	doubt	due	to	his	work	in	the	laboratory	and	his	contact	with
men	 who	 were	 primarily	 physicists	 and	 not	 mathematicians.	 The
contributions	of	even	great	pure	mathematicians	to	physical	science	have
usually	been	characterized	by	a	singular	irrelevance	so	far	as	the	universe
observed	by	scientists	is	concerned.	Riemann,	as	a	physical	mathematician,
was	 in	 the	 same	 class	 as	Newton,	 Gauss,	 and	 Einstein	 in	 his	 instinct	 for
what	is	likely	to	be	of	scientific	use	in	mathematics.

As	a	sequel	to	his	philosophical	studies	with	Johann	Friedrich	Herbart
(1776-1841),	Riemann	came	to	the	conclusion	in	1850	(he	was	then	twenty
four)	 that	 “a	 complete,	 well-rounded	 mathematical	 theory	 can	 be
established,	 which	 progresses	 from	 the	 elementary	 laws	 for	 individual
points	 to	 the	 processes	 given	 to	 us	 in	 the	 plenum	 (’continuously	 filled
space’)	 of	 reality,	 without	 distinction	 between	 gravitation,	 electricity,
magnetism,	 or	 thermostatics.”	 This	 is	 probably	 to	 be	 interpreted	 as
Riemann’s	 rejection	 of	 all	 “action	 at	 a	 distance”	 theories	 in	 physical
science	 in	 favor	 of	 field	 theories.	 In	 the	 latter	 the	physical	 properties	 of
the	 “space”	 surrounding	 a	 “charged	 particle,”	 say,	 are	 the	 object	 of
mathematical	 investigation.	Riemann	at	 this	 stage	of	his	 career	 seems	 to
have	believed	in	a	space-filling	“ether,”	a	conception	now	abandoned.	But
as	will	appear	from	his	epochal	work	on	the	foundations	of	geometry,	he
later	sought	the	description	and	correlation	of	physical	phenomena	in	the
geometry	of	the	“space”	of	human	experience.	This	is	in	the	current	fashion,
which	rejects	an	existent,	unobservable	ether	as	a	cumbersome	superfluity.

Fascinated	 by	 his	 work	 in	 physics,	 Riemann	 let	 his	 pure	mathematics
slide	for	a	while	and	in	the	fall	of	1850	joined	the	seminar	in	mathematical
physics	which	had	just	been	founded	by	Weber,	Ulrich,	Stern,	and	Listing.
Physical	 experiments	 in	 this	 seminar	 consumed	 the	 time	 that	 scholarly
prudence	 would	 have	 reserved	 for	 the	 doctoral	 dissertation	 in
mathematics,	which	Riemann	did	not	submit	till	he	was	twenty	five.

One	of	the	leaders	in	the	seminar,	Johann	Benedict	Listing	(18081882),
may	be	noted	in	passing,	as	he	probably	influenced	Riemann’s	thought	in
what	was	to	be	(1857)	one	of	his	greatest	achievements,	the	introduction
of	topological	methods	into	the	theory	of	functions	of	a	complex	variable.



It	will	 be	 recalled	 that	Gauss	had	prophesied	 that	 analysis	 situs	would
become	one	of	 the	most	 important	 fields	of	mathematics,	and	Riemann,
by	his	inventions	in	the	theory	of	functions,	was	to	give	a	partial	fulfillment
of	 this	 prophecy.	 Although	 topology	 (now	 called	 analysis	 situs)	 as	 first
developed	bore	but	little	resemblance	to	the	elaborate	theory	which	today
absorbs	all	 the	energies	of	a	prolific	 school,	 it	may	be	of	 interest	 to	state
the	 trivial	 puzzle	 which	 apparently	 started	 the	 whole	 vast	 and	 intricate
theory.	 In	 Euler’s	 time	 seven	 bridges	 crossed	 the	 river	 Pregel	 in
Königsberg,	as	 in	the	diagram,	the	shaded	bars	representing	the	bridges.
Euler	proposed	the	problem	of	crossing	all	seven	bridges	without	passing
twice	over	any	one.	The	problem	is	impossible.

*		*		*

The	nature	of	Riemann’s	use	of	 topological	methods	 in	 the	 theory	of
functions	may	 be	 disposed	 of	 here,	 although	 an	 adequate	 description	 is
out	 of	 the	 question	 in	 untechnical	 language.	 For	 the	 meaning	 of
“uniformity”	with	respect	to	a	function	of	a	complex	variable	we	must	refer
to	what	was	 said	 in	 the	chapter	on	Gauss.	Now,	 in	 the	 theory	of	Abelian
functions,	multiform	 functions	 present	 themselves	 inevitably;	 an	 n-valued
function	 of	 z	 is	 a	 function	 which,	 except	 for	 certain	 values	 of	 z,	 takes
precisely	 n	 distinct	 values	 for	 each	 value	 assigned	 to	 z.	 Illustrating
multiformity,	 or	many-valuedness,	 for	 functions	 of	 a	 real	 variable,	 we	 note
that	y,	considered	as	a	function	of	x,	defined	by	the	equation	y2	=	x,	is	two-
valued.	Thus,	if	x	=	4,	we	get	y2	=	4,	and	hence	y	=	2	or	−2;	if	x	is	any	real



number	except	zero	or	“infinity,”	y	has	the	two	distinct	values	of	 	and	
	 In	 this	 simplest	 possible	 example	 y	 and	 x	 are	 connected	 by	 an

algebraic	 equation,	 namely	 y2—x	 =	 0.	 Passing	 at	 once	 to	 the	 general
situation	of	which	this	is	a	very	special	case,	we	might	discuss	the	n-valued
function	y	which	is	defined,	as	a	function	of	x,	by	the	equation

P0(x)yn	+	P1(x)yn-1	+	.	.	.	+	Pn-1(x)y	+	Pn(x)	=	0,

in	which	the	P’s	are	polynomials	in	x.	This	equation	defines	y	as	an	n-
valued	function	of	x.	As	in	the	case	of	y2—x	=	0,	there	will	be	certain	values
of	x	for	which	two	or	more	of	these	n	values	of	y	are	equal.	These	values	of
x	 are	 the	 so-called	 branch	 points	 of	 the	n-valued	 function	 defined	 by	 the
equation.

All	 this	 is	 now	 extended	 to	 functions	 of	 complex	 variables,	 and	 the
function	w	(also	its	integral)	as	defined	by

P0(z)wn	+	P1(z)wn–1	+	.	.	.	+	Pn-1(z)w	+	Pn(z)	=	0,

in	which	z	denotes	the	complex	variable	s	+	it,	where	s,	t	are	real	variables
and	 	The	n	values	of	w	are	called	the	branches	of	 the	function	w.
Here	 we	 must	 refer	 (chapter	 on	 Gauss)	 to	 what	 was	 said	 about	 the
representation	of	uniform	 functions	of	z.	Let	 the	variable	z	 (=	s	+	 it)	 trace
out	any	path	in	its	plane,	and	let	the	uniform	functions	f(z)	be	expressed	in
the	form	U	+	iV,	where	U,	V	are	functions	of	s,	t.	Then,	to	every	value	of	z
will	correspond	one,	and	only	one,	value	for	each	of	U,	V,	and,	as	z	traces
out	its	path	in	the	s,	t-plane,	f(z)	will	trace	out	a	corresponding	path	in	the
U,	V-plane:	the	path	off(z)	will	be	uniquely	determined	by	that	of	z.	But	if	w
is	 a	multiform	 (many-valued)	 function	 of	 z,	 such	 that	 precisely	 n	 distinct
values	of	w	 are	determined	by	 each	 value	of	 z	 (except	 at	 branch	 points,
where	several	values	of	w	may	be	equal),	then	it	is	obvious	that	one	w-plane
no	 longer	 suffices	 (if	 n	 is	 greater	 than	 l)	 to	 represent	 the	 path,	 the
“march”	of	the	function	w.	In	the	case	of	a	two-valued	function	w,	such	as
that	 determined	 by	 w2	 =	 z,	 two	 w-planes	 would	 be	 required	 and,	 quite
generally,	for	an	n-valued	function	(n	finite	or	infinite),	precisely	n	such	w-
planes	would	be	required.

The	 advantages	 of	 considering	uniform	 (one-valued)	 functions	 instead
of	n-valued	functions	(n	greater	than	1)	should	be	obvious	even	to	a	non-
mathematician.	What	 Riemann	 did	 was	 this:	 instead	 of	 the	n	 distinct	 w-



planes,	he	introduced	an	rc-sheeted	surface,	of	the	sort	roughly	described
in	 what	 follows,	 on	 which	 the	 multiform	 function	 is	 uniform,	 that	 is,	 on
which,	 to	 each	 “place”	 on	 the	 surface	 corresponds	 one,	 and	 only	 one,
value	of	the	function	represented.

Riemann	united,	as	 it	were,	all	 the	n	planes	 into	a	single	plane,	and	he
did	this	by	what	may	at	first	look	like	an	inversion	of	the	representation	of
the	 n	 branches	 of	 the	 n-valued	 function	 on	 n	 distinct	 planes;	 but	 a
moment’s	consideration	will	show	that,	in	effect,	he	restored	uniformity.	For
he	superimposed	n	z-planes	on	one	another;	each	of	these	planes,	or	sheets,
is	associated	with	a	particular	branch	of	the	function	so	that,	as	long	as	z
moves	 in	a	particular	 sheet,	 the	corresponding	branch	of	 the	 function	 is
traversed	 by	 w	 (the	 n-valued	 function	 of	 z	 under	 discussion),	 and	 as	 z
passes	 from	 one	 sheet	 to	 another,	 the	 branches	 are	 changed,	 one	 into
another,	until,	on	the	variable	z	having	traversed	all	the	sheets	and	having
returned	to	its	initial	position,	the	original	branch	is	restored.	The	passage
of	 the	 variable	 z	 from	one	 sheet	 to	 another	 is	 effected	 by	means	 of	 cuts
(which	may	be	thought	of	as	straight-line	bridges)	joining	branch	points;
along	a	given	cut	providing	passage	from	one	sheet	to	another,	one	“lip”
of	 the	upper	sheet	 is	 imagined	as	pasted	or	 joined	to	 the	opposite	 lip	of
the	 under	 sheet,	 and	 similarly	 for	 the	 other	 lip	 of	 the	 upper	 sheet.
Diagrammatically,	in	cross-section,

The	sheets	are	not	 joined	along	cuts	(which	may	be	drawn	in	many	ways
for	given	branch	points)	at	random,	but	are	so	joined	that,	as	z	traverses	its
n-sheeted	surface,	passing	from	one	sheet	to	another	as	a	bridge	or	cut	is
reached,	 the	 analytical	 behavior	 of	 the	 function	 of	 z	 is	 pictured
consistently,	 particularly	 as	 concerns	 the	 interchange	 of	 branches
consequent	 on	 the	 variable	 z,	 if	 represented	 on	 a	 plane,	 having	 gone
completely	round	a	branch	point.	To	this	circuiting	of	a	branch	point	on
the	 single	 z-plane	 corresponds,	 on	 the	 n-sheeted	 Riemann	 surface,	 the



passage	 from	one	 sheet	 to	 another	 and	 the	 resultant	 interchange	of	 the
branches	of	the	function.

There	 are	many	 ways	 in	 which	 the	 variable	may	 wander	 about	 the	n-
sheeted	Riemann	 surface,	 passing	 from	 one	 sheet	 to	 another.	 To	 each	 of
these	 corresponds	 a	 particular	 interchange	 of	 the	 branches	 of	 the
function,	which	may	be	 symbolized	by	writing,	 one	 after	 another,	 letters
denoting	 the	 several	 branches	 interchanged.	 In	 this	 way	 we	 get	 the
symbols	of	certain	substitutions	 (as	 in	chapter	15)	on	n	 letters;	all	of	 these
substitutions	 generate	 a	 group	 which,	 in	 some	 respects,	 pictures	 the
nature	of	the	function	considered.

Riemann	 surfaces	are	not	easy	 to	 represent	pictorially,	 and	 those	who
use	 them	content	 themselves	with	diagrammatical	 representations	of	 the
connection	of	 the	sheets,	 in	much	the	same	way	 that	an	organic	chemist
writes	 a	 “graphical”	 formula	 for	 a	 complicated	 carbon	 compound	which
recalls	in	a	schematic	manner	the	chemical	behavior	of	the	compound	but
which	does	not,	and	is	not	meant	to,	depict	the	actual	spatial	arrangement
of	 the	 atoms	 in	 the	 compound.	 Riemann	 made	 wonderful	 advances,
particularly	 in	 the	 theory	 of	 Abelian	 functions,	 by	means	 of	 his	 surfaces
and	 their	 topology—how	 shall	 the	 cuts	 be	made	 so	 as	 to	 render	 the	 n-
sheeted	surface	equivalent	to	a	plane,	being	one	question	in	this	direction.
But	 mathematicians	 are	 like	 other	 mortals	 in	 their	 ability	 to	 visualize
complicated	 spatial	 relationships,	 namely,	 a	 high	 degree	 of	 spatial
“intuition”	is	excessively	rare.

*		*		*

Early	in	November,	1851,	Riemann	submitted	his	doctoral	dissertation,
Grundlagen	 für	 eine	 allegemeine	 Theorie	 der	 Functionen	 einer	 veränderlichen
complexen	 Grösse	 (Foundations	 for	 a	 general	 theory	 of	 functions	 of	 a
complex	 variable),	 for	 Gauss’	 consideration.	 This	 work	 by	 the	 young
master	 of	 twenty	 five	 was	 one	 of	 the	 few	 modern	 contributions	 to
mathematics	 that	 roused	 the	 enthusiasm	 of	 Gauss,	 then	 an	 almost
legendary	figure	within	four	years	of	his	death.	When	Riemann	called	on
Gauss,	 after	 the	 latter	 had	 read	 the	dissertation,	Gauss	 told	him	 that	 he
himself	had	planned	for	years	to	write	a	treatise	on	the	same	topic.	Gauss’
official	report	to	the	Philosophical	Faculty	of	the	University	of	Göttingen	is



noteworthy	as	one	of	the	rare	formal	pronouncements	in	which	Gauss	let
himself	go.

“The	 dissertation	 submitted	 by	 Herr	 Riemann	 offers	 convincing
evidence	of	the	author’s	thorough	and	penetrating	investigations	in	those
parts	of	 the	 subject	 treated	 in	 the	dissertation,	of	 a	 creative,	 active,	 truly
mathematical	 mind,	 and	 of	 a	 gloriously	 fertile	 originality.	 The
presentation	 is	 perspicuous	 and	 concise	 and,	 in	 places,	 beautiful.	 The
majority	of	readers	would	have	preferred	a	greater	clarity	of	arrangement.
The	 whole	 is	 a	 substantial,	 valuable	 work,	 which	 not	 only	 satisfies	 the
standards	demanded	for	doctoral	dissertations,	but	far	exceeds	them.”

A	 month	 later	 Riemann	 passed	 his	 final	 examination,	 including	 the
formality	of	a	public	“defense”	of	his	dissertation.	All	went	off	successfully,
and	Riemann	began	to	hope	for	a	position	in	keeping	with	his	talents.	“I
believe	 I	have	 improved	my	prospects	with	my	dissertation,”	he	wrote	 to
his	father;	“I	hope	also	to	learn	to	write	more	quickly	and	more	fluently	in
time,	especially	if	I	mingle	in	society	and	if	I	get	a	chance	to	give	lectures;
therefore	am	I	of	good	courage.”	He	also	apologizes	to	his	father	for	not
having	 gone	 after	 a	 vacant	 assistantship	 at	 the	 Göttingen	 Observatory
more	energetically,	but	as	he	hopes	to	be	“habilitated”	as	a	Privatdozent	the
outlook	is	not	as	dark	as	it	might	be.

For	his	Habilitationsschrift	(probationary	essay)	Riemann	had	planned	to
submit	a	memoir	on	trigonometric	series	(Fourier	series).	But	 two	and	a
half	years	were	to	pass	before	he	might	hang	out	his	shingle	as	an	unpaid
university	 instructor	 picking	 up	 what	 he	 could	 in	 the	 way	 of	 fees	 from
students	 not	 bound	 to	 attend	 his	 lectures.	 During	 the	 autumn	 of	 1852

Riemann	profited	by	Dirichlet’s	presence	in	Göttingen	on	a	vacation	and
sought	his	advice	on	the	embryonic	memoir.	Riemann’s	 friends	saw	to	 it
that	the	young	man	met	the	famous	mathematician	from	Berlin—second
only	to	Gauss—socially.

Dirichlet	 was	 captivated	 by	 Riemann’s	 modesty	 and	 genius.	 “Next
morning	 [after	 a	 dinner	 party]	 Dirichlet	 was	 with	 me	 for	 two	 hours,”
Riemann	 wrote	 his	 father.	 “He	 gave	 me	 the	 notes	 I	 needed	 for	 my
probationary	essay;	otherwise	 I	 should	have	had	 to	 spend	many	hours	 in
the	 library	 in	 laborious	 research.	He	 also	 read	over	my	dissertation	with
me	 and	 was	 very	 friendly—which	 I	 could	 hardly	 have	 expected,
considering	 the	 great	 distance	 in	 rank	 between	 us.	 I	 hope	 he	 will
remember	 me	 later	 on.”	 During	 this	 visit	 of	 Dirichlet’s	 there	 were



excursions	 with	Weber	 and	 others,	 and	 Riemann	 reported	 to	 his	 father
that	 these	 human	 escapes	 from	 mathematics	 did	 him	 more	 good
scientifically	than	if	he	had	sat	all	day	over	his	books.

From	 1853	 (Riemann	 was	 then	 twenty	 seven)	 onward	 he	 thought
intensively	 about	 mathematical	 physics.	 By	 the	 end	 of	 the	 year	 he	 had
completed	 the	 probationary	 essay,	 after	many	 delays	 due	 to	 his	 growing
passion	for	physical	science.

There	 was	 still	 a	 trial	 lecture	 ahead	 of	 him	 before	 he	 could	 be
appointed	 to	 the	 coveted—but	 unpaid—lectureship.	 For	 this	 ordeal	 he
had	 submitted	 three	 titles	 for	 the	 faculty	 to	 choose	 from,	 hoping	 and
expecting	 that	 one	 of	 the	 first	 two,	 on	 which	 he	 had	 prepared	 himself,
would	be	selected.	But	he	had	incautiously	included	as	his	third	offering	a
topic	 on	 which	 Gauss	 had	 pondered	 for	 sixty	 years	 or	 more—the
foundations	of	geometry—and	this	he	had	not	prepared.	Gauss	no	doubt
was	curious	 to	 see	what	a	Riemann’s	“gloriously	 fertile	originality”	would
make	 of	 such	 a	 profound	 subject.	 To	 Riemann’s	 consternation	 Gauss
designated	the	third	topic	as	the	one	on	which	Riemann	should	prove	his
mettle	 as	 a	 lecturer	 before	 the	 critical	 faculty.	 “So	 I	 am	 again	 in	 a
quandary,”	 the	 rash	 young	man	 confided	 to	 his	 father,	 “since	 I	 have	 to
work	 out	 this	 one.	 I	 have	 resumed	 my	 investigation	 of	 the	 connection
between	 electricity,	 magnetism,	 light,	 and	 gravitation,	 and	 I	 have
progressed	 so	 far	 that	 I	 can	 publish	 it	 without	 a	 qualm.	 I	 have	 become
more	and	more	convinced	that	Gauss	has	worked	on	this	subject	for	years,
and	has	talked	to	some	friends	(Weber	among	others)	about	it.	I	tell	you
this	in	confidence,	lest	I	be	thought	arrogant—I	hope	it	is	not	yet	too	late
for	me	and	that	I	shall	gain	recognition	as	an	independent	investigator.”

The	 strain	 of	 carrying	 on	 two	 extremely	 difficult	 investigations
simultaneously,	 while	 acting	 as	 Weber’s	 assistant	 in	 the	 seminar	 in
mathematical	 physics,	 combined	 with	 the	 usual	 handicaps	 of	 poverty,
brought	 on	 a	 temporary	 breakdown.	 “I	 became	 so	 absorbed	 in	 my
investigation	of	the	unity	of	all	physical	laws	that	when	the	subject	of	the
trial	lecture	was	given	me,	I	could	nor	tear	myself	away	from	my	research.
Then,	partly	as	a	result	of	brooding	on	it,	partly	from	staying	indoors	too
much	 in	 this	 vile	 weather,	 I	 fell	 ill;	 my	 old	 trouble	 recurred	 with	 great
pertinacity	and	I	could	not	get	on	with	my	work.	Only	several	weeks	later,
when	 the	 weather	 improved	 and	 I	 got	more	 social	 stimulation,	 I	 began
feeling	 better.	 For	 the	 summer	 I	 have	 rented	 a	 house	 in	 a	 garden,	 and



since	doing	so	my	health	has	not	bothered	me.	Having	finished	two	weeks
after	Easter	a	piece	of	work	I	could	not	get	out	of,	I	began	at	once	working
on	 my	 trial	 lecture	 and	 finished	 it	 around	 Pentecost	 [that	 is,	 in	 about
seven	weeks].	 I	had	some	difficulty	 in	getting	a	date	 for	my	 lecture	right
away	and	almost	had	to	return	to	Quickborn	without	having	reached	my
goal.	 For	 Gauss	 is	 seriously	 ill	 and	 the	 physicians	 fear	 that	 his	 death	 is
imminent.	Being	too	weak	to	examine	me,	he	asked	me	to	wait	till	August,
hoping	that	he	might	improve,	especially	as	I	would	not	lecture	anyhow	till
fall.	 Then	 he	 decided	 anyway	 on	 the	 Friday	 after	 Pentecost	 to	 set	 the
lecture	 for	 the	 next	 day	 at	 eleven	 thirty.	 On	 Saturday	 I	 was	 happily
through	with	everything.”

This	 is	 Riemann’s	 own	 account	 of	 the	 historic	 lecture	 which	 was	 to
revolutionize	 differential	 geometry	 and	 prepare	 the	 way	 for	 the
geometrized	physics	of	our	own	generation.	In	the	same	letter	he	tells	how
the	work	he	had	been	doing	around	Easter	turned	out.	Weber	and	some
of	 his	 collaborators	 “had	 made	 very	 exact	 measurements	 of	 a
phenomenon	which	up	till	then	had	never	been	investigated,	the	residual
charge	 in	 a	 Leyden	 jar	 [after	 discharge	 it	 is	 found	 that	 the	 jar	 is	 not
completely	 discharged]	 .	 .	 .	 I	 sent	 him	 [one	 of	 Weber’s	 collaborators,
Kohlrausch]	 my	 theory	 of	 this	 phenomenon,	 having	 worked	 it	 out
specially	 for	 his	 purposes.	 I	 had	 found	 the	 explanation	 of	 the
phenomenon	 through	 my	 general	 investigations	 of	 the	 connection
between	electricity,	light,	and	magnetism.	.	.	.	This	matter	was	important	to
me,	because	it	was	the	first	time	I	could	apply	my	work	to	a	phenomenon
still	unknown,	and	I	hope	that	the	publication	[of	it]	will	contribute	to	a
favorable	reception	of	my	larger	work.”

The	reception	of	Riemann’s	probationary	lecture	(June	10,	 1854)	was	as
cordial	as	even	he	could	have	wished	in	the	scared	secrecy	of	his	modest
heart.	The	lecture	had	made	him	sweat	blood	to	prepare	because	he	had
determined	 to	make	 it	 intelligible	 even	 to	 those	members	 of	 the	 faculty
who	had	but	little	knowledge	of	mathematics.	In	addition	to	being	one	of
the	 great	 masterpieces	 of	 all	 mathematics,	 Riemann’s	 essay	 Ueber	 die
Hypothesen,	welche	der	Geometrie	 zu	Grunde	 liegen	(On	the	hypotheses	which
lie	at	the	foundations	of	geometry),	is	also	a	classic	of	presentation.	Gauss
was	 enthusiastic.	 “Against	 all	 tradition	 he	 had	 selected	 the	 third	 of	 the
three	topics	submitted	by	the	candidate,	wishing	to	see	how	such	a	difficult
subject	would	be	handled	by	so	young	a	man.	He	was	surprised	beyond	all



his	expectations,	and	on	returning	from	the	faculty	meeting	expressed	to
Wilhelm	 Weber	 his	 highest	 appreciation	 of	 the	 ideas	 presented	 by
Riemann,	 speaking	 with	 an	 enthusiasm	 that,	 for	 Gauss,	 was	 rare.”	What
little	 can	 be	 said	 here	 about	 this	 masterpiece	 will	 be	 reserved	 for	 the
conclusion	of	the	present	chapter.

After	a	rest	at	home	with	his	family	in	Quickborn,	Riemann	returned	in
September	 to	 Göttingen,	 where	 he	 delivered	 a	 hastily	 prepared	 lecture
(sitting	 up	 most	 of	 the	 night	 to	 get	 it	 ready	 on	 short	 notice)	 to	 a
convention	 of	 scientists.	 His	 topic	 was	 the	 propagation	 of	 electricity	 in
non-conductors.	 During	 the	 year	 he	 continued	 his	 researches	 in	 the
mathematical	theory	of	electricity	and	prepared	a	paper	on	Nobili’s	color
rings	because,	as	he	wrote	his	sister	Ida:	“This	subject	is	important,	for	very
exact	 measurements	 can	 be	 made	 in	 connection	 with	 it,	 and	 the	 laws
according	to	which	electricity	moves	can	be	tested.”

In	the	same	letter	(October	9,	1854)	he	expresses	his	unbounded	joy	at
the	 success	 of	 his	 first	 academic	 lecture	 and	his	 great	 satisfaction	 at	 the
unexpectedly	large	number	of	auditors.	Eight	students	had	come	to	hear
him!	 He	 had	 anticipated	 at	 the	 most	 two	 or	 three.	 Encouraged	 by	 this
unhoped-for	 popularity,	 Riemann	 tells	 his	 father,	 “I	 have	 been	 able	 to
hold	my	classes	regularly.	My	first	diffidence	and	constraint	have	subsided
more	and	more,	and	I	get	accustomed	to	think	more	of	the	auditors	than
of	 myself,	 and	 to	 read	 in	 their	 expressions	 whether	 I	 should	 go	 on	 or
explain	the	matter	further.”

When	Dirichlet	 succeeded	Gauss	 in	 1855,	Riemann’s	 friends	urged	 the
authorities	 to	 appoint	 Riemann	 to	 the	 security	 of	 an	 assistant
professorship,	but	the	finances	of	the	University	could	not	be	stretched	so
far.	Nevertheless	he	was	granted	the	equivalent	of	 two	hundred	dollars	a
year,	 which	 was	 better	 than	 the	 uncertainty	 of	 half	 a	 dozen	 voluntary
students’	fees.	His	future	worried	him,	and	when	presently	he	lost	both	his
father	 and	 his	 sister	 Clara,	 making	 it	 impossible	 for	 him	 to	 escape	 for
vacations	 to	 Quickborn,	 Riemann	 felt	 poor	 and	 miserable	 indeed.	 His
three	remaining	sisters	went	to	live	with	the	other	brother,	a	postal	clerk
in	 Bremen	 whose	 salary	 was	 princely	 beside	 that	 of	 the	 “economically
valueless”	mathematician.

The	 following	 year	 (1856;	 Riemann	 was	 then	 thirty)	 the	 outlook
brightened	a	little.	It	was	impossible	for	a	creative	genius	like	Riemann	to
be	 downed	 by	 despondency	 so	 long	 as	 he	 had	 the	 wherewithal	 to	 keep



body	and	soul	together	in	order	that	he	might	work.	To	this	period	belong
part	of	his	characteristically	original	work	on	Abelian	functions,	his	classic
on	the	hypergeometric	series	(see	chapter	on	Gauss)	and	the	differential
equations—of	 great	 importance	 in	 mathematical	 physics—suggested	 by
this	series.	In	both	of	these	works	Riemann	struck	out	on	new	directions	of
his	own.	The	generality,	the	intuitiveness,	of	his	approach	was	peculiarly	his
own.	His	work	absorbed	all	his	energies	and	made	him	happy	in	spite	of
material	worries;	possibly,	too,	the	fatal	optimism	of	the	consumptive	was
already	at	work	in	him.

Riemann’s	development	of	the	theory	of	Abelian	functions	is	as	unlike
that	of	Weierstrass	as	moonlight	is	unlike	sunlight.	Weierstrass’	attack	was
methodical,	 exact	 in	 all	 its	 details,	 like	 the	 advance	 of	 a	 perfectly
disciplined	 army	 under	 a	 generalship	 that	 foresees	 everything	 and
provides	 for	 all	 contingencies.	 Riemann,	 for	 his	 part,	 looked	 over	 the
whole	field,	seeing	everything	but	the	details,	which	he	left	to	take	care	of
themselves,	 and	 was	 content	 to	 have	 grasped	 the	 key	 positions	 of	 the
general	 topography	 in	 his	 imagination.	 The	 method	 of	 Weierstrass	 was
arithmetical,	that	of	Riemann	geometrical	and	intuitive.	To	say	that	one	is
“better”	 than	 the	 other	 is	 meaningless;	 both	 cannot	 be	 seen	 from	 a
common	point	of	view.

Overwork	 and	 lack	 of	 reasonable	 comforts	 brought	 on	 a	 nervous
breakdown	early	in	his	thirty	first	year,	and	Riemann	was	forced	to	spend	a
few	 weeks	 with	 a	 friend	 in	 the	 Hartz	 mountain	 country,	 where	 he	 was
joined	 by	 Dedekind.	 The	 three	 took	 long	 tramps	 together	 into	 the
mountains	and	Riemann	soon	recovered.	Relieved	of	the	strain	of	having
to	keep	up	academic	appearances,	Riemann	indulged	his	sense	of	humor
and	 kept	 his	 companions	 amused	 with	 his	 spontaneous	 wit.	 They	 also
talked	 shop	 together—most	mathematicians	 do	 when	 they	 get	 together,
just	as	lawyers	or	doctors	or	business	men	do,	provided	they	do	not	have	to
talk	 drivel	 to	 maintain	 the	 social	 conventions.	 One	 evening	 after	 a
strenuous	 hike	 Riemann	 dipped	 into	 Brewster’s	 life	 of	 Newton	 and
discovered	 the	 letter	 to	 Bentley	 in	 which	 Newton	 himself	 asserts	 the
impossibility	 of	 action	 at	 a	 distance	 without	 intervening	 media.	 This
delighted	Riemann	and	inspired	him	to	an	impromptu	lecture.	Today	the
“medium”	which	Riemann	extolled	is	not	the	luminiferous	ether,	but	his
own	“curved	space,”	or	its	reflection	in	the	space-time	of	relativity.



At	 last,	 in	 1857,	 at	 the	 age	 of	 thirty	 one,	 Riemann	 got	 his	 assistant
professorship.	His	salary	was	the	equivalent	of	about	three	hundred	dollars
a	year,	but	as	he	had	had	little	all	his	life	he	missed	less.	However,	a	real
disaster	 presently	 descended	 on	 him:	 his	 brother	 died	 and	 the	 care	 of
three	 sisters	 fell	 to	his	 lot.	 It	 figured	out	 at	 exactly	 seventy	 five	dollars	 a
year	 for	 each	 of	 them.	 Love	 on	 nothing	 a	 year	 in	 a	 cottage	 may	 be
paradise;	 existence	 on	next	 to	 nothing	 in	 a	 university	 community	 is	 just
plain	 hell.	 It	 was	 but	 little	 different	 in	 Riemann’s	 day.	 No	 wonder	 he
contracted	 consumption.	 However,	 the	 Lord,	 who	 had	 so	 generously
given,	 shortly	 relieved	 Riemann	 of	 his	 youngest	 sister,	 Marie,	 so	 the
individual	 budgets	 skyrocketed	 to	 one	hundred	dollars	 a	 year.	 If	 rations
had	to	be	watched,	affection	was	free,	and	Riemann	was	more	than	repaid
for	 his	 sacrifices	 by	 the	 self-confidence	 inspired	 in	 him	 by	 his	 sisters’
devotion	 and	 encouragement.	 The	 Lord	may	 have	 known	 that	 if	 ever	 a
struggling	 mortal	 needed	 encouragement,	 poor	 Riemann	 did;	 still,	 it
seems	rather	an	odd	way	of	providing	what	was	required.

In	1858	Riemann	produced	his	paper	on	electrodynamics,	of	which	he
told	his	sister	Ida,	“My	discovery	concerning	the	close	connection	between
electricity	and	light	I	have	dedicated	to	the	Royal	Society	[of	Göttingen].
From	what	I	have	heard,	Gauss	had	devised	another	theory	regarding	this
close	 connection,	 different	 from	 mine,	 and	 communicated	 it	 to	 his
intimate	 friends.	 However,	 I	 am	 fully	 convinced	 that	 my	 theory	 is	 the
correct	 one,	 and	 that	 in	 a	 few	 years	 it	 will	 be	 recognized	 as	 such.	 As	 is
known,	Gauss	soon	withdrew	his	memoir	and	did	not	publish	it;	probably
he	 himself	 was	 not	 satisfied	 with	 it.”	 Riemann	would	 seem	here	 to	 have
been	 overoptimistic;	 Clerk	 Maxwell’s	 electromagnetic	 theory	 is	 the	 one
which	 today	 holds	 the	 field—in	 macroscopic	 phenomena.	 The	 present
status	of	theories	of	light	and	the	electromagnetic	field	is	too	complicated
to	be	described	here;	it	is	sufficient	to	note	that	Riemann’s	theory	has	not
survived.

Dirichlet	died	on	May	5,	1859.	He	had	always	appreciated	Riemann	and
had	done	his	best	to	help	the	struggling	young	man	along.	This	interest	of
Dirichlet’s	 and	 Riemann’s	 rapidly	 mounting	 reputation	 caused	 the
government	 to	 promote	 Riemann	 to	 succeed	 Dirichlet.	 At	 thirty	 three
Riemann	thus	became	the	second	successor	of	Gauss.	To	ease	his	domestic
difficulties	the	authorities	let	him	reside	at	the	Observatory,	as	Gauss	had
done.	 Recognition	 of	 the	 sincerest	 kind—praise	 from	 mathematicians



who,	 although	 older	 than	 himself,	 were	 in	 some	 degree	 his	 rivals—now
came	 in	 abundance.	 On	 a	 visit	 to	 Berlin	 he	 was	 feted	 by	 Borchardt,
Kummer,	 Kronecker,	 and	 Weierstrass.	 Learned	 societies,	 including	 the
Royal	 Society	of	London	and	 the	French	Academy	of	 Sciences,	honored
him	with	membership,	and	 in	short	he	got	 the	usual	highest	distinctions
that	can	come	to	a	man	of	science.	A	visit	to	Paris	in	1860	acquainted	him
with	 the	 leading	 French	 mathematicians,	 particularly	 Hermite,	 whose
admiration	for	Riemann	was	unbounded.	This	year,	1860,	is	memorable	in
the	 history	 of	 mathematical	 physics	 as	 that	 in	 which	 Riemann	 began
intensive	 work	 on	 his	 memoir	 Über	 eine	 Frage	 der	 Wärmeleitung	 (On	 a
Question	 in	 the	 Conduction	 of	 Heat),	 in	 which	 he	 develops	 the	 whole
apparatus	 of	 quadratic	 differential	 forms	 (to	 be	 noticed	 in	 connection
with	Riemann’s	work	in	the	foundations	of	geometry),	which	is	today	basic
in	the	theory	of	relativity.

His	material	affairs	having	improved	considerably	with	his	appointment
to	the	full	professorship,	Riemann	was	in	a	position	to	marry	at	the	age	of
thirty	six.	His	wife,	Elise	Koch,	was	a	friend	of	his	sisters.	Barely	a	month
after	his	marriage,	Riemann	fell	ill	in	July	1862	with	pleurisy.	An	incomplete
recovery	 ended	 in	 consumption.	 Influential	 friends	 induced	 the
Government	 to	 grant	 Riemann	 the	 funds	 for	 convalescence	 in	 the	mild
climate	 of	 Italy,	 where	he	 spent	 the	winter.	 The	 following	 spring	 on	his
return	 trip	 to	Germany	he	 took	 great	 delight	 in	 the	 art	 treasures	 of	 the
many	Italian	cities	he	visited.	This	was	the	brief	summer	of	his	life.

Full	of	hope	he	 left	his	beloved	Italy,	only	 to	 fall	more	seriously	 ill	on
reaching	Göttingen.	On	 the	 return	 journey	 he	 had	 grown	 careless,	 and
while	walking	through	deep	snow	in	the	Splügen	Pass,	had	taken	a	severe
chill.	The	 following	August	 (1863)	he	 returned	 to	 Italy,	 stopping	 first	 at
Pisa,	where	his	daughter	Ida	(named	after	his	older	sister)	was	born.	The
winter	was	exceptionally	harsh,	 the	river	Arno	being	frozen	over.	 In	May
he	moved	to	a	small	villa	in	the	suburbs	of	Pisa.	There	his	younger	sister
Helene	 died.	 His	 own	 illness,	 complicated	 by	 jaundice,	 grew	 steadily
graver.	To	his	great	regret	he	was	obliged	to	refuse	a	professorship	offered
to	him	at	the	University	of	Pisa.	Göttingen	generously	extended	his	leave
of	 absence	 to	 enable	 him	 to	 spend	 the	 following	 winter	 in	 Pisa,
surrounded	by	his	Italian	mathematical	friends.	But	further	complications
made	him	long	for	home,	and	after	vainly	seeking	health	in	Leghorn	and



Genoa,	he	returned	in	October	to	Göttingen,	where	he	spent	a	tolerable
winter.

All	 this	 time	 he	 worked	 when	 he	 had	 the	 strength.	 At	 Göttingen	 he
often	expressed	the	desire	to	speak	with	Dedekind	of	the	works	he	had	not
completed,	but	never	felt	quite	strong	enough	to	stand	a	visit.	One	of	his
last	 projects	 was	 a	 work	 on	 the	 mechanics	 of	 the	 ear,	 which	 he	 left
incomplete.	He	had	hoped	to	finish	this,	also	some	other	things	which	he
considered	 of	 great	 importance,	 and	 in	 a	 final	 attempt	 to	 regain	 his
strength	 returned	 to	 Italy.	 His	 last	 days	 were	 spent	 in	 a	 villa	 at	 Selasca,
Lago	Maggiore.

Dedekind	tells	how	his	friend	died.	“But	his	strength	declined	rapidly;
he	felt	himself	that	his	end	was	near.	The	day	before	his	death	he	worked
under	a	fig	tree,	his	soul	filled	with	 joy	at	 the	glorious	 landscape	around
him.	 .	 .	 .	 His	 life	 ebbed	 gently	 away,	 without	 strife	 or	 death	 agony;	 it
seemed	 as	 though	 he	 followed	 with	 interest	 the	 separation	 of	 the	 soul
from	the	body;	his	wife	had	to	give	him	bread	and	wine	.	.	.	he	said	to	her,
‘Kiss	 our	 child.’	 She	 repeated	 the	 Lord’s	 prayer	 with	 him;	 he	 could	 no
longer	 speak;	 at	 the	 words	 ’Forgive	 us	 our	 trespasses’	 he	 looked	 up
devoutly;	she	felt	his	hand	grow	colder	in	hers,	and	with	a	few	last	sighs	his
pure,	noble	heart	had	 ceased	 to	beat.	The	gentle	mind	which	had	been
implanted	in	him	in	his	father’s	house	remained	with	him	all	his	life,	and
he	served	his	God	faithfully,	as	his	father	had,	but	in	a	different	way.”

Thus	Riemann	died,	in	the	full	glory	of	his	matured	genius,	on	July	20,
1866,	 aged	 thirty	nine.	The	 inscription	on	his	 tombstone,	 erected	by	his
Italian	friends,	closes	with	the	words	“Denen	die	Gott	lieben	müssen	alle	Dinge
zum	 Besten	 dienen”,	 or	 as	 it	 is	 usually	 put	 in	 English,	 “All	 things	 work
together	for	good	to	them	that	love	the	Lord.”

*		*		*

Riemann’s	 greatness	 as	 a	 mathematician	 resides	 in	 the	 powerful
generality	and	unbounded	scope	of	 the	methods	and	new	points	of	view
which	 he	 revealed	 to	 both	 pure	 and	 applied	mathematics.	Details	 never
oppressed	him;	he	 saw	 the	whole	of	 a	 vast	 problem	as	 a	 coherent	unity.
Even	the	fragmentary	notes	on	uncompleted	projects	usually	hint	at	some
haunting	 novelty	 and	 sharpen	 our	 regret	 that	 Riemann	 died	 so	 long
before	his	time.	Only	one	of	his	great	masterpieces	can	be	described	here,



the	memoir	of	1854	on	the	foundations	of	geometry,	and	although	it	may
not	be	quite	 fair	 to	Clifford	 to	use	him	merely	 to	 introduce	another,	we
shall	 quote	 in	 its	 entirety	 his	 daring	 paper	 of	 1870,	On	 the	 space-theory	 of
matter,	 as	 a	 singularly	 prophetic	 introduction	 to	 the	 body	 and	 spirit	 of
Riemann’s	 geometry.	 Clifford	 was	 no	 servile	 copyist	 but	 a	 man	 with	 a
brilliantly	 original	mind	 of	 his	 own,	 of	 whom	 it	may	 be	 said,	 as	Newton
said	 of	 Cotes,	 “If	 he	 had	 lived	 we	 might	 have	 known	 something.”	 The
reader	who	is	acquainted	with	any	of	the	better	available	popular	accounts
of	 relativistic	 physics	 and	 the	 wave	 theory	 of	 electrons	 will	 recognize
several	 curious	 adumbrations	 of	 current	 theories	 in	 Clifford’s	 brief
prophecy.

“Riemann	 has	 shown	 that	 as	 there	 are	 different	 kinds	 of	 lines	 and
surfaces,	 so	 there	 are	 different	 kinds	 of	 space	 of	 three	 dimensions;	 and
that	we	can	only	find	out	by	experience	to	which	of	these	kinds	the	space
in	which	we	live	belongs.	In	particular,	the	axioms	of	plane	geometry	are
true	within	 the	 limits	 of	 experiment	 on	 the	 surface	 of	 a	 sheet	 of	 paper,
and	yet	we	know	 that	 the	 sheet	 is	 really	 covered	with	a	number	of	 small
ridges	and	furrows,	upon	which	(the	total	curvature	being	not	zero)	these
axioms	 are	 not	 true.	 Similarly,	 he	 says,	 although	 the	 axioms	 of	 solid
geometry	are	true	within	the	limits	of	experiment	for	finite	portions	of	our
space,	yet	we	have	no	reason	to	conclude	that	they	are	true	for	very	small
portions;	 and	 if	 any	 help	 can	 be	 got	 thereby	 for	 the	 explanation	 of
physical	 phenomena,	we	may	have	 reason	 to	 conclude	 that	 they	 are	not
true	for	very	small	portions	of	space.

“I	wish	here	 to	 indicate	a	manner	 in	which	 these	 speculations	may	be
applied	to	the	investigation	of	physical	phenomena.	I	hold	in	fact

(1)	 That	 small	 portions	 of	 space	 are	 in	 fact	 of	 a	 nature	 analogous	 to
little	 hills	 on	 a	 surface	 which	 is	 on	 the	 average	 flat;	 namely,	 that	 the
ordinary	laws	of	geometry	are	not	valid	in	them.

(2)	That	this	property	of	being	curved	or	distorted	is	continually	being
passed	 on	 from	 one	 portion	 of	 space	 to	 another	 after	 the	manner	 of	 a
wave.

(3)	That	this	variation	of	the	curvature	of	space	is	what	really	happens
in	 that	 phenomenon	 which	 we	 call	 the	 motion	 of	 matter,	 whether
ponderable	or	ethereal.

(4)	 That	 in	 the	 physical	 world	 nothing	 else	 takes	 place	 but	 this
variation,	subject	(possibly)	to	the	law	of	continuity.



“I	 am	 endeavoring	 in	 a	 general	 way	 to	 explain	 the	 laws	 of	 double
refraction	 on	 this	 hypothesis,	 but	 have	 not	 yet	 arrived	 at	 any	 results
sufficiently	decisive	to	be	communicated.”

Riemann	also	believed	that	his	new	geometry	would	prove	of	scientific
importance,	 as	 is	 shown	 by	 the	 conclusion	 of	 his	 memoir	 (Clifford’s
translation):

“Either	therefore	the	reality	which	underlies	space	must	form	a	discrete
manifold,	or	we	must	seek	the	ground	of	its	metric	relations	outside	it,	in
binding	forces	which	act	upon	it.

“The	 answer	 to	 these	 questions	 can	 only	 be	 got	 by	 starting	 from	 the
conception	 of	 phenomena	 which	 has	 hitherto	 been	 justified	 by
experience,	and	which	Newton	assumed	as	a	 foundation,	and	by	making
in	this	conception	the	successive	changes	required	by	facts	which	it	cannot
explain.”	And	he	goes	on	to	say	that	researches	like	his	own,	starting	from
general	 notions,	 “can	 be	 useful	 in	 preventing	 this	 work	 from	 becoming
hampered	 by	 too	 narrow	 views,	 and	 progress	 of	 knowledge	 of	 the
interdependence	of	things	from	being	checked	by	traditional	prejudices.

“This	leads	us	into	the	domain	of	another	science,	that	of	physics,	into
which	the	object	of	this	work	does	not	allow	us	to	go	today.”

Riemann’s	work	of	1854	put	geometry	 in	a	new	light.	The	geometry	he
visions	 is	 non-Euclidean,	 not	 in	 the	 sense	 of	 Lobatchewsky	 and	 Johann
Bolyai,	nor	in	that	of	Riemann’s	own	elaboration	of	the	hypothesis	of	the
obtuse	 angle	 (as	 explained	 in	 chapter	 16),	 but	 in	 a	more	 comprehensive
sense	 depending	 on	 the	 conception	 of	 measurement.	 To	 isolate	 measure-
relations	as	the	nerve	of	Riemann’s	theory	is	to	do	it	an	injustice;	the	theory
contains	much	more	than	a	workable	philosophy	of	metrics,	but	this	is	one
of	 its	 main	 features.	 No	 paraphrase	 of	 Riemann’s	 concise	 memoir	 can
bring	out	all	that	is	in	it;	nevertheless,	we	shall	attempt	to	describe	some	of
his	 basic	 ideas,	 and	we	 shall	 select	 three:	 the	 concept	 of	 a	manifold,	 the
definition	of	distance,	and	the	notion	of	curvature	of	a	manifold.

A	manifold	is	a	class	of	objects	(at	least	in	common	mathematics)	which
is	 such	 that	 any	 member	 of	 the	 class	 can	 be	 completely	 specified	 by
assigning	 to	 it	 certain	 numbers,	 in	 a	 definite	 order,	 corresponding	 to
“numberable”	 properties	 of	 the	 elements,	 the	 assignment	 in	 the	 given
order	 corresponding	 to	 a	 preassigned	 ordering	 of	 the	 “number-able”
properties.	 Granted	 that	 this	 may	 be	 even	 less	 comprehensible	 than
Riemann’s	definition,	it	is	nevertheless	a	working	basis	from	which	to	start,



and	all	that	it	amounts	to	in	plain	mathematics	is	this:	a	manifold	is	a	set	of
ordered	“n-tuples”	of	numbers	(x1x2,	.	.	.	,	xn),	where	the	parentheses,	(),
indicate	 that	 the	 numbers	 x1x2,	 .	 .	 .	 ,	 xn	 are	 to	 be	 written	 in	 the	 order
given.	Two	 such	n-tuples,	(x1,	x2,	 .	 .	 .	 ,	 xn)	 and	 (y1,	 y2,	 .	 .	 .	 ,	 yn)	 are	 equal
when,	 and	 only	 when,	 corresponding	 numbers	 in	 them	 are	 respectively
equal,	namely,	when,	and	only	when,	x1	=	y1	x2	=	y2,	.	.	.	,	xn	=	yn.

If	precisely	n	numbers	occur	 in	each	of	 these	ordered	n-tuples	 in	 the
manifold,	 the	 manifold	 is	 said	 to	 be	 of	 n	 dimensions.	 Thus	 we	 are	 back
again	 talking	 coordinates	 with	Descartes.	 If	 each	 of	 the	 numbers	 in	 (x1,
x2,	.	.	.	,	xn)	is	a	positive,	zero,	or	negative	integer,	or	if	it	is	an	element	of
any	countable	set	(a	set	whose	elements	may	be	counted	off	1,	2,	3,	.	.	.),	and
if	 the	 like	 holds	 for	 every	 n-tuple	 in	 the	 set,	 the	manifold	 is	 said	 to	 be
discrete.	If	the	numbers	x1,	x2,	.	.	.	,	xn,	may	take	on	values	continuously	(as	in
the	motion	of	a	point	along	a	line),	the	manifold	is	continuous.

This	 working	 definition	 has	 ignored—deliberately—the	 question	 of
whether	 the	 set	 of	 ordered	 n-tuples	 is	 “the	 manifold”	 or	 whether
something	“represented	by”	these	is	“the	manifold.”	Thus,	when	we	say	(x,
y)	are	the	coordinates	of	a	point	in	a	plane,	we	do	not	ask	what	“a	point	in
a	plane”	is,	but	proceed	to	work	with	these	ordered	couples	of	numbers	(x,	y)
where	 x,	 y	 run	 through	 all	 real	 numbers	 independently.	 On	 the	 other
hand	it	may	sometimes	be	advantageous	to	fix	our	attention	on	what	such
a	symbol	as	(x,	y)	represents.	Thus	if	x	is	the	age	in	seconds	of	a	man	and	y
his	height	in	centimeters,	we	may	be	interested	in	the	man	(or	the	class	of
all	men)	rather	than	in	his	coordinates,	with	which	alone	the	mathematics	of	our
enquiry	 is	 concerned.	 In	 this	 same	 order	 of	 ideas,	 geometry	 is	 no	 longer
concerned	with	what	“space”	“is”—whether	“is”	means	anything	or	not	in
relation	 to	 “space.”	 Space,	 for	 a	 modern	 mathematician,	 is	 merely	 a
number-manifold	 of	 the	 kind	 described	 above,	 and	 this	 conception	 of
space	grew	out	of	Riemann’s	“manifolds.”

Passing	on	to	measurement,	Riemann	states	that	“Measurement	consists
in	 a	 superposition	 of	 the	magnitudes	 to	 be	 compared.	 If	 this	 is	 lacking,
magnitudes	can	be	compared	only	when	one	is	part	of	another,	and	then
only	the	more	or	less,	but	not	the	how	much,	can	be	decided.”	It	may	be
said	 in	passing	 that	 a	 consistent	 and	useful	 theory	 of	measurement	 is	 at
present	 an	 urgent	 desideratum	 in	 theoretical	 physics,	 particularly	 in	 all
questions	where	quanta	and	relativity	are	of	importance.



Descending	once	more	from	philosophical	generalities	to	less	mystical
mathematics,	 Riemann	 proceeded	 to	 lay	 down	 a	 definition	 of	 distance,
extracted	 from	 his	 concept	 of	 measurement,	 which	 has	 proved	 to	 be
extremely	 fruitful	 in	 both	 physics	 and	 mathematics.	 The	 Pythagorean
proposition	that	 	where	a	is	the	length	of
the	 longest	 side	of	a	right-angled	triangle	and	b,	c	 are	 the	 lengths	of	 the
other	 two	 sides,	 is	 the	 fundamental	 formula	 for	 the	 measurement	 of
distances	 in	 a	 plane.	How	 shall	 this	 be	 extended	 to	 a	 curved	 surface?.	 To
straight	lines	on	the	plane	correspond	geodesics	(see	chapter	14)	on	the
surface;	but	on	a	sphere,	for	example,	the	Pythagorean	proposition	is	not
true	for	a	right-angled	triangle	formed	by	geodesies.	Riemann	generalized
the	Pythagorean	formula	to	any	manifold	as	follows:

Let	(x1x2,	.	.	.	,	xn),	(x1	+	x1’,	x2	+	x2’,	.	.	.	,	xn	+	xn’)	be	the	coordinates	of
two	“points”	in	the	manifold	which	are	“infinitesimally	near”	one	another.
For	 our	 present	 purpose	 the	 meaning	 of	 “infinitesimally	 near”	 is	 that
powers	 higher	 than	 the	 second	of	X1’,	 x2’,	 .	 .	 .	 ,	 xn’,	 which	measure	 the
“separation”	 of	 the	 two	 points	 in	 the	 manifold,	 can	 be	 neglected.	 For
simplicity	 we	 shall	 state	 the	 definition	 when	 n	 =	 4—giving	 the	 distance
between	 two	 neighboring	 points	 in	 a	 space	 of	 four	 dimensions:	 the
distance	is	the	square	root	of

g11x1′2	+	g22x2′2	+	g33x3′2	+	g44x4′2	+	g12x1′x2′	+	g13x1′x3′	+	g14x1′x4′	+	g23x2′x3′	+
g24x2′x′4	+	g34x3′x4′

in	which	the	ten	coefficients	gn,	.	.	.,	gu	are	functions	of	x1,	x2,	x3,	x4.	For	a
particular	choice	of	the	g’s,	one	“space”	is	defined.	Thus	we	might	have	=



1,	g11	=	1,	£33	=	1,	gu	=	−1,	and	all	the	other	g’s	zero;	or	we	might	consider
a	space	in	which	all	the	g’s	exceptg’s	and	¿•34	were	zero,	and	so	on.	A	space
considered	 in	 relativity	 is	of	 this	general	kind	 in	which	all	 the	g’s	except
g11,	 g11,	 g22,	 g33,	 g44	 are	 zero,	 and	 these	 are	 certain	 simple	 expressions
involving	x1,	x2,	x3,	x4.

In	the	case	of	an	n-dimensional	space	the	distance	between	neighboring
points	is	defined	in	a	similar	manner;	the	general	expression	contains	½n
(n	 +	 1)	 terms.	 The	 generalized	 Pythagorean	 formula	 for	 the	 distance
between	neighboring	 points	 being	 given,	 it	 is	 a	 solvable	 problem	 in	 the
integral	calculus	to	find	the	distance	between	any	two	points	of	the	space.
A	space	whose	metric	(system	of	measurement)	is	defined	by	a	formula	of
the	type	described	is	called	Riemannian.

Curvature,	 as	 conceived	 by	 Riemann	 (and	 before	 him	 by	 Gauss;	 see
chapter	on	the	latter)	is	another	generalization	from	common	experience.
A	straight	line	has	zero	curvature;	the	“measure”	of	the	amount	by	which	a
curved	line	departs	from	straightness	may	be	the	same	for	every	point	of
the	curve	(as	 it	 is	 for	a	circle),	or	 it	may	vary	 from	point	 to	point	of	 the
curve,	 when	 it	 becomes	 necessary	 again	 to	 express	 the	 “amount	 of
curvature”	 through	 the	 use	 of	 infinitesimals.	 For	 curved	 surfaces,	 the
curvature	is	measured	similarly	by	the	amount	of	departure	from	a	plane,
which	has	zero	curvature.	This	may	be	generalized	and	made	a	little	more
precise	 as	 follows.	 For	 simplicity	 we	 state	 first	 the	 situation	 for	 a	 two-
dimensional	space,	namely	for	a	surface	as	we	ordinarily	imagine	surfaces.
It	is	possible	from	the	formula

g11x1′2	+	g12x1′2x2′	+	g22x2′2,

expressing	 (as	 before)	 the	 square	 of	 the	 distance	 between	 neighboring
points	on	a	given	surface	(determined	when	the	functions	g11,	g12,	g22	are
given),	 to	calculate	 the	measure	of	curvature	of	any	point	of	 the	 surface
wholly	in	terms	of	the	given	functions	g11,	g12,	g22.	Now,	in	ordinary	language,
to	 speak	of	 the	“curvature”	of	a	 space	of	more	 than	 two	dimensions	 is	 to
make	 a	 meaningless	 noise.	 Nevertheless	 Riemann,	 generalizing	 Gauss,
proceeded	 in	 the	 same	 mathematical	 way	 to	 build	 up	 an	 expression
involving	all	the	g’s	in	the	general	case	of	an	n-dimensional	space,	which	is
of	the	same	kind	mathematically	as	the	Gaussian	expression	for	the	curvature
of	a	surface,	and	this	generalized	expression	is	what	he	called	the	measure	of



curvature	of	 the	 space.	 It	 is	possible	 to	exhibit	 visual	 representations	of	a
curved	 space	 of	more	 than	 two	dimensions,	 but	 such	 aids	 to	 perception
are	about	as	useful	as	a	pair	of	broken	crutches	to	a	man	with	no	feet,	for
they	 add	 nothing	 to	 the	 understanding	 and	 they	 are	 mathematically
useless.

Why	 did	 Riemann	 do	 all	 this	 and	 what	 has	 come	 out	 of	 it?	 Not
attempting	to	answer	the	first,	except	to	suggest	that	Riemann	did	what	he
did	because	his	daemon	drove	him,	we	may	briefly	enumerate	some	of	the
gains	 that	 have	 accrued	 from	 Riemann’s	 revolution	 in	 geometrical
thought.	 First,	 it	 put	 the	 creation	 of	 “spaces”	 and	 “geometries”	 in
unlimited	 number	 for	 specific	 purposes—use	 in	 dynamics,	 or	 in	 pure
geometry,	 or	 in	 physical	 science—within	 the	 capabilities	 of	 professional
geometers,	 and	 it	 baled	 together	 huge	masses	 of	 important	 geometrical
theorems	 into	 compact	 bundles	 that	 could	 be	 handled	 easily	 as	 wholes.
Second,	 it	 clarified	 our	 conception	 of	 space,	 at	 least	 so	 far	 as
mathematicians	deal	in	“space,”	and	stripped	that	mystic	nonentity	Space
of	 its	 last	 shred	 of	 mystery.	 Riemann’s	 achievement	 has	 taught
mathematicians	to	disbelieve	in	any	geometry,	or	in	any	space,	as	a	necessary
mode	of	human	perception.	 It	was	 the	 last	nail	 in	 the	coffin	of	absolute
space,	and	the	first	in	that	of	the	“absolutes”	of	nineteenth	century	physics.

Finally,	 the	curvature	which	Riemann	defined,	 the	processes	which	he
devised	for	 the	 investigation	of	quadratic	differential	 forms	(those	giving
the	formula	for	the	square	of	the	distance	between	neighboring	points	in
a	space	of	any	number	of	dimensions),	and	his	recognition	of	the	fact	that
the	curvature	is	an	invariant	(in	the	technical	sense	explained	in	previous
chapters),	 all	 found	 their	 physical	 interpretations	 in	 the	 theory	 of
relativity.	Whether	the	latter	is	in	its	final	form	or	not	is	beside	the	point;
since	 relativity	our	outlook	on	physical	 science	 is	not	what	 it	was	before.
Without	the	work	of	Riemann	this	revolution	in	scientific	 thought	would
have	 been	 impossible—unless	 some	 later	man	had	 created	 the	 concepts
and	the	mathematical	methods	that	Riemann	created.

I.	If	z	=	x	4-	iy,	and	w	=	u	-f	iv,	is	an	analytic	function	of	z,	Riemann’s	equations	are

These	equations	had	been	given	much	earlier	by	Cauchy,	and	even	Cauchy	was	not	the	first,	as



D’Alembert	had	stated	the	equations	in	the	eighteenth	century.



CHAPTER	TWENTY	SEVEN

Arithmetic	the	Second

KUMMER	AND	DEDEKIND

We	see	therefore	that	ideal	prime	factors	reveal	the	essence	of	complex	numbers,	make	them	transparent,	as	it
were,	and	disclose	their	inner	crystalline	structure.

—E.	E.	KUMMER
The	majority	 of	my	 readers	will	 be	 greatly	 disappointed	 to	 learn	 that	 by	 this	 commonplace	 observation	 the

secret	of	continuity	is	to	be	revealed.—R.	DEDEKIND

IT	IS	A	CURIOUS	FACT	that	although	arithmetic—the	theory	of	numbers—has
been	 the	 fertile	 mother	 of	 more	 profound	 problems	 and	 powerful
methods	than	any	other	discipline	of	mathematics,	it	is	usually	regarded	as
standing	 rather	 to	one	 side	of	 the	main	progress	 as	 a	more	or	 less	 cold-
blooded	 spectator	of	 the	 flashier	achievements	of	geometry	and	analysis,
particularly	in	their	services	to	physical	science,	and	comparatively	few	of
the	great	mathematicians	of	 the	past	 two	 thousand	 years	have	expended
their	 more	 serious	 efforts	 on	 the	 advancement	 of	 the	 science	 of	 “pure
number.”

Many	causes	have	determined	this	 strange	neglect	of	what,	after	all,	 is
mathematics	 par	 excellence.	 Among	 these	 we	 need	 note	 only	 the
following:	arithmetic	at	present	is	on	a	higher	plane	of	intrinsic	difficulty
than	the	other	great	fields	of	mathematics;	the	immediate	applications	of
the	 theory	 of	numbers	 to	 science	 are	 few	 and	not	 readily	 perceptible	 to
the	 ordinary	 run	 of	 creative	 mathematicians,	 although	 some	 of	 the
greatest	 have	 felt	 that	 the	 proper	 mathematics	 of	 nature	 will	 be	 found
ultimately	in	the	behavior	of	the	common	whole	numbers;	and,	finally,	it	is
only	 human	 for	 mathematicians—at	 least	 for	 some,	 even	 the	 great—to
court	 reputation	 and	 popularity	 in	 their	 own	 generation	 by	 reaping	 the
easier	 harvests	 of	 a	 spectacular	 success	 in	 analysis,	 geometry,	 or	 applied
mathematics.	Even	Gauss	succumbed,	to	his	keen	regret	in	middle	life.



Modern	 arithmetic—after	Gauss—began	with	Kummer.	 The	 origin	 of
Kummer’s	 theory	 in	 his	 attempt	 to	 prove	 Fermat’s	 Last	 Theorem	 has
already	been	noted	(Chapter	25).	Something	of	 the	man’s	 long	 life	may
be	told	before	we	pass	to	Dedekind.	Kummer	was	a	typical	German	of	the
old	 school	 with	 all	 the	 blunt	 simplicity,	 good	 nature,	 and	 racy	 humor,
which	 characterized	 that	 fast-vanishing	 species	 at	 its	 best.	 Museum
specimens,	aged	in	the	wood,	could	be	found	behind	the	bar	 in	any	San
Francisco	German	beer	garden	a	generation	ago.

Although	Ernst	Eduard	Kummer	(January	29,	1810-May	14,	1893)	was
born	 only	 five	 years	 before	 the	 deflation	 of	 Napoleon,	 the	 glorious
Emperor	of	the	French	played	an	important	if	unwitting	part	in	Kummer’s
life.	 The	 son	 of	 a	 physician	 of	 Sorau	 (then	 in	 the	 principality	 of
Brandenburg),	Germany,	Kummer	at	the	age	of	three	lost	his	father:	the
lousy	 remnant	 of	 Napoleon’s	 Grand	 Army,	 filtering	 back	 through
Germany	 to	 France,	 brought	 with	 it	 the	 characteristically	 Russian	 gift	 of
typhus,	 which	 it	 shared	 freely	 with	 the	 well-washed	 Germans.	 The
overworked	physician	caught	the	disease,	died	of	it,	and	left	Ernst	and	an
elder	 brother	 to	 the	 care	 of	 his	 widow.	 Young	 Kummer	 grew	 up	 in
cramping	 poverty,	 but	 his	 struggling	 mother	 contrived	 somehow	 or
another	to	see	her	sons	through	the	local	Gymnasium.	The	arrogance	and
exactions	 of	 the	 Napoleonic	 French,	 no	 less	 than	 the	 memory	 of	 his
father,	which	 the	mother	kept	 alive,	made	 young	Kummer	an	extremely
practical	patriot,	 and	 it	was	with	 real	 gusto	 that	he	devoted	much	of	his
superb	 scientific	 talent	 in	 later	 life	 to	 training	 German	 army	 officers	 in
ballistics	 at	 the	 war	 college	 of	 Berlin.	 Many	 of	 his	 students	 gave	 good
accounts	of	themselves	in	the	Franco-Prussian	War.

At	the	age	of	eighteen	(in	1828)	Kummer	was	sent	by	his	mother	to	the
University	of	Halle	to	study	theology	and	otherwise	fit	himself	for	a	career
in	 the	 church.	 Owing	 to	 his	 poverty	 Kummer	 did	 not	 reside	 at	 the
University,	but	tramped	back	and	forth	every	day	from	Sorau	to	Halle	with
his	 food	and	books	 in	a	knapsack	on	his	back.	Regarding	his	 theological
studies	Kummer	makes	the	interesting	observation	that	it	is	more	or	less	a
matter	of	accident	or	environment	whether	a	mind	with	a	gift	for	abstract
speculation	 turns	 to	 philosophy	 or	 to	mathematics.	 The	 accident	 in	 his
own	case	was	the	presence	at	Halle	of	Heinrich	Ferdinand	Scherk	(1798-
1885)	as	professor	of	mathematics.	 Scherk	was	 rather	old	 fashioned,	but
he	 had	 an	 enthusiasm	 for	 algebra	 and	 the	 theory	 of	 numbers	 which	 he



imparted	 to	 young	 Kummer.	 Under	 Scherk’s	 guidance	 Kummer	 soon
abandoned	 his	 moral	 and	 theological	 studies	 in	 favor	 of	 mathematics.
Echoing	Descartes,	Kummer	said	he	preferred	mathematics	to	philosophy
because	 “mere	 errors	 and	 false	 views	 cannot	 enter	 mathematics.”	 Had
Kummer	lived	till	today	he	might	have	modified	his	statement,	for	he	was
a	 broadminded	 man,	 and	 the	 present	 philosophical	 tendencies	 in
mathematics	are	sometimes	curiously	reminiscent	of	medieval	theology.	In
his	 third	 year	 at	 the	 University	 Kummer	 solved	 a	 prize	 problem	 in
mathematics	and	was	awarded	his	Ph.D.	degree	(September	10,	1831)	at
the	 age	 of	 twenty	 one.	 No	 university	 position	 being	 open	 at	 the	 time,
Kummer	began	his	career	as	a	teacher	in	his	old	Gymnasium.

In	 1832	 he	 moved	 to	 Liegnitz,	 where	 he	 taught	 for	 ten	 years	 in	 the
Gymnasium.	 It	 was	 there	 that	 he	 started	 Kronecker	 off	 on	 his
revolutionary	 career.	 Fortunately	 Kummer	 was	 not	 so	 hard	 up	 as
Weierstrass	under	similar	circumstances	and	was	able	to	afford	postage	for
scientific	 correspondence.	 The	 eminent	 mathematicians	 (including
Jacobi)	with	whom	Kummer	shared	his	mathematical	discoveries	saw	to	it
that	 the	 young	genius	of	 a	 schoolteacher	was	 lifted	 into	 a	more	 suitable
position	at	 the	earliest	opportunity,	and	 in	1842	Kummer	was	appointed
Professor	of	Mathematics	at	the	University	of	Breslau.	He	taught	there	till
1855,	 when	 the	 death	 of	 Gauss	 caused	 extensive	 revisions	 in	 the
mathematical	map	of	Europe.

It	 had	been	 assumed	 that	Dirichlet	was	 contented	 at	Berlin,	 then	 the
mathematical	capital	of	 the	world.	But	when	Gauss	died,	Dirichlet	could
not	resist	the	temptation	of	succeeding	the	Prince	of	Mathematicians	and
his	own	former	master	as	professor	at	Göttingen.	Even	today	the	glory	of
being	 a	 “successor	 of	 Gauss”	 has	 an	 almost	 irresistible	 attraction	 for
mathematicians	who	might	easily	earn	more	money	in	other	positions,	and
until	 quite	 recently	 Göttingen	 could	 choose	 whom	 it	 would.	 The	 high
esteem	 in	which	Kummer	was	held	 by	his	 fellow	mathematicians	 can	be
judged	by	the	fact	that	he	was	the	unanimous	choice	to	succeed	Dirichlet
at	 Berlin.	 Since	 the	 age	 of	 twenty	 nine	 he	 had	 been	 a	 corresponding
member	of	the	Royal	Berlin	Academy.	He	now	(1855)	succeeded	Dirichlet
in	both	the	University	and	the	Academy,	and	was	also	appointed	professor
at	the	Berlin	War	College.

Kummer	was	one	of	those	rarest	of	all	scientific	geniuses	who	are	first
class	in	the	most	abstract	mathematics,	the	applications	of	mathematics	to



practical	affairs,	including	war,	which	is	the	most	unblushingly	practical	of
all	human	idiocies,	and	finally	in	the	ability	to	do	experimental	physics	of
a	high	degree	of	excellence.	His	finest	work	was	in	the	theory	of	numbers
where	his	profound	originality	led	him	to	inventions	of	the	very	first	order
of	importance,	but	in	other	fields—analysis,	geometry,	and	applied	physics
—he	 also	 did	 outstanding	 work.	 Although	 Kummer’s	 advance	 in	 the
higher	arithmetic	was	of	the	pioneering	sort	that	justifies	comparing	him
with	 the	 creators	 of	 non-Euclidean	 geometry,	 we	 somehow	 get	 the
impression	on	reviewing	his	life	of	eighty	three	years,	that	splendid	as	his
achievement	was,	he	did	not	accomplish	all	that	he	must	have	had	in	him.
Possibly	his	lack	of	personal	ambition	(an	instance	is	given	presently),	his
easygoing	 geniality,	 and	 his	 broad	 sense	 of	 humor	 prevented	 him	 from
winding	himself	in	an	attempt	to	beat	the	record.

The	 nature	 of	 what	 Kummer	 did	 in	 the	 theory	 of	 numbers	 has	 been
described	in	the	chapter	on	Kronecker:	he	restored	the	fundamental	theorem
of	 arithmetic	 to	 those	 algebraic	 number	 fields	 which	 arise	 in	 the	 attempt	 to	 prove
Fermat’s	hast	Theorem	and	in	the	Gaussian	theory	of	cyclotomy,	and	he	effected	this
restoration	by	the	creation	of	an	entirely	new	species	of	numbers,	his	so-called	“ideal
numbers.”	He	also	carried	on	the	work	of	Gauss	on	the	law	of	biquadratic
reciprocity	and	sought	the	laws	of	reciprocity	for	degrees	higher	than	the
fourth.

As	has	already	been	mentioned	in	preceding	chapters,	Kummer’s	“ideal
numbers”	are	now	largely	displaced	by	Dedekind’s	“ideals,”	which	will	be
described	when	we	come	to	them,	so	it	is	not	necessary	to	attempt	here	the
almost	 impossible	 feat	 of	 explaining	 in	 untechnical	 language	 what
Kummer’s	 “numbers”	 are.	 But	what	 he	 accomplished	 by	means	 of	 them
can	 be	 stated	 with	 sufficient	 accuracy	 for	 an	 account	 like	 the	 present:
Kummer	 proved	 that	 xp	 +	 yp	 =	 zp,	 where	 p	 is	 a	 prime,	 is	 impossible	 in
integers	x,	y,	z,	all	different	 from	zero,	 for	a	whole	very	extensive	class	of
primes	p.	He	did	not	succeed	in	proving	Fermat’s	theorem	for	all	primes;
certain	slippery	“exceptional	primes”	eluded	Kummer’s	net—and	still	do.
Nevertheless	the	step	ahead	which	he	took	so	far	surpassed	everything	that
all	his	predecessors	had	done	that	Kummer	became	famous	almost	in	spite
of	himself.	He	was	awarded	a	prize	for	which	he	had	not	competed.

The	 report	 in	 full	 of	 the	 French	 Academy	 of	 Sciences	 on	 the
competition	 for	 its	 “Grand	 Prize”	 in	 1857	 ran	 as	 follows.	 “Report	 on	 the
competition	 for	 the	grand	prize	 in	mathematical	 sciences.	Already	 set	 in



the	 competition	 for	 1853	 and	 prorogued	 to	 1856.	 The	 committee,	 having
found	 no	 work	 which	 seemed	 to	 it	 worthy	 of	 the	 prize	 among	 those
submitted	to	it	in	competition,	proposed	to	the	Academy	to	award	it	to	M.
Kummer,	 for	his	beautiful	researches	on	complex	numbers	composed	of
roots	of	unityI	and	integers.	The	Academy	adopted	this	proposal.”

Kummer’s	 earliest	 work	 on	 Fermat’s	 Last	 Theorem	 is	 dated	October,
1835.	 This	was	 followed	by	 further	 papers	 in	 1844-47,	 the	 last	 of	 which	was
entitled	Proof	 of	 Fermat’s	 Theorem	 on	 the	 Impossibility	 of	 xp	 +	 yp	 =	 zp	 for	 an
InfiniteII	 Number	 of	 Primes	 p.	 He	 continued	 to	 add	 improvements	 to	 his
theory,	including	its	application	to	the	laws	of	higher	reciprocity,	till	1874,
when	he	was	sixty	four	years	old.

Although	these	highly	abstract	researches	were	the	field	of	his	greatest
interest,	 and	 although	 he	 said	 of	 himself,	 “To	 describe	 my	 personal
scientific	 attitude	 more	 exactly,	 I	 may	 conveniently	 designate	 it	 as
theoretical	 .	 .	 .;	I	have	particularly	striven	for	that	mathematical	knowledge
which	 finds	 its	 proper	 sphere	 in	 mathematics	 without	 reference	 to
applications,”	Kummer	was	no	narrow	specialist.	Somewhat	like	Gauss,	he
appeared	to	take	equal	pleasure	in	both	pure	and	applied	science.	Gauss
indeed,	through	his	works,	was	Kummer’s	real	teacher,	and	the	apt	pupil
proved	his	mettle	by	extending	his	master’s	work	on	the	hypergeometric
series,	 adding	 to	 what	 Gauss	 had	 done	 substantial	 developments	 which
today	are	of	great	use	in	the	theory	of	those	differential	equations	which
recur	most	frequently	in	mathematical	physics.

Again,	the	magnificent	work	of	Hamilton	on	systems	of	rays	(in	optics)
inspired	Kummer	to	one	of	his	own	most	beautiful	inventions,	that	of	the
surface	of	the	fourth	degree	which	is	known	by	his	name	and	which	plays	a
fundamental	part	 in	 the	geometry	of	Euclidean	space	when	that	space	 is
four-dimensional	(instead	of	 three-dimensional,	as	we	ordinarily	 imagine
it),	 as	 happens	 when	 straight	 lines	 instead	 of	 points	 are	 taken	 as	 the
irreducible	 elements	 out	 of	which	 the	 space	 is	 constructed.	This	 surface
(and	its	generalizations	to	higher	spaces)	occupied	the	center	of	the	stage
in	 a	whole	department	of	nineteenth	 century	 geometry;it	was	 found	 (by
Cayley)	to	be	representable	(parametrically—see	the	chapter	on	Gauss)	by
means	of	 the	quadruply	periodic	 functions	 to	which	 Jacobi	and	Hermite
devoted	some	of	their	best	efforts.

Quite	recently	(since	1934)	it	has	been	observed	by	Sir	Arthur	Eddington
that	 Kummer’s	 surface	 is	 a	 sort	 of	 cousin	 to	 Dirac’s	 wave	 equation	 in



quantum	mechanics	(both	have	the	same	finite	group;	Kummer’s	surface
is	the	wave	surface	in	space	of	four	dimensions).

To	complete	the	circle,	Kummer	was	led	back	by	his	study	of	systems	of
rays	 to	 physics,	 and	 he	 made	 important	 contributions	 to	 the	 theory	 of
atmospheric	refraction.	In	his	work	at	the	War	College	he	astonished	the
scientific	world	by	proving	himself	a	first-rate	experimenter	in	his	work	on
ballistics.	With	characteristic	humor	Kummer	excused	himself	for	this	bad
fall	from	mathematical	grace:	“When	I	attack	a	problem	experimentally,”
he	 told	a	 young	 friend,	 “it	 is	a	proof	 that	 the	problem	 is	mathematically
impregnable.”

Remembering	his	own	struggles	 to	get	an	education	and	his	mother’s
sacrifices,	Kummer	was	not	only	a	father	to	his	students	but	something	of	a
brother	to	their	parents.	Thousands	of	grateful	young	men	who	had	been
helped	 on	 their	 way	 by	 Kummer	 at	 the	University	 of	 Berlin	 or	 the	War
College	 remembered	 him	 all	 their	 lives	 as	 a	 great	 teacher	 and	 a	 great
friend.	 Once	 a	 needy	 young	 mathematician	 about	 to	 come	 up	 for	 his
doctor’s	examination	was	stricken	with	smallpox	and	had	to	return	to	his
home	in	Posen	near	the	Russian	border.	No	word	came	from	him,	but	it
was	 known	 that	he	was	desperately	 poor.	When	Kummer	heard	 that	 the
young	man	was	 probably	 unable	 to	 afford	 proper	 care,	 he	 sought	 out	 a
friend	of	 the	 student,	gave	him	 the	 requisite	money	and	 sent	him	off	 to
Posen	 to	 see	 that	what	was	necessary	was	done.	 In	his	 teaching	Kummer
was	famous	for	his	homely	similes	and	philosophical	asides.	Thus,	to	drive
home	 the	 importance	 of	 a	 particular	 factor	 in	 a	 certain	 expression,	 he
observed	 that	 “If	 you	 neglect	 this	 factor	 you	 will	 be	 like	 a	 man	 who	 in
eating	a	plum	swallows	the	pit	and	spits	out	the	pulp.”

The	last	nine	years	of	Kummer’s	life	were	spent	in	complete	retirement.
“Nothing	will	be	found	in	my	posthumous	papers,”	he	said,	thinking	of	the
mass	of	work	which	Gauss	left	to	be	edited	after	his	death.	Surrounded	by
his	family	(nine	children	survived	him),	Kummer	gave	up	mathematics	for
good	when	he	retired,	and	except	for	occasional	trips	to	the	scenes	of	his
boyhood	 lived	 in	 the	 strictest	 seclusion.	 He	 died	 after	 a	 short	 attack	 of
influenza	on	May	14,	1893,	aged	eighty	three.

*		*		*



Kummer’s	 successor	 in	 arithmetic	 was	 Julius	 Wilhelm	 Richard
Dedekind	(he	dropped	the	first	two	names	when	he	grew	up),	one	of	the
greatest	mathematicians	 and	one	 of	 the	most	 original	Germany—or	 any
other	 country—has	 produced.	 Like	 Kummer,	 Dedekind	 had	 a	 long	 life
(October	 6,	 1831-February	 12,	 1916),	 and	 he	 remained	 mathematically
active	to	within	a	short	time	of	his	death.	When	he	died	in	1916	Dedekind
had	been	 a	mathematical	 classic	 for	well	 over	 a	 generation.	As	Edmund
Landau	(himself	a	friend	and	follower	of	Dedekind	in	some	of	his	work)
said	 in	his	 commemorative	 address	 to	 the	Royal	 Society	 of	Göttingen	 in
1917:	“Richard	Dedekind	was	not	only	a	great	mathematician,	but	one	of
the	wholly	great	 in	 the	history	of	mathematics,	now	and	 in	 the	past,	 the
last	hero	of	a	great	epoch,	the	last	pupil	of	Gauss,	for	four	decades	himself
a	classic,	from	whose	works	not	only	we,	but	our	teachers	and	the	teachers
of	our	teachers,	have	drawn.”

Richard	 Dedekind,	 the	 youngest	 of	 the	 four	 children	 of	 Julius	 Levin
Ulrich	 Dedekind,	 a	 professor	 of	 law,	 was	 born	 in	 Brunswick,	 the	 natal
place	of	GaussIII.	From	the	age	of	seven	to	sixteen	Richard	studied	at	the
Gymnasium	in	his	home	town.	He	gave	no	early	evidence	of	unmistakable
mathematical	genius;	in	fact	his	first	loves	were	physics	and	chemistry,	and
he	looked	upon	mathematics	as	the	handmaiden—or	scullery	slut—of	the
sciences.	But	he	did	not	wander	long	in	darkness.	By	the	age	of	seventeen
he	had	smelt	numerous	rats	 in	 the	alleged	reasoning	of	physics	and	had
turned	to	mathematics	for	less	objectionable	logic.	In	1848	he	entered	the
Caroline	 College—the	 same	 institution	 that	 gave	 the	 youthful	 Gauss	 an
opportunity	 for	 self-instruction	 in	mathematics.	At	 the	 college	Dedekind
mastered	 the	 elements	 of	 analytic	 geometry,	 “advanced”	 algebra,	 the
calculus,	 and	 “higher”	 mechanics.	 Thus	 he	 was	 well	 prepared	 to	 begin
serious	work	when	he	entered	the	University	of	Göttingen	in	1850	at	the
age	 of	 nineteen.	 His	 principal	 instructors	 were	 Moritz	 Abraham	 Stern
(1807-1894),	who	wrote	extensively	on	the	theory	of	numbers,	Gauss,	and
Wilhelm	 Weber	 the	 physicist.	 From	 these	 three	 men	 Dedekind	 got	 a
thorough	 grounding	 in	 the	 calculus,	 the	 elements	 of	 the	 higher
arithmetic,	least	squares,	higher	geodesy,	and	experimental	physics.

In	 later	 life	 Dedekind	 regretted	 that	 the	 mathematical	 instruction
available	 during	 his	 student	 years	 at	 Göttingen,	 while	 adequate	 for	 the
rather	 low	 requirements	 for	 a	 state	 teacher’s	 certificate,	 was
inconsiderable	 as	 a	 preparation	 for	 a	 mathematical	 career.	 Subjects	 of



living	 interest	 were	 not	 touched	 upon,	 and	Dedekind	had	 to	 spend	 two
years	 of	 hard	 labor	 after	 taking	 his	 degree	 to	 get	 up	 by	 himself	 elliptic
functions,	modern	geometry,	higher	algebra,	and	mathematical	physics—
all	 of	 which	 at	 the	 time	 were	 being	 brilliantly	 expounded	 at	 Berlin	 by
Jacobi,	Steiner,	and	Dirichlet.	In	1852	Dedekind	got	his	doctor’s	degree	(at
the	 age	 of	 twenty	 one)	 from	Gauss	 for	 a	 short	 dissertation	 on	 Eulerian
integrals.	There	is	no	need	to	explain	what	this	was:	the	dissertation	was	a
useful,	 independent	 piece	 of	 work,	 but	 it	 betrayed	 no	 such	 genius	 as	 is
evident	on	every	page	of	many	of	Dedekind’s	 later	works.	Gauss’	 verdict
on	 the	 dissertation	 will	 be	 of	 interest:	 “The	 memoir	 prepared	 by	 Herr
Dedekind	is	concerned	with	a	research	in	the	integral	calculus,	which	is	by
no	 means	 commonplace.	 The	 author	 evinces	 not	 only	 a	 very	 good
knowledge	of	the	relevant	field,	but	also	such	an	independence	as	augurs
favorably	 for	his	 future	achievement.	As	a	 test	essay	 for	admission	 to	 the
examination	I	find	the	memoir	completely	satisfying.”	Gauss	evidently	saw
more	in	the	dissertation	than	some	later	critics	have	detected;	possibly	his
close	 contact	 with	 the	 young	 author	 enabled	 him	 to	 read	 between	 the
lines.	 However,	 the	 report,	 even	 as	 it	 stands,	 is	 more	 or	 less	 the	 usual
perfunctory	politeness	customary	in	accepting	a	passable	dissertation,	and
we	 do	 not	 know	 whether	 Gauss	 really	 foresaw	 Dedekind’s	 penetrating
originality.

In	1854	Dedekind	was	appointed	lecturer	(Privatdozent)	at	Göttingen,	a
position	 which	 he	 held	 for	 four	 years.	 On	 the	 death	 of	 Gauss	 in	 1855
Dirichlet	moved	from	Berlin	to	Göttingen.	For	the	remaining	three	years
of	 his	 stay	 at	 Göttingen,	 Dedekind	 attended	 Dirichlet’s	 most	 important
lectures.	Later	he	was	to	edit	Dirichlet’s	 famous	treatise	on	the	theory	of
numbers	 and	 add	 to	 it	 the	 epoch-making	 “Eleventh	 Supplement”
containing	 an	 outline	 of	 his	 own	 theory	 of	 algebraic	 numbers.	 He	 also
became	 a	 friend	 of	 the	 great	 Riemann,	 then	 beginning	 his	 career.
Dedekind’s	university	 lectures	were	 for	 the	most	part	 elementary,	but	 in
1857-8	 he	 gave	 a	 course	 (to	 two	 students,	 Selling	 and	 Auwers)	 on	 the
Galois	theory	of	equations.	This	was	probably	the	first	time	that	the	Galois
theory	had	appeared	formally	in	a	university	course.	Dedekind	was	one	of
the	 first	 to	 appreciate	 the	 fundamental	 importance	 of	 the	 concept	 of	 a
group	 in	 algebra	 and	 arithmetic.	 In	 this	 early	 work	 Dedekind	 already
exhibited	 two	 of	 the	 leading	 characteristics	 of	 his	 later	 thought,
abstractness	and	generality.	 Instead	of	 regarding	a	 finite	group	 from	the



standpoint	 offered	 by	 its	 representation	 in	 terms	 of	 substitutions	 (see
chapters	 on	Galois	 and	Cauchy),	Dedekind	defined	 groups	 by	means	 of
their	postulates	 (substantially	 as	described	 in	Chapter	15)	and	 sought	 to
derive	their	properties	from	this	distillation	of	their	essence.	This	is	in	the
modern	 manner:	 abstractness	 and	 therefore	 generality.	 The	 second
characteristic,	generality,	is,	as	just	implied,	a	consequence	of	the	first.

At	 the	 age	 of	 twenty	 six	 Dedekind	 was	 appointed	 (in	 1857)	 ordinary
professor	at	the	Zurich	polytechnic,	where	he	stayed	five	years,	returning
in	1862	to	Brunswick	as	professor	at	the	technical	high	school.	There	he
stuck	 for	half	a	century.	The	most	 important	 task	 for	Dedekind’s	official
biographer—provided	one	 is	unearthed—will	be	 to	explain	(not	explain
away)	 the	 singular	 fact	 that	 Dedekind	 occupied	 a	 relatively	 obscure
position	for	fifty	years	while	men	who	were	not	fit	 to	lace	his	shoes	filled
important	 and	 influential	 university	 chairs.	 To	 say	 that	 Dedekind
preferred	obscurity	is	one	explanation.	Those	who	believe	it	should	leave
the	stock	market	severely	alone,	for	as	surely	as	God	made	little	lambs	they
will	be	fleeced.

Till	his	death	(1916)	in	his	eighty	fifth	year	Dedekind	remained	fresh	of
mind	and	robust	of	body.	He	never	married,	but	lived	with	his	sister	Julie,
remembered	as	a	novelist,	till	her	death	in	1914.	His	other	sister,	Mathilde,
died	in	1860;	his	brother	became	a	distinguished	jurist.

Such	 are	 the	 bare	 facts	 of	 any	 importance	 in	 Dedekind’s	 material
career.	 He	 lived	 so	 long	 that	 although	 some	 of	 his	 work	 (his	 theory	 of
irrational	numbers,	described	presently)	had	been	familiar	to	all	students
of	 analysis	 for	 a	 generation	 before	 his	 death,	 he	 himself	 had	 become
almost	 a	 legend	 and	 many	 classed	 him	 with	 the	 shadowy	 dead.	 Twelve
years	 before	 his	 death,	 Teubner’s	 Calendar	 for	 Mathematicians	 listed
Dedekind	 as	 having	 died	 on	 September	 4,	 1899,	 much	 to	 Dedekind’s
amusement.	The	day,	September	4,	might	possibly	prove	to	be	correct,	he
wrote	 to	 the	 editor,	 but	 the	 year	 certainly	 was	 wrong.	 “According	 to	my
own	memorandum	I	passed	this	day	in	perfect	health	and	enjoyed	a	very
stimulating	 conversation	on	 ’system	and	 theory’	with	my	 luncheon	guest
and	honored	friend	Georg	Cantor	of	Halle.”

*		*		*



Dedekind’s	 mathematical	 activity	 impinged	 almost	 wholly	 on	 the
domain	of	number	 in	 its	widest	 sense.	We	have	space	for	only	 two	of	his
greatest	 achievements	 and	 we	 shall	 describe	 first	 his	 fundamental
contribution,	 that	 of	 the	 “Dedekind	 cut,”	 to	 the	 theory	 of	 irrational
numbers	and	hence	to	the	foundations	of	analysis.	This	being	of	the	very
first	importance	we	may	recall	briefly	the	nature	of	the	matter.	If	a,	b	are
common	whole	numbers,	 the	 fraction	a/b	 is	 called	 a	 rational	number;	 if
no	whole	numbers	m,	n	exist	such	that	a	certain	“number”	N	is	expressible
as	 m/n,y	 then	 N	 is	 called	 an	 irrational	 number.	 Thus	 	 are
irrational	numbers.	 If	 an	 irrational	number	be	expressed	 in	 the	decimal
notation	 the	 digits	 following	 the	 decimal	 point	 exhibit	 no	 regularities—
there	is	no	“period”	which	repeats,	as	in	the	decimal	representations	of	a
rational	 number,	 say	 13/11,	 =	 1.181818	 .	 .	 .	 ,	 where	 the	 “18”	 repeats
indefinitely.	 How	 then,	 if	 the	 representation	 is	 entirely	 lawless,	 are
decimals	 equivalent	 to	 irrationals	 to	 be	 defined,	 let	 alone	manipulated?
Have	 we	 even	 any	 clear	 conception	 of	 what	 an	 irrational	 number	 is?
Eudoxus	 thought	he	had,	and	Dedekind’s	definition	of	equality	between
numbers,	 rational	 or	 irrational,	 is	 identical	 with	 that	 of	 Eudoxus	 (see
Chapter	2).

If	 two	 rational	 numbers	 are	 equal,	 it	 is	 no	 doubt	 obvious	 that	 their
square	roots	are	equal.	Thus	2X3	and	6	are	equal;	so	also	then	are	
and	 	 But	 it	 is	 not	 obvious	 that	 	 and	 hence	 that	

	 The	 un-obviousness	 of	 this	 simple	 assumed	 equality,	
	 taken	 for	 granted	 in	 school	 arithmetic,	 is	 evident	 if	 we

visualize	what	the	equality	implies:	the	“lawless”	square	roots	of	2,	3,	6	are	to
be	extracted,	the	first	two	of	these	are	then	to	be	multiplied	together,	and
the	result	is	to	come	out	equal	to	the	third.	As	not	one	of	these	three	roots
can	 be	 extracted	 exactly,	 no	 matter	 to	 how	 many	 decimal	 places	 the
computation	is	carried,	it	is	clear	that	the	verification	by	multiplication	as
just	 described	 will	 never	 be	 complete.	 The	 whole	 human	 race	 toiling
incessantly	 through	 all	 its	 existence	 could	 never	 prove	 in	 this	 way	 that	

	Closer	and	closer	approximations	 to	equality	would
be	 attained	 as	 time	 went	 on,	 but	 finality	 would	 continue	 to	 recede.	 To
make	 these	 concepts	 of	 “approximation”	 and	 “equality”	 precise,	 or	 to
replace	our	 first	 crude	conceptions	of	 irrationals	by	 sharper	descriptions
which	 will	 obviate	 the	 difficulties	 indicated,	 was	 the	 task	 Dedekind	 set
himself	 in	 the	 early	 1870’s—his	 work	 on	Continuity	 and	 Irrational	 Numbers



was	published	in	1872.
The	heart	of	Dedekind’s	theory	of	 irrational	numbers	is	his	concept	of

the	“cut”	or	“section”	(Schnitt):	a	cut	separates	all	rational	numbers	into	two
classes,	so	that	each	number	in	the	first	class	is	less	than	each	number	in	the
second	 class;	 every	 such	 cut	 which	 does	 not	 “correspond”	 to	 a	 rational
number	 “defines”	 an	 irrational	 number.	 This	 bald	 statement	 needs
elaboration,	 particularly	 as	 even	 an	 accurate	 exposition	 conceals	 certain
subtle	difficulties	rooted	in	the	theory	of	the	mathematical	infinite,	which
will	reappear	when	we	consider	the	life	of	Dedekind’s	friend	Cantor.

Assume	that	some	rule	has	been	prescribed	which	separates	all	rational
numbers	into	two	classes,	say	an	“upper”	class	and	a	“lower”	class,	such	that
each	number	in	the	lower	class	is	less	than	every	number	in	the	upper	class.
(Such	an	assumption	would	not	pass	unchallenged	today	by	all	schools	of
mathematical	philosophy.	However,	 for	 the	moment,	 it	may	be	 regarded
as	unobjectionable.)	On	this	assumption	one	of	 three	mutually	exclusive
situations	is	possible.

(A)	There	may	be	a	number	in	the	lower	class	which	is	greater	than	every
other	number	in	that	class.

(B)	There	may	be	a	number	 in	 the	upper	 class	which	 is	 less	 than	every
other	number	in	that	class.

(C)	Neither	of	the	numbers	(greatest	in	[A],	least	in	[B])	described	in	(A),
(B)	may	exist.

The	 possibility	 which	 leads	 to	 irrational	 numbers	 is	 (C).	 For,	 if	 (C)
holds,	the	assumed	rule	“defines”	a	definite	break	or	“cut”	in	the	set	of	all
rational	numbers.	The	upper	and	lower	classes	strive,	as	it	were,	to	meet.
But	 in	 order	 for	 the	 classes	 to	 meet	 the	 cut	 must	 be	 filled	 with	 some
“number,”	and,	by	(C),	no	such	filling	is	possible.

Here	we	appeal	to	intuition.	All	the	distances	measured	from	any	fixed
point	 along	 a	 given	 straight	 line	 “correspond”	 to	 “numbers”	 which
“measure”	 the	distances.	 If	 the	cut	 is	 to	be	 left	unfilled,	we	must	picture
the	straight	 line,	which	we	may	conceive	of	as	having	been	traced	out	by
the	continuous	motion	of	a	point,	as	now	having	an	unbridgeable	gap	in	it.
This	 violates	our	 intuitive	notions,	 so	we	 say,	by	definition,	 that	each	cut
does	define	a	number.	The	number	thus	defined	is	not	rational,	namely	it	is
irrational.	 To	 provide	 a	 manageable	 scheme	 for	 operating	 with	 the
irrationals	thus	defined	by	cuts	(of	 the	kind	[C])	we	now	consider	the	 lower



class	of	rationals	 in	(C)	as	being	equivalent	to	the	irrational	which	the	cut
defines.

One	example	will	 suffice.	The	 irrational	 square	root	of	2	 is	defined	by
the	cut	whose	upper	class	contains	all	the	positive	rational	numbers	whose
squares	are	greater	than	2,	and	whose	lower	class	contains	all	other	rational
numbers.

If	the	somewhat	elusive	concept	of	cuts	is	distasteful	two	remedies	may
be	suggested:	devise	a	definition	of	 irrationals	which	 is	 less	mystical	 than
Dedekind’s	 and	 fully	 as	 usable;	 follow	 Kronecker	 and,	 denying	 that
irrational	 numbers	 exist,	 reconstruct	 mathematics	 without	 them.	 In	 the
present	state	of	mathematics	some	theory	of	irrationals	is	convenient.	But,
from	 the	 very	 nature	 of	 an	 irrational	 number,	 it	 would	 seem	 to	 be
necessary	 to	 understand	 the	mathematical	 infinite	 thoroughly	 before	 an
adequate	theory	of	 irrationals	 is	possible.	The	appeal	to	infinite	classes	is
obvious	 in	 Dedekind’s	 definition	 of	 a	 cut.	 Such	 classes	 lead	 to	 serious
logical	difficulties.

It	depends	upon	the	individual	mathematician’s	level	of	sophistication
whether	he	regards	these	difficulties	as	relevant	or	of	no	consequence	for
the	consistent	development	of	mathematics.	The	courageous	analyst	goes
boldly	 ahead,	 piling	 one	 Babel	 on	 top	 of	 another	 and	 trusting	 that	 no
outraged	 god	 of	 reason	 will	 confound	 him	 and	 all	 his	 works,	 while	 the
critical	 logician,	 peering	 cynically	 at	 the	 foundations	 of	 his	 brother’s
imposing	skyscraper,	makes	a	rapid	mental	calculation	predicting	the	date
of	 collapse.	 In	 the	 meantime	 all	 are	 busy	 and	 all	 seem	 to	 be	 enjoying
themselves.	 But	 one	 conclusion	 appears	 to	 be	 inescapable:	 without	 a
consistent	 theory	 of	 the	 mathematical	 infinite	 there	 is	 no	 theory	 of
irrationals;	without	a	theory	of	irrationals	there	is	no	mathematical	analysis
in	 any	 form	 even	 remotely	 resembling	 what	 we	 now	 have;	 and	 finally,
without	analysis	 the	major	part	of	mathematics—including	geometry	and
most	of	applied	mathematics—as	it	now	exists	would	cease	to	exist.

The	most	 important	 task	confronting	mathematicians	would	therefore
seem	to	be	the	construction	of	a	satisfactory	theory	of	the	infinite.	Cantor
attempted	 this,	with	what	 success	will	be	 seen	 later.	As	 for	 the	Dedekind
theory	 of	 irrationals,	 its	 author	 seems	 to	 have	 had	 some	 qualms,	 for	 he
hesitated	over	 two	years	before	venturing	 to	publish	 it.	 If	 the	 reader	will
glance	back	at	Eudoxus’	definition	of	“same	ratio”	(Chapter	2)	he	will	see
that	 “infinite	difficulties”	 occur	 there	 too,	 specifically	 in	 the	phrase	 “any



whatever	equimultiples.”	Nevertheless	some	progress	has	been	made	since
Eudoxus	wrote;	we	are	at	least	beginning	to	understand	the	nature	of	our
difficulties.

*		*		*

The	 other	 outstanding	 contribution	 which	 Dedekind	 made	 to	 the
concept	of	 “number”	was	 in	 the	direction	of	 algebraic	numbers.	For	 the
nature	of	the	fundamental	problem	concerned	we	must	refer	to	what	was
said	in	the	chapter	on	Kronecker	concerning	algebraic	number	fields	and
the	resolution	of	algebraic	integers	into	their	prime	factors.	The	crux	of	the
matter	is	that	in	some	such	fields	resolution	into	prime	factors	is	not	unique
as	 it	 is	 in	 common	 arithmetic;	 Dedekind	 restored	 this	 highly	 desirable
uniqueness	 by	 the	 invention	 of	 what	 he	 called	 ideals.	 An	 ideal	 is	 not	 a
number,	but	an	infinite	class	of	numbers,	so	again	Dedekind	overcame	his
difficulties	by	taking	refuge	in	the	infinite.

The	concept	of	an	ideal	is	not	hard	to	grasp,	although	there	is	one	twist
—the	more	 inclusive	 class	 divides	 the	 less	 inclusive,	 as	 will	 be	 explained	 in	 a
moment—which	 shocks	 common	 sense.	 However,	 common	 sense	 was
made	 to	 be	 shocked;	 had	 we	 nothing	 less	 dentable	 than	 shock-proof
common	sense	we	should	be	a	race	of	mongoloid	imbeciles.	An	ideal	must
do	 at	 least	 two	 things:	 it	 must	 leave	 common	 (rational)	 arithmetic
substantially	as	it	is,	and	it	must	force	the	recalcitrant	algebraic	integers	to
obey	 that	 fundamental	 law	 of	 arithmetic—unique	 decomposition	 into
primes—which	they	defy.

The	point	about	a	more	inclusive	class	dividing	a	less	inclusive	refers	to
the	 following	 phenomenon	 (and	 its	 generalization,	 as	 stated	 presently).
Consider	the	fact	that	2	divides	4—arithmetically,	that	is,	without	remainder.
Instead	of	this	obvious	fact,	which	leads	nowhere	if	followed	into	algebraic
number	fields,	we	replace	2	by	the	class	of	all	its	integer	multiples,	.	.	.	,	−8,
−6,	−4,	−2,	0,	2,	4,	6,	8,	.	.	.	As	a	matter	of	convenience	we	denote	this	class
by	(2).	In	the	same	way	(4)	denotes	the	class	of	all	integer	multiples	of	4.
Some	of	the	numbers	in	(4)	are	.	.	.,	−16,	−12,	.−8,	−4,	0,	8,	12,	16,	.	.	.	It	is
now	obvious	that	(2)	is	the	more	inclusive	class;	in	fact	(2)	contains	all	the
numbers	in	(4)	and	in	addition	(to	mention	only	two)	−6	and	6.	The	fact
that	(2)	contains	(4)	is	symbolized	by	writing	(2)	|(4).	It	can	be	seen	quite



easily	that	if	m,	n	are	any	common	whole	numbers	then	(m)	|(n)	when,	and
only	when,	m	divides	n.

This	might	suggest	 that	 the	notion	of	common	arithmetical	divisibility
be	 replaced	 by	 that	 of	 class	 inclusion	 as	 just	 described.	 But	 this
replacement	 would	 be	 futile	 if	 it	 failed	 to	 preserve	 the	 characteristic
properties	of	arithmetical	divisibility.	That	it	does	so	preserve	them	can	be
seen	in	detail,	but	one	instance	must	suffice.	If	m	divides	n,	and	n	divides
/,	then	m	divides	/—for	example,	12	divides	24	and	24	divides	72,	and	12
does	 in	 fact	 divide	 72.	 Transferred	 to	 classes,	 as	 above,	 this	 becomes:	 if
(m)|(n)	and	(n)|(l),	then	(m)|(l)	or,	in	English,	if	the	class	(m)	contains	the
class	 (n),	 and	 if	 the	 class	 (n)	 contains	 the	 class	 (l),	 then	 the	 class	 (m)
contains	 the	 class	 (l)—which	 obviously	 is	 true.	 The	 upshot	 is	 that	 the
replacement	 of	 numbers	 by	 their	 corresponding	 classes	 does	 what	 is
required	 when	 we	 add	 the	 definition	 of	 “multiplication”:	 (m)	 ×	 (n)	 is
defined	 to	 be	 the	 class	 (mn);	 (2)	 ×	 (6)	 =	 (12).	 Notice	 that	 the	 last	 is	 a
definition;	it	is	not	meant	to	follow	from	the	meanings	of	(m)	and	(n).

Dedekind’s	 ideals	 for	 algebraic	 numbers	 are	 a	 generalization	 of	 what
precedes.	Following	his	usual	custom	Dedekind	gave	an	abstract	definition,
that	 is,	 a	 definition	 based	 upon	 essential	 properties	 rather	 than	 one
contingent	upon	some	particular	mode	of	representing,	or	picturing,	the
thing	defined.

Consider	 the	 set	 (or	class)	of	all	 algebraic	 integers	 in	 a	given	algebraic
number	field.	In	this	all-inclusive	set	will	be	subsets.	A	subset	 is	called	an
ideal	if	it	has	the	two	following	properties.

A.	The	sum	and	difference	of	any	two	integers	in	the	subset	are	also	in	the
subset.

B.	 If	 any	 integer	 in	 the	 subset	be	multiplied	by	any	 integer	 in	 the	all-
inclusive	set,	the	resulting	integer	is	in	the	subset.

An	ideal	 is	thus	an	infinite	class	of	 integers.	It	will	be	seen	readily	that
(m),	(n),	.	.	.	,	previously	defined,	are	ideals	according	to	A,	B.	As	before,	if
one	ideal	contains	another,	the	first	is	said	to	divide	the	second.

It	can	be	proved	that	every	ideal	is	a	class	of	integers	all	of	which	are	of
the	form

x1a1	+	x2a2	+	.	.	.	+	snan,



where	a1,	a2,	.	.	.	,	an	are	fixed	integers	of	the	field	of	degree	n	concerned,
and	each	of	x1	x2,	 .	 .	 .	 ,	xn	may	be	any	integer	whatever	in	the	field.	This
being	so,	it	is	convenient	to	symbolize	an	ideal	by	exhibiting	only	the	fixed
integers	a1,	a2,	.	.	.	,	an,	and	this	is	done	by	writing	(a1,	a2,	.	.	.	,	an)	as	the
symbol	of	 the	 ideal.	The	order	 in	which	a1	a2,	 .	 .	 .,	an	 are	written	 in	 the
symbol	is	immaterial.

“Multiplication”	 of	 ideals	must	 now	 be	 defined:	 the	 product	 of	 the	 two
ideals	(a1,	.	.	.	,	an),	(b1	.	.	.	,	bn)	is	the	ideal	whose	symbol	is	(a1b1,	.	.	.	,	a1
bn,	 .	 .	 .	 ,	 a1bn),	 in	 which	 all	 possible	 products	 a1b1,	 etc.,	 obtained	 by
multiplying	 an	 integer	 in	 the	 first	 symbol	 by	 an	 integer	 in	 the	 second
occur.	For	example,	the	product	of	(a1,	a2)	and	(b1,	b2)	is	(a1b1,	a1b2,	a2b1,
a2b2).	It	is	always	possible	to	reduce	any	such	product-symbol	(for	a	field	of
degree	n)	to	a	symbol	containing	at	most	n	integers.

One	 final	 short	 remark	 completes	 the	 synopsis	 of	 the	 story.	 An	 ideal
whose	 symbol	 contains	 but	 one	 integer,	 such	 as	 (a1),	 is	 called	 a	 principal
ideal.	 Using	 as	 before	 the	 notation	 (a1)|(b1)	 to	 signify	 that	 (a1)	 contains
(b1),	we	 can	 see	without	difficulty	 that	 (a1)|(b1)	when,	 and	only	 when,	 the
integer	 a1	 divides	 the	 integer	 b1.	 As	 before,	 then,	 the	 concept	 of
arithmetical	 divisibility	 is	 here—for	 algebraic	 integers—completely
equivalent	 to	 that	 of	 class	 inclusion.	 A	 prime	 ideal	 is	 one	 which	 is	 not
“divisible	by”—included	in—any	ideal	except	the	all-inclusive	ideal	which
consists	of	all	 the	algebraic	 integers	 in	 the	given	field.	Algebraic	 integers
being	now	 replaced	 by	 their	 corresponding	principal	 ideals,	 it	 is	 proved
that	a	given	ideal	is	a	product	of	prime	ideals	in	one	way	only,	precisely	as
in	 the	 “fundamental	 theorem	 of	 arithmetic”	 a	 rational	 integer	 is	 the
product	 of	 primes	 in	 one	 way	 only.	 By	 the	 above	 equivalence	 of
arithmetical	 divisibility	 for	 algebraic	 integers	 and	 class	 inclusion,	 the
fundamental	 theorem	 of	 arithmetic	 has	 been	 restored	 to	 integers	 in
algebraic	number	fields.

Anyone	 who	 will	 ponder	 a	 little	 on	 the	 foregoing	 bare	 outline	 of
Dedekind’s	 creation	 will	 see	 that	 what	 he	 did	 demanded	 penetrating
insight	and	a	mind	gifted	far	above	the	ordinary	good	mathematical	mind
in	 the	power	of	 abstraction.	Dedekind	was	 a	mathematician	 after	Gauss’
own	 heart:	 “At	 nostro	 quidem	 judicio	 hujusmodi	 veritates	 ex	 notionibus	 potius
quam	 ex	 notationibus	 hauriri	 debeant”	 (But	 in	 our	 opinion	 such	 truths
[arithmetical]	 should	 be	 derived	 from	 notions	 rather	 than	 from
notations).	 Dedekind	 always	 relied	 on	 his	 head	 rather	 than	 on	 an



ingenious	 symbolism	 and	 expert	 manipulations	 of	 formulas	 to	 get	 him
forward.	 If	ever	a	man	put	notions	 into	mathematics,	Dedekind	did,	and
the	wisdom	of	his	preference	for	creative	ideas	over	sterile	symbols	is	now
apparent	although	 it	may	not	have	been	during	his	 lifetime.	The	 longer
mathematics	 lives	 the	 more	 abstract—and	 therefore,	 possibly,	 also	 the
more	practical—it	becomes.

I.	If	xp	+	yp	=	zp,	then	xp	=	zp−yp	and	resolving	zp	–	yp,	into	its	p	factors	of	the	first	degree,	we	get

xp	=	(z-y)	(z-ry)	(z-r2y)	.	.	.	(z-rp-1y),

in	which	 r	 is	 a	 “p	 th	 root	of	unity”	 (other	 than	 l),	namely	 rp	 –	 1	 =	 0,	with	 r	 not	 equal	 to	 1.	The
algebraic	integers	in	the	field	of	degree	p	generated	by	r	are	those	which	Kummer	introduced	into
the	 study	 of	 Fermat’s	 equation,	 and	 which	 led	 him	 to	 the	 invention	 of	 his	 “ideal	 numbers”	 to
restore	unique	factorization	in	the	field—an	integer	in	such	a	field	is	not	uniquely	the	product	of
primes	in	the	field	for	all	primes	p.

II.	 †The	 “infinite”	 in	 Kummer’s	 title	 is	 still	 (1936)	 unjustified;	 “many”	 should	 be	 put	 for
“infinite."

III.	No	adequate	biography	of	Dedekind	has	yet	appeared.	A	life	was	to	have	been	included	in
the	 third	 volume	of	his	 collected	works	 (1932),	but	was	not,	owing	 to	 the	death	of	 the	editor	 in
chief	(Robert	Fricke).	The	account	here	is	based	on	Landau’s	commemorative	address.	Note	that,
following	the	good	old	Teutonic	custom	of	some	German	biographers,	Landau	omits	all	mention
of	 Dedekind’s	 mother.	 This	 no	 doubt	 is	 in	 accordance	 with	 the	 theory	 of	 the	 “three	 K’s”
propounded	 by	 the	 late	 Kaiser	 of	 Germany	 and	 heartily	 endorsed	 by	 Adolf	 Hitler:	 “A	 woman’s
whole	 duty	 is	 comprised	 in	 the	 three	 big	 K’s—Kissing,	 Kooking	 [cooking	 is	 spelt	 with	 a	 K	 in
German],	 and	 Kids.”	 Still,	 one	 would	 like	 to	 know	 at	 least	 the	 maiden	 name	 of	 a	 great	 man’s
mother.



CHAPTER	TWENTY	EIGHT

The	Last	Universalist

POINCARE

A	scientist	worthy	of	the	name,	above	all	a	mathematician,	experiences	in	his	work	the	same	impression	as	an
artist;	his	pleasure	is	as	great	and	of	the	same	nature.—HENRI	POINCARÉ

IN	THE	History	of	his	Life	and	Times	the	astrologer	William	Lilly	(1602-1681)
records	an	amusing—if	incredible—account	of	the	meeting	between	John
Napier	(1550-1617),	of	Merchiston,	the	inventor	of	logarithms,	and	Henry
Briggs	(1561-1631)	of	Gresham	College,	London,	who	computed	the	first
table	 of	 common	 logarithms.	 One	 John	 Marr,	 “an	 excellent
mathematician	 and	 geometrician,”	 had	 gone	 “into	 Scotland	 before	 Mr.
Briggs,	purposely	 to	be	 there	when	 these	 two	 so	 learned	persons	 should
meet.	Mr.	Briggs	appoints	a	certain	day	when	to	meet	 in	Edinburgh;	but
failing	 thereof,	 the	 lord	 Napier	 was	 doubtful	 he	 would	 not	 come.	 It
happened	one	day	as	John	Marr	and	the	lord	Napier	were	speaking	of	Mr.
Briggs:	‘Ah	John	(said	Merchiston),	Mr.	Briggs	will	not	now	come.’	At	the
very	 moment	 one	 knocks	 at	 the	 gate;	 John	 Marr	 hastens	 down,	 and	 it
proved	Mr.	Briggs	to	his	great	contentment.	He	brings	Mr.	Briggs	up	into
my	 lord’s	 chamber,	 where	 almost	 one	 quarter	 of	 an	 hour	 was	 spent,	 each
beholding	other	with	admiration,	before	one	word	was	spoke.”

Recalling	 this	 legend	 Sylvester	 tells	 how	he	himself	 went	 after	Briggs’
world	record	for	flabbergasted	admiration	when,	in	1885,	he	called	on	the
author	of	numerous	astonishingly	mature	and	marvellously	original	papers
on	 a	 new	 branch	 of	 analysis	 which	 had	 been	 swamping	 the	 editors	 of
mathematical	journals	since	the	early	1880’s.

“I	 quite	 entered	 into	 Briggs’	 feelings	 at	 his	 interview	 with	 Napier,”
Sylvester	confesses,	“when	I	recently	paid	a	visit	to	Poincaré	[18541912]	in
his	airy	perch	 in	 the	Rue	Gay-Lussac.	 .	 .	 .	 In	 the	presence	of	 that	mighty
reservoir	of	pent-up	intellectual	force	my	tongue	at	first	refused	its	office,
and	 it	 was	 not	 until	 I	 had	 taken	 some	 time	 (it	 may	 be	 two	 or	 three



minutes)	to	peruse	and	absorb	as	it	were	the	idea	of	his	external	youthful
lineaments	that	I	found	myself	in	a	condition	to	speak.”

Elsewhere	Sylvester	records	his	bewilderment	when,	after	having	toiled
up	the	three	flights	of	narrow	stairs	leading	to	Poincaré’s	“airy	perch,”	he
paused,	mopping	his	magnificent	bald	head,	in	astonishment	at	beholding
a	mere	boy,	 “so	blond,	 so	 young,”	as	 the	author	of	 the	deluge	of	papers
which	had	heralded	the	advent	of	a	successor	to	Cauchy.

A	 second	 anecdote	 may	 give	 some	 idea	 of	 the	 respect	 in	 which
Poincaré’s	 work	 is	 held	 by	 those	 in	 a	 position	 to	 appreciate	 its	 scope.
Asked	by	some	patriotic	British	brass	hat	in	the	rabidly	nationalistic	days	of
the	World	War—when	 it	was	obligatory	on	all	 academic	patriots	 to	exalt
their	 esthetic	 allies	 and	 debase	 their	 boorish	 enemies—who	 was	 the
greatest	 man	 France	 had	 produced	 in	 modern	 times,	 Bertrand	 Russell
answered	 instantly,	 “Poincaré.”	 “What!	 That	 man?”	 his	 uninformed
interlocutor	 exclaimed,	 believing	 Russell	 meant	 Raymond	 Poincaré,
President	 of	 the	 French	 Republic.	 “Oh,”	 Russell	 explained	 when	 he
understood	the	other’s	dismay,	“I	was	thinking	of	Raymond’s	cousin,	Henri
Poincaré.”

Poincaré	was	the	last	man	to	take	practically	all	mathematics,	both	pure
and	 applied,	 as	 his	 province.	 It	 is	 generally	 believed	 that	 it	 would	 be
impossible	 for	 any	 human	 being	 starting	 today	 to	 understand
comprehensively,	much	less	do	creative	work	of	high	quality	in	more	than
two	 of	 the	 four	 main	 divisions	 of	 mathematics—arithmetic,	 algebra,
geometry,	analysis,	to	say	nothing	of	astronomy	and	mathematical	physics.
However,	even	in	the	1880’s,	when	Poincaré’s	great	career	opened,	it	was
commonly	 thought	 that	 Gauss	 was	 the	 last	 of	 the	 mathematical
universalists,	so	it	may	not	prove	impossible	for	some	future	Poincaré	once
more	to	cover	the	entire	field.

As	mathematics	 evolves	 it	 both	 expands	 and	 contracts,	 somewhat	 like
one	of	Lemaître’s	models	of	the	universe.	At	present	the	phase	is	one	of
explosive	expansion,	and	it	is	quite	impossible	for	any	man	to	familiarize
himself	 with	 the	 entire	 inchoate	 mass	 of	 mathematics	 that	 has	 been
dumped	 on	 the	 world	 since	 the	 year	 1900.	 But	 already	 in	 certain
important	sectors	a	most	welcome	tendency	toward	contraction	is	plainly
apparent.	 This	 is	 so,	 for	 example,	 in	 algebra,	 where	 the	 wholesale
introduction	of	postulational	methods	is	making	the	subject	at	once	more
abstract,	more	general,	and	less	disconnected.	Unexpected	similarities—in



some	 instances	 amounting	 to	 disguised	 identity—are	 being	 disclosed	 by
the	 modern	 attack,	 and	 it	 is	 conceivable	 that	 the	 next	 generation	 of
algebraists	will	not	need	to	know	much	that	is	now	considered	valuable,	as
many	of	 these	particular,	difficult	 things	will	have	been	subsumed	under
simpler	 general	 principles	 of	 wider	 scope.	 Something	 of	 this	 sort
happened	 in	 classical	 mathematical	 physics	 when	 relativity	 put	 the
complicated	mathematics	of	the	ether	on	the	shelf.

Another	 example	of	 this	 contraction	 in	 the	midst	 of	 expansion	 is	 the
rapidly	 growing	 use	 of	 the	 tensor	 calculus	 in	 preference	 to	 that	 of
numerous	 special	 brands	 of	 vector	 analysis.	 Such	 generalizations	 and
condensations	are	often	hard	for	older	men	to	grasp	at	first	and	frequently
have	a	severe	struggle	to	survive,	but	in	the	end	it	 is	usually	realized	that
general	 methods	 are	 essentially	 simpler	 and	 easier	 to	 handle	 than
miscellaneous	collections	of	ingenious	tricks	devised	for	special	problems.
When	mathematicians	assert	that	such	a	thing	as	the	tensor	calculus	is	easy
—at	 least	 in	 comparison	with	 some	of	 the	algorithms	 that	preceded	 it—
they	 are	 not	 trying	 to	 appear	 superior	 or	 mysterious	 but	 are	 stating	 a
valuable	 truth	 which	 any	 student	 can	 verify	 for	 himself.	 This	 quality	 of
inclusive	generality	was	a	distinguishing	trait	of	Poincaré’s	vast	output.

If	 abstractness	 and	 generality	 have	 obvious	 advantages	 of	 the	 kind
indicated,	 it	 is	 also	 true	 that	 they	 sometimes	 have	 serious	 drawbacks	 for
those	who	must	be	interested	in	details.	Of	what	 immediate	use	is	 it	 to	a
working	physicist	to	know	that	a	particular	differential	equation	occurring
in	his	work	is	solvable,	because	some	pure	mathematician	has	proved	that
it	is,	when	neither	he	nor	the	mathematician	can	perform	the	Herculean
labor	demanded	by	a	numerical	solution	capable	of	application	to	specific
problems?

To	take	an	example	from	a	field	in	which	Poincaré	did	some	of	his	most
original	 work,	 consider	 a	 homogeneous,	 incompressible	 fluid	mass	 held
together	 by	 the	 gravitation	 of	 its	 particles	 and	 rotating	 about	 an	 axis.
Under	 what	 conditions	 will	 the	 motion	 be	 stable	 and	 what	 will	 be	 the
possible	 shapes	 of	 such	 a	 stably	 rotating	 fluid?	 Mac-Laurin,	 Jacobi,	 and
others	proved	 that	 certain	ellipsoids	will	be	 stable;	Poincaré,	using	more
intuitive,	“less	arithmetical”	methods	than	his	predecessors,	once	thought
he	had	determined	the	criteria	for	the	stability	of	a	pear-shaped	body.	But
he	 had	 made	 a	 slip.	 His	 methods	 were	 not	 adapted	 to	 numerical
computation	and	later	workers,	including	G.	H.	Darwin,	son	of	the	famous



Charles,	undeterred	by	the	horrific	jungles	of	algebra	and	arithmetic	that
must	 be	 cleared	 out	 of	 the	 way	 before	 a	 definite	 conclusion	 can	 be
reached,	undertook	a	decisive	solution.I

The	man	interested	in	the	evolution	of	binary	stars	is	more	comfortable
if	 the	 findings	of	 the	mathematicians	 are	presented	 to	him	 in	a	 form	 to
which	he	can	apply	a	calculating	machine.	And	since	Kronecker’s	 fiat	of
“no	 construction,	 no	 existence,”	 some	 pure	 mathematicians	 themselves
have	been	less	enthusiastic	than	they	were	in	Poincaré’s	day	for	existence
theorems	 which	 are	 not	 constructive.	 Poincaré’s	 scorn	 for	 the	 kind	 of
detail	 that	users	of	mathematics	demand	and	must	have	before	 they	can
get	on	with	their	work	was	one	of	the	most	important	contributory	causes
to	his	universality.	Another	was	his	extraordinarily	comprehensive	grasp	of
all	the	machinery	of	the	theory	of	functions	of	a	complex	variable.	In	this
he	had	no	equal.	And	it	may	be	noted	that	Poincaré	turned	his	universality
to	 magnificent	 use	 in	 disclosing	 hitherto	 unsuspected	 connections
between	 distant	 branches	 of	 mathematics,	 for	 example	 between
(continuous)	groups	and	linear	algebra.

One	 more	 characteristic	 of	 Poincaré’s	 outlook	 must	 be	 recalled	 for
completeness	before	we	go	on	to	his	life:	few	mathematicians	have	had	the
breadth	 of	 philosophical	 vision	 that	 Poincaré	 had,	 and	 none	 is	 his
superior	 in	 the	 gift	 of	 clear	 exposition.	 Probably	 he	 had	 always	 been
deeply	 interested	 in	 the	 philosophical	 implications	 of	 science	 and
mathematics,	 but	 it	 was	 only	 in	 1902,	 when	 his	 greatness	 as	 a	 technical
mathematician	was	established	beyond	all	 cavil,	 that	he	 turned	as	a	 side-
interest	to	what	may	be	called	the	popular	appeal	of	mathematics	and	let
himself	 go	 in	 a	 sincere	 enthusiasm	 to	 share	 with	 nonprofessionals	 the
meaning	 and	 human	 importance	 of	 his	 subject.	 Here	 his	 liking	 for	 the
general	 in	 preference	 to	 the	 particular	 aided	 him	 in	 telling	 intelligent
outsiders	 what	 is	 of	 more	 than	 technical	 importance	 in	 mathematics
without	talking	down	to	his	audience.	Twenty	or	thirty	years	ago	workmen
and	shopgirls	could	be	seen	in	the	parks	and	cafés	of	Paris	avidly	reading
one	 or	 other	 of	 Poincaré’s	 popular	masterpieces	 in	 its	 cheap	 print	 and
shabby	 paper	 cover.	 The	 same	 works	 in	 a	 richer	 format	 could	 also	 be
found—well	thumbed	and	evidently	read—on	the	tables	of	the	professedly
cultured.	 These	 books	 were	 translated	 into	 English,	 German,	 Spanish,
Hungarian,	 Swedish,	 and	 Japanese.	 Poincaré	 spoke	 the	 universal



languages	 of	 mathematics	 and	 science	 to	 all	 in	 accents	 which	 they
recognized.	His	style,	peculiarly	his	own,	loses	much	by	translation.

For	 the	 literary	 excellence	 of	 his	 popular	 writings	 Poincaré	 was
accorded	 the	highest	honor	a	French	writer	can	get,	membership	 in	 the
literary	 section	 of	 the	 Institut.	 It	 has	 been	 somewhat	 spitefully	 said	 by
envious	novelists	that	Poincaré	achieved	this	distinction,	unique	for	a	man
of	 science,	because	one	of	 the	 functions	of	 the	(literary)	Academy	 is	 the
constant	 compilation	 of	 a	 definitive	 dictionary	 of	 the	 French	 language,
and	 the	universal	 Poincaré	was	 obviously	 the	man	 to	help	out	 the	poets
and	 grammarians	 in	 their	 struggle	 to	 tell	 the	 world	 what	 automorphic
functions	are.	Impartial	opinion,	based	on	a	study	of	Poincaré’s	writings,
agrees	that	the	mathematician	deserved	no	less	than	he	got.

Closely	 allied	 to	 his	 interest	 in	 the	 philosophy	 of	 mathematics	 was
Poincaré’s	 preoccupation	 with	 the	 psychology	 of	mathematical	 creation.
How	do	mathematicians	make	their	discoveries?	Poincaré	will	tell	us	later
his	 own	 observations	 on	 this	 mystery	 in	 one	 of	 the	 most	 interesting
narratives	of	personal	discovery	that	was	ever	written.	The	upshot	seems	to
be	 that	 mathematical	 discoveries	 more	 or	 less	 make	 themselves	 after	 a
long	spell	of	hard	labor	on	the	part	of	the	mathematician.	As	in	literature
—according	to	Dante	Gabriel	Rossetti—“a	certain	amount	of	fundamental
brainwork”	 is	 necessary	 before	 a	 poem	 can	 mature,	 so	 in	 mathematics
there	is	no	discovery	without	preliminary	drudgery,	but	this	is	by	no	means
the	 whole	 story.	 All	 “explanations”	 of	 creativeness	 that	 fail	 to	 provide	 a
recipe	 whereby	 a	 gifted	 human	 being	 can	 create	 are	 open	 to	 suspicion.
Poincaré’s	 excursion	 into	 practical	 psychology,	 like	 some	 others	 in	 the
same	direction,	failed	to	bring	back	the	Golden	Fleece,	but	it	did	at	least
suggest	 that	 such	 a	 thing	 is	 not	 wholly	 mythical	 and	 may	 some	 day	 be
found	when	human	beings	 grow	 intelligent	 enough	 to	 understand	 their
own	bodies.

*		*		*

Poincaré’s	intellectual	heredity	on	both	sides	was	good.	We	shall	not	go
farther	 back	 than	 his	 paternal	 grandfather.	 During	 the	 Napoleonic
campaign	of	1814	this	grandfather,	at	the	early	age	of	twenty,	was	attached
to	the	military	hospital	at	Saint-Quentin.	On	settling	in	1817	at	Rouen	he
married	and	had	 two	 sons:	Léon	Poincaré,	born	 in	1828,	who	became	a



first-rate	physician	and	a	member	of	a	medical	faculty;	and	Antoine,	who
rose	to	the	inspector-generalship	of	the	department	of	roads	and	bridges.
Léon’s	son	Henri,	born	on	April	29,	1854,	at	Nancy,	Lorraine,	became	the
leading	 mathematician	 of	 the	 early	 twentieth	 century;	 one	 of	 Antoine’s
two	 sons,	 Raymond,	 went	 in	 for	 law	 and	 rose	 to	 the	 presidency	 of	 the
French	 Republic	 during	 the	 World	 War;	 Antoine’s	 other	 son	 became
director	 of	 secondary	 education.	 A	 great-uncle	 who	 had	 followed
Napoleon	 into	 Russia	 disappeared	 and	 was	 never	 heard	 of	 after	 the
Moscow	fiasco.

From	this	distinguished	list	it	might	be	thought	that	Henri	would	have
exhibited	 some	administrative	ability,	but	he	did	not,	 except	 in	his	 early
childhood	when	he	freely	invented	political	games	for	his	sister	and	young
friends	 to	 play.	 In	 these	 games	 he	 was	 always	 fair	 and	 scrupulously	 just,
seeing	that	each	of	his	playmates	got	his	or	her	full	share	of	officeholding.
This	perhaps	 is	conclusive	evidence	 that	 “the	child	 is	 father	 to	 the	man”
and	 that	 Poincaré	 was	 constitutionally	 incapable	 of	 understanding	 the
simplest	 principle	 of	 administration,	 which	 his	 cousin	 Raymond	 applied
intuitively.

Poincaré’s	 biography	 was	 written	 in	 great	 detail	 by	 his	 fellow
countryman	Gaston	Darboux	(1842-1917),	one	of	 the	 leading	geometers
of	 modern	 times,	 in	 1913	 (the	 year	 following	 Poincaré’s	 death).
Something	 may	 have	 escaped	 the	 present	 writer,	 but	 it	 seems	 that
Darboux,	 after	 having	 stated	 that	 Poincaré’s	 mother	 “coming	 from	 a
family	in	the	Meuse	district	whose	[the	mother’s]	parents	lived	in	Arrancy,
was	a	very	good	person,	very	active	and	very	intelligent,”	blandly	omits	to
mention	her	maiden	name.	Can	it	be	possible	that	 the	French	took	over
the	doctrine	of	“the	three	big	K’s”—noted	in	connection	with	Dedekind—
from	their	late	instructors	after	the	kultural	drives	of	Germany	into	France
in	1870	and	1914?	However,	it	can	be	deduced	from	an	anecdote	told	later
by	Darboux	 that	 the	 family	name	may	have	been	Lannois.	We	 learn	 that
the	 mother	 devoted	 her	 entire	 attention	 to	 the	 education	 of	 her	 two
young	children,	Henri	and	his	younger	sister	(name	not	mentioned).	The
sister	 was	 to	 become	 the	 wife	 of	 Émile	 Boutroux	 and	 the	 mother	 of	 a
mathematician	(who	died	young).

Due	 partly	 to	 his	 mother’s	 constant	 care,	 Poincaré’s	 mental
development	as	a	child	was	extremely	rapid.	He	learned	to	talk	very	early,
but	also	very	badly	at	first	because	he	thought	more	rapidly	than	he	could



get	the	words	out.	From	infancy	his	motor	coordination	was	poor.	When
he	learned	to	write	it	was	discovered	that	he	was	ambidextrous	and	that	he
could	write	or	draw	as	badly	with	his	left	hand	as	with	his	right.	Poincaré
never	outgrew	 this	 physical	 awkwardness.	As	 an	 item	of	 some	 interest	 in
this	connection	it	may	be	recalled	that	when	Poincaré	was	acknowledged
as	 the	 foremost	mathematician	and	 leading	popularizer	of	 science	of	his
time	he	submitted	to	the	Binet	tests	and	made	such	a	disgraceful	showing
that,	 had	 he	 been	 judged	 as	 a	 child	 instead	 of	 as	 the	 famous
mathematician	 he	 was,	 he	 would	 have	 been	 rated—by	 the	 tests—as	 an
imbecile.

At	the	age	of	five	Henri	suffered	a	bad	setback	from	diphtheria	which
left	him	 for	nine	months	with	a	paralyzed	 larynx.	This	misfortune	made
him	for	 long	delicate	and	 timid,	but	 it	also	 turned	him	back	on	his	own
resources	as	he	was	forced	to	shun	the	rougher	games	of	children	his	own
age.

His	 principal	 diversion	 was	 reading,	 where	 his	 unusual	 talents	 first
showed	up.	A	book	once	read—at	incredible	speed—became	a	permanent
possession,	and	he	could	always	state	the	page	and	line	where	a	particular
thing	occurred.	He	 retained	 this	 powerful	memory	 all	 his	 life.	This	 rare
faculty,	which	Poincaré	 shared	with	Euler	who	had	 it	 in	 a	 lesser	degree,
might	be	called	visual	or	spatial	memory.	In	temporal	memory—the	ability
to	recall	with	uncanny	precision	a	sequence	of	events	long	passed—he	was
also	unusually	strong.	Yet	he	unblushingly	describes	his	memory	as	“bad.”
His	 poor	 eyesight	 perhaps	 contributed	 to	 a	 third	 peculiarity	 of	 his
memory.	The	majority	of	mathematicians	appear	 to	remember	 theorems
and	 formulas	 mostly	 by	 eye;	 with	 Poincaré	 it	 was	 almost	 wholly	 by	 ear.
Unable	to	see	the	board	distinctly	when	he	became	a	student	of	advanced
mathematics,	 he	 sat	 back	 and	 listened,	 following	 and	 remembering
perfectly	 without	 taking	 notes—an	 easy	 feat	 for	 him,	 but	 one
incomprehensible	 to	most	mathematicians.	Yet	he	must	have	had	a	 vivid
memory	of	the	“inner	eye”	as	well,	for	much	of	his	work,	like	a	good	deal
of	 Riemann’s,	 was	 of	 the	 kind	 that	 goes	 with	 facile	 space-intuition	 and
acute	 visualization.	 His	 inability	 to	 use	 his	 fingers	 skilfully	 of	 course
handicapped	him	 in	 laboratory	exercises,	which	seems	a	pity,	as	 some	of
his	 own	 work	 in	mathematical	 physics	might	 have	 been	 closer	 to	 reality
had	he	mastered	 the	art	of	experiment.	Had	Poincaré	been	as	 strong	 in



practical	science	as	he	was	in	theoretical	he	might	have	made	a	fourth	with
the	incomparable	three,	Archimedes,	Newton,	and	Gauss.

Not	 many	 of	 the	 great	 mathematicians	 have	 been	 the	 absentminded
dreamers	that	popular	fancy	likes	to	picture	them.	Poincaré	was	one	of	the
exceptions,	and	then	only	in	comparative	trifles,	such	as	carrying	off	hotel
linen	 in	 his	 baggage.	 But	 many	 persons	 who	 are	 anything	 but
absentminded	do	the	same,	and	some	of	the	most	alert	mortals	living	have
even	been	known	to	slip	restaurant	silver	into	their	pockets	and	get	away
with	it.

One	phase	of	Poincaré’s	absentmindedness	resembles	something	quite
different.	Thus	(Darboux	does	not	tell	the	story,	but	it	should	be	told,	as	it
illustrates	 a	 certain	 brusqueness	 of	 Poincaré’s	 later	 years),	 when	 a
distinguished	mathematician	had	come	all	 the	way	 from	Finland	to	Paris
to	 confer	with	Poincaré	on	 scientific	matters,	 Poincaré	did	not	 leave	his
study	 to	 greet	 his	 caller	 when	 the	maid	 notified	 him,	 but	 continued	 to
pace	back	and	forth—as	was	his	custom	when	mathematicizing—for	three
solid	hours.	All	 this	 time	 the	diffident	 caller	 sat	 quietly	 in	 the	 adjoining
room,	barred	from	the	master	only	by	flimsy	portières.	At	last	the	drapes
parted	 and	 Poincaré’s	 buffalo	 head	 was	 thrust	 for	 an	 instant	 into	 the
room.	“Fous	me	dérangez	beaucoup”	(You	are	disturbing	me	greatly)	the	head
exploded,	 and	 disappeared.	 The	 caller	 departed	 without	 an	 interview,
which	was	exactly	what	the	“absentminded”	professor	wanted.

Poincaré’s	elementary	school	career	was	brilliant,	although	he	did	not
at	first	show	any	marked	interest	in	mathematics.	His	earliest	passion	was
for	natural	history,	 and	all	his	 life	he	 remained	a	great	 lover	of	animals.
The	first	 time	he	tried	out	a	rifle	he	accidentally	shot	a	bird	at	which	he
had	 not	 aimed.	 This	 mishap	 affected	 him	 so	 deeply	 that	 thereafter
nothing	 (except	 compulsory	 military	 drill)	 could	 induce	 him	 to	 touch
firearms.	At	the	age	of	nine	he	showed	the	first	promise	of	what	was	to	be
one	of	his	major	 successes.	The	 teacher	of	French	composition	declared
that	 a	 short	 exercise,	 original	 in	 both	 form	 and	 substance,	which	 young
Poincaré	had	handed	 in,	was	“a	 little	masterpiece,”	and	kept	 it	as	one	of
his	 treasures.	 But	 he	 also	 advised	 his	 pupil	 to	 be	 more	 conventional—
stupider—if	 he	 wished	 to	 make	 a	 good	 impression	 on	 the	 school
examiners.

Being	out	of	the	more	boisterous	games	of	his	schoolfellows,	Poincaré
invented	 his	 own.	 He	 also	 became	 an	 indefatigable	 dancer.	 As	 all	 his



lessons	 came	 to	him	as	 easily	 as	 breathing	he	 spent	most	 of	his	 time	on
amusements	and	helping	his	mother	about	 the	house.	Even	at	 this	 early
stage	 of	 his	 career	 Poincaré	 exhibited	 some	 of	 the	 more	 suspicious
features	of	his	mature	“absentmindedness”:	he	frequently	forgot	his	meals
and	 almost	 never	 remembered	 whether	 or	 not	 he	 had	 breakfasted.
Perhaps	he	did	not	care	to	stuff	himself	as	most	boys	do.

The	 passion	 for	 mathematics	 seized	 him	 at	 adolescence	 or	 shortly
before	(when	he	was	about	fifteen).	From	the	first	he	exhibited	a	lifelong
peculiarity:	 his	mathematics	 was	 done	 in	 his	 head	 as	 he	 paced	 restlessly
about,	 and	 was	 committed	 to	 paper	 only	 when	 all	 had	 been	 thought
through.	 Talking	 or	 other	 noise	 never	 disturbed	 him	 while	 he	 was
working.	 In	 later	 life	 he	 wrote	 his	 mathematical	 memoirs	 at	 one	 dash
without	 looking	back	 to	 see	what	he	had	written	and	 limiting	himself	 to
but	a	very	few	erasures	as	he	wrote.	Cayley	also	composed	in	this	way,	and
probably	 Euler,	 too.	 Some	 of	 Poincaré’s	 work	 shows	 the	marks	 of	 hasty
composition,	and	he	 said	himself	 that	he	never	 finished	a	paper	without
regretting	 either	 its	 form	or	 its	 substance.	More	 than	 one	man	who	has
written	well	has	felt	the	same.	Poincaré’s	flair	for	classical	studies,	in	which
he	 excelled	 at	 school,	 taught	 him	 the	 importance	 of	 both	 form	 and
substance.

The	Franco-Prussian	war	broke	over	France	 in	1870	when	Poincaré	was
sixteen.	 Although	 he	 was	 too	 young	 and	 too	 frail	 for	 active	 service,
Poincaré	nevertheless	got	his	 full	 share	of	 the	horrors,	 for	Nancy,	where
he	lived,	was	submerged	by	the	full	tide	of	the	invasion,	and	the	young	boy
accompanied	his	physician-father	on	his	rounds	of	the	ambulances.	Later
he	went	with	his	mother	and	sister,	under	terrible	difficulties,	to	Arrancy
to	 see	 what	 had	 happened	 to	 his	 maternal	 grandparents,	 in	 whose
spacious	 country	 garden	 the	 happiest	 days	 of	 his	 childhood	 had	 been
spent	during	the	long	school	vacations.	Arrancy	lay	near	the	battlefield	of
Saint-Privat.	 To	 reach	 the	 town	 the	 three	 had	 to	 pass	 “in	 glacial	 cold”
through	 burned	 and	 deserted	 villages.	 At	 last	 they	 reached	 their
destination,	 only	 to	 find	 that	 the	 house	 had	 been	 thoroughly	 pillaged,
“not	only	of	things	of	value	but	of	things	of	no	value,”	and	in	addition	had
been	 defiled	 in	 the	 bestial	manner	made	 familiar	 to	 the	 French	 by	 the
1914	 sequel	 to	 1870.	 The	 grandparents	 had	 been	 left	 nothing;	 their
evening	meal	on	the	day	they	viewed	the	great	purging	was	supplied	by	a



poor	 woman	who	 had	 refused	 to	 abandon	 the	 ruins	 of	 her	 cottage	 and
who	insisted	on	sharing	her	meager	supper	with	them.

Poincaré	never	forgot	this,	nor	did	he	ever	forget	the	long	occupation
of	Nancy	by	the	enemy.	It	was	during	the	war	that	he	mastered	German.
Unable	to	get	any	French	news,	and	eager	to	learn	what	the	Germans	had
to	say	of	France	and	for	themselves,	Poincaré	taught	himself	the	language.
What	he	had	seen	and	what	he	 learned	from	the	official	accounts	of	 the
invaders	themselves	made	him	a	flaming	patriot	for	life	but,	like	Hermite,
he	 never	 confused	 the	mathematics	 of	 his	 country’s	 enemies	 with	 their
more	practical	activities.	Cousin	Raymond,	on	the	other	hand,	could	never
say	anything	about	les	Allemands	(the	Germans)	without	an	accompanying
scream	of	hate.	In	the	bookkeeping	of	hell	which	balances	the	hate	of	one
patriot	 against	 that	 of	 another,	 Poincaré	 may	 be	 checked	 off	 against
Kummer,	Hermite	against	Gauss,	thus	producing	that	perfect	zero	implied
in	the	scriptural	contract	“an	eye	for	an	eye	and	a	tooth	for	a	tooth.”

Following	the	usual	French	custom	Poincaré	took	the	examinations	for
his	 first	degrees	 (bachelor	of	 letters,	 and	of	 science)	before	 specializing.
These	he	passed	 in	1871	at	 the	age	of	 seventeen—after	almost	 failing	 in
mathematics!	He	 had	 arrived	 late	 and	 flustered	 at	 the	 examination	 and
had	fallen	down	on	the	extremely	simple	proof	of	the	formula	giving	the
sum	of	a	convergent	geometrical	progression.	But	his	fame	had	preceded
him.	 “Any	 student	 other	 than	 Poincaré	 would	 have	 been	 plucked,”	 the
head	examiner	declared.

He	 next	 prepared	 for	 the	 entrance	 examinations	 to	 the	 School	 of
Forestry,	where	he	astonished	his	companions	by	capturing	the	first	prize
in	 mathematics	 without	 having	 bothered	 to	 take	 any	 lecture	 notes.	 His
classmates	had	previously	tested	him	out,	believing	him	to	be	a	trifler,	by
delegating	a	fourth-year	student	to	quiz	him	on	a	mathematical	difficulty
which	 had	 seemed	 particularly	 tough.	 Without	 apparent	 thought,
Poincaré	 gave	 the	 solution	 immediately	 and	 walked	 off,	 leaving	 his
crestfallen	baiters	asking	“How	does	he	do	it?”	Others	were	to	ask	the	same
question	all	through	Poincaré’s	career.	He	never	seemed	to	think	when	a
mathematical	difficulty	was	submitted	to	him	by	his	colleagues:	“The	reply
came	like	an	arrow.”

At	 the	 end	 of	 this	 year	 he	 passed	 first	 into	 the	 École	 Polytechnique.
Several	legends	of	his	unique	examination	survive.	One	tells	how	a	certain
examiner,	 forewarned	 that	 young	 Poincaré	 was	 a	 mathematical	 genius,



suspended	 the	 examination	 for	 three	 quarters	 of	 an	 hour	 in	 order	 to
devise	“a	‘nice’	question”—a	refined	torture.	But	Poincaré	got	the	better
of	him	and	the	inquisitor	“congratulated	the	examinee	warmly,	telling	him
he	 had	 won	 the	 highest	 grade.”	 Poincaré’s	 experiences	 with	 his
tormentors	would	 seem	 to	 indicate	 that	 French	mathematical	 examiners
have	learned	something	since	they	ruined	Galois	and	came	within	an	ace
of	doing	the	like	by	Hermite.

At	 the	 Polytechnique	 Poincaré	 was	 distinguished	 for	 his	 brilliance	 in
mathematics,	his	superb	incompetence	in	all	physical	exercises,	including
gymnastics	and	military	drill,	and	his	utter	inability	to	make	drawings	that
resembled	anything	in	heaven	or	earth.	The	last	was	more	than	a	joke;	his
score	of	zero	in	the	entrance	examination	in	drawing	had	almost	kept	him
out	of	the	school.	This	had	greatly	embarrassed	his	examiners:	“.	.	.	a	zero
is	eliminatory.	In	everything	else	[but	drawing]	he	is	absolutely	without	an
equal.	 If	 he	 is	 admitted,	 it	 will	 be	 as	 first;	 but	 can	 he	 be	 admitted?”	 As
Poincaré	was	admitted	the	good	examiners	probably	put	a	decimal	point
before	the	zero	and	placed	a	1	after	it.

In	spite	of	his	ineptitude	for	physical	exercises	Poincaré	was	extremely
popular	with	his	classmates.	At	the	end	of	the	year	they	organized	a	public
exhibition	of	his	 artistic	masterpieces,	 carefully	 labelling	 them	 in	Greek,
“this	is	a	horse,”	and	so	on—not	always	accurately.	But	Poincaré’s	inability
to	draw	also	had	 its	 serious	 side	when	he	came	 to	geometry,	and	he	 lost
first	place,	passing	out	of	the	school	second	in	rank.

On	leaving	the	Polytechnique	in	1875	at	the	age	of	twenty	one	Poincaré
entered	the	School	of	Mines	with	the	intention	of	becoming	an	engineer.
His	technical	studies,	although	faithfully	carried	out,	left	him	some	leisure
to	do	mathematics,	and	he	showed	what	was	in	him	by	attacking	a	general
problem	in	differential	equations.	Three	years	later	he	presented	a	thesis,
on	the	same	subject,	but	concerning	a	more	difficult	and	yet	more	general
question,	 to	 the	 Faculty	 of	 Sciences	 at	 Paris	 for	 the	 degree	 of	 doctor	 of
mathematical	sciences.	“At	the	first	glance,”	says	Darboux,	who	had	been
asked	to	examine	the	work,	“it	was	clear	 to	me	that	 the	thesis	was	out	of
the	ordinary	and	amply	merited	acceptance.	Certainly	it	contained	results
enough	 to	 supply	 material	 for	 several	 good	 theses.	 But,	 I	 must	 not	 be
afraid	 to	 say,	 if	 an	 accurate	 idea	 of	 the	 way	 Poincaré	 worked	 is	 wanted,
many	 points	 called	 for	 corrections	 or	 explanations.	 Poincaré	 was	 an
intuitionist.	Having	once	arrived	at	the	summit	he	never	retraced	his	steps.



He	was	satisfied	to	have	crashed	through	the	difficulties	and	left	to	others
the	pains	of	mapping	the	royal	roadsII	destined	to	lead	more	easily	to	the
end.	 He	 willingly	 enough	 made	 the	 corrections	 and	 tidying-up	 which
seemed	to	me	necessary.	But	he	explained	to	me	when	I	asked	him	to	do	it
that	he	had	many	other	 ideas	 in	his	head;	he	was	already	occupied	with
some	of	the	great	problems	whose	solution	he	was	to	give	us.”

Thus	young	Poincaré,	like	Gauss,	was	overwhelmed	by	the	host	of	ideas
which	besieged	his	mind	but,	unlike	Gauss,	his	motto	was	not	 “Few,	but
ripe.”	 It	 is	 an	open	question	whether	a	 creative	 scientist	who	hoards	 the
fruits	of	his	 labor	 so	 long	 that	 some	of	 them	go	 stale	does	more	 for	 the
advancement	 of	 science	 than	 the	 more	 impetuous	 man	 who	 scatters
broadcast	 everything	 he	 gathers,	 green	 or	 ripe,	 to	 fall	 where	 it	 may	 to
ripen	 or	 rot	 as	 wind	 and	 weather	 take	 it.	 Some	 believe	 one	 way,	 some
another.	As	a	decision	is	beyond	the	reach	of	objective	criteria	everyone	is
entitled	to	his	own	purely	subjective	opinion.

Poincaré	was	not	destined	to	become	a	mining	engineer,	but	during	his
apprenticeship	 he	 showed	 that	 he	 had	 at	 least	 the	 courage	 of	 a	 real
engineer.	 After	 a	 mine	 explosion	 and	 fire	 which	 had	 claimed	 sixteen
victims	 he	 went	 down	 at	 once	 with	 the	 rescue	 crew.	 But	 the	 calling	 was
uncongenial	and	he	welcomed	the	opportunity	to	become	a	professional
mathematician	which	his	 thesis	and	other	early	work	opened	up	 to	him.
His	 first	 academic	 appointment	 was	 at	 Caen	 on	 December	 1,	 1879,	 as
Professor	of	Mathematical	Analysis.	Two	years	 later	he	was	promoted	(at
the	age	of	twenty	seven)	to	the	University	of	Paris	where,	in	1886,	he	was
again	 promoted,	 taking	 charge	 of	 the	 course	 in	 mechanics	 and
experimental	physics	(the	last	seems	rather	strange,	in	view	of	Poincaré’s
exploits	 as	 a	 student	 in	 the	 laboratory).	 Except	 for	 trips	 to	 scientific
congresses	in	Europe	and	a	visit	to	the	United	States	in	1904	as	an	invited
lecturer	at	 the	St.	Louis	Exposition,	Poincaré	spent	 the	 rest	of	his	 life	 in
Paris	as	the	ruler	of	French	mathematics.

*		*		*

Poincaré’s	creative	period	opened	with	the	thesis	of	1878	and	closed	with
his	 death	 in	 1912—when	 he	 was	 at	 the	 apex	 of	 his	 powers.	 Into	 this
comparatively	 brief	 span	of	 thirty	 four	 years	he	 crowded	 a	mass	 of	work
that	is	sheerly	incredible	when	we	consider	the	difficulty	of	most	of	it.	His



record	 is	nearly	 five	hundred	papers	on	new	mathematics,	many	of	 them
extensive	 memoirs,	 and	 more	 than	 thirty	 books	 covering	 practically	 all
branches	 of	 mathematical	 physics,	 theoretical	 physics,	 and	 theoretical
astronomy	as	they	existed	in	his	day.	This	leaves	out	of	account	his	classics
on	the	philosophy	of	science	and	his	popular	essays.	To	give	an	adequate
idea	of	this	immense	labor	one	would	have	to	be	a	second	Poincaré,	so	we
shall	presently	 select	 two	or	 three,	of	his	most	celebrated	works	 for	brief
description,	apologizing	here	once	for	all	for	the	necessary	inadequacy.

Poincaré’s	first	successes	were	in	the	theory	of	differential	equations,	to
which	he	applied	all	the	resources	of	the	analysis	of	which	he	was	absolute
master.	 This	 early	 choice	 for	 a	major	 effort	 already	 indicates	 Poincaré’s
leaning	toward	the	applications	of	mathematics,	for	differential	equations
have	attracted	swarms	of	workers	since	the	time	of	Newton	chiefly	because
they	are	 of	 great	 importance	 in	 the	 exploration	of	 the	physical	 universe.
“Pure”	mathematicians	 sometimes	 like	 to	 imagine	 that	 all	 their	 activities
are	dictated	by	their	own	tastes	and	that	the	applications	of	science	suggest
nothing	of	 interest	 to	them.	Nevertheless	some	of	the	purest	of	the	pure
drudge	 away	 their	 lives	 over	 differential	 equations	 that	 first	 appeared	 in
the	translation	of	physical	situations	into	mathematical	symbolism,	and	it
is	precisely	these	practically	suggested	equations	which	are	the	heart	of	the
theory.	A	particular	equation	suggested	by	science	may	be	generalized	by
the	mathematicians	and	then	be	turned	back	to	the	scientists	(frequently
without	 a	 solution	 in	 any	 form	 that	 they	 can	 use)	 to	 be	 applied	 to	 new
physical	 problems,	 but	 first	 and	 last	 the	 motive	 is	 scientific.	 Fourier
summed	 up	 this	 thesis	 in	 a	 famous	 passage	 which	 irritates	 one	 type	 of
mathematician,	but	which	Poincaré	endorsed	and	followed	in	much	of	his
work.

“The	profound	study	of	nature,”	Fourier	declared,	“is	the	most	fecund
source	of	mathematical	discoveries.	Not	only	does	this	study,	by	offering	a
definite	goal	to	research,	have	the	advantage	of	excluding	vague	questions
and	futile	calculations,	but	it	is	also	a	sure	means	of	molding	analysis	itself
and	 discovering	 those	 elements	 in	 it	 which	 it	 is	 essential	 to	 know	 and
which	science	ought	always	to	conserve.	These	fundamental	elements	are
those	 which	 recur	 in	 all	 natural	 phenomena.”	 To	 which	 some	 might
retort:	 No	 doubt,	 but	 what	 about	 arithmetic	 in	 the	 sense	 of	 Gauss?
However,	Poincaré	followed	Fourier’s	advice	whether	he	believed	in	it	or



not—even	 his	 researches	 in	 the	 theory	 of	 numbers	 were	 more	 or	 less
remotely	inspired	by	others	closer	to	the	mathematics	of	physical	science.

The	 investigations	 on	 differential	 equations	 led	 out	 in	 1880,	 when
Poincaré	 was	 twenty	 six,	 to	 one	 of	 his	 most	 brilliant	 discoveries,	 a
generalization	of	 the	elliptic	 functions	(and	of	some	others).	The	nature
of	a	(uniform)	periodic	function	of	a	single	variable	has	frequently	been
described	 in	preceding	chapters,	but	 to	bring	out	what	Poincaré	did,	we
may	repeat	the	essentials.	The	trigonometric	function	sin	z	has	the	period
2π,	namely,	sin	(z	+	2Π)	=	sin	z;	that	is,	when	the	variable	z	 is	increased	by
2π,	 the	 sine	 function	 of	 z	 returns	 to	 its	 initial	 value.	 For	 an	 elliptic
function,	say	E(z),	there	are	two	distinct	periods,	say	pi	and	p2,	such	that	E(z
+	 p1)	 =	 E(z),	 E(z	 +	 p2)	 =	 E(z).	 Poincaré	 found	 that	 periodicity	 is	 merely	 a
special	case	of	a	more	general	property:	 the	value	of	certain	 functions	 is
restored	when	the	variable	is	replaced	by	any	one	of	a	denumerable	infinity
of	linear	fractional	transformations	of	itself,	and	all	these	transformations
form	a	group.	A	few	symbols	will	clarify	this	statement.

Let	 z	 be	 replaced	 by	 	 Then,	 for	 a	 denumerable	 infinity	 of	 sets	 of
values	of	a,	b,	c,	d,	there	are	uniform	functions	of	z,	say	F(z)	is	one	of	them,
such	that

Further,	if	a1,	b1,	c1,	d1,	and	a2,	b2,	c2,	d2	are	any	two	of	the	sets	of	values	of

a,	 b,	 c,	 d,	 and	 if	 z	 be	 replaced	 first	 by	 	 and	 then,	 in	 this,	 z	 be

replaced	by	 	giving,	say,	 	then	not	only	do	we	have

but	also

Further	the	set	of	all	the	substitutions



(the	 arrow	 is	 read	 “is	 replaced	 by”)	 which	 leave	 the	 value	 of	 F(z)
unchanged	 as	 just	 explained	 form	 a	 group:	 the	 result	 of	 the	 successive
performance	of	two	substitutions	in	the	set,

is	 in	 the	 set;	 there	 is	 an	 “identity	 substitution”	 in	 the	 set,	 namely	 z	→	 z
(here	a	=	1,	b	=	0,	c	=	0,	d	=	l);	and	finally	each	substitution	has	a	unique
“inverse”—that	 is,	 for	 each	 substitution	 in	 the	 set	 there	 is	 a	 single	 other
one	which,	if	applied	to	the	first,	will	produce	the	identity	substitution.	In
summary,	using	the	terminology	of	previous	chapters,	we	see	that	F(z)	is	a
function	 which	 is	 invariant	 under	 an	 infinite	 group	 of	 linear	 fractional
transformations.	 Note	 that	 the	 infinity	 of	 substitutions	 is	 a	 denumerable
infinity,	as	first	stated:	the	substitutions	can	be	counted	off	1,	2,	3,	.	.	.	,	and
are	not	as	numerous	as	the	points	on	a	line.	Poincaré	actually	constructed
such	functions	and	developed	their	most	important	properties	in	a	series
of	papers	in	the	1880’s.	Such	functions	are	called	automorphic.

Only	 two	 remarks	 need	 be	 made	 here	 to	 indicate	 what	 Poincaré
achieved	by	this	wonderful	creation.	First,	his	 theory	 includes	that	of	 the
elliptic	 functions	 as	 a	 detail.	 Second,	 as	 the	 distinguished	 French
mathematician	 Georges	 Humbert	 said,	 Poincaré	 found	 two	 memorable
propositions	which	“gave	him	the	keys	of	the	algebraic	cosmos”:

Two	 automorphic	 functionsIIIinvariant	 under	 the	 same	 group	 are
connected	by	an	algebraic	equation;

Conversely,	 the	 coordinates	 of	 a	 point	 on	 any	 algebraic	 curve	 can	 be
expressed	 in	 terms	 of	 automorphic	 functions,	 and	 hence	 by	 uniform
functions	of	a	single	parameter	(variable).

An	algebraic	curve	is	one	whose	equation	is	of	the	type	P(x,	y)	=	0,	where
P(x,	y)	is	a	polynomial	in	x	and	y.	As	a	simple	example,	the	equation	of	the
circle	whose	center	is	at	the	origin—(0,	0)—and	whose	radius	is	a,	is	x2	+
y2	=	a2.	According	to	the	second	of	Poincaré’s	“keys,”	it	must	be	possible	to
express	x,	y	as	automorphic	functions	of	a	single	parameter,	say	t.	It	is;	for
if	x	=	a	 cos	 t	 and	 y	 =	 a	 sin	 t,	 then,	 squaring	 and	 adding,	 we	 get	 rid	 of	 t
(since	 cos2	 t	 sin2	 t	 =	 l),	 and	 find	 x2	 +	 y2	 =	 a2.	 But	 the	 trigonometric



functions	cos	 t,	 sin	 t	 are	 special	 cases	of	elliptic	 functions,	which	 in	 turn
are	special	cases	of	automorphic	functions.

The	creation	of	this	vast	 theory	of	automorphic	functions	was	but	one
of	many	astonishing	 things	 in	analysis	which	Poincaré	did	before	he	was
thirty.	 Nor	 was	 all	 his	 time	 devoted	 to	 analysis;	 the	 theory	 of	 numbers,
parts	of	algebra,	and	mathematical	astronomy	also	shared	his	attention.	In
the	 first	 he	 recast	 the	 Gaussian	 theory	 of	 binary	 quadratic	 forms	 (see
chapter	 on	 Gauss)	 in	 a	 geometrical	 shape	 which	 appeals	 particularly	 to
those	who,	like	Poincaré,	prefer	the	intuitive	approach.	This	of	course	was
not	all	that	he	did	in	the	higher	arithmetic,	but	limitations	of	space	forbid
further	details.

Work	of	this	caliber	did	not	pass	unappreciated.	At	the	unusually	early
age	 of	 thirty	 two	 (in	 1887)	 Poincaré	 was	 elected	 to	 the	 Academy.	 His
proposer	 said	 some	 pretty	 strong	 things,	 but	 most	 mathematicians	 will
subscribe	 to	 their	 truth:	 “[Poincaré’s]	work	 is	 above	ordinary	praise	 and
reminds	 us	 inevitably	 of	 what	 Jacobi	 wrote	 of	 Abel—that	 he	 had	 settled
questions	 which,	 before	 him,	 were	 unimagined.	 It	 must	 indeed	 be
recognized	that	we	are	witnessing	a	revolution	in	Mathematics	comparable
in	 every	 way	 to	 that	 which	 manifested	 itself,	 half	 a	 century	 ago,	 by	 the
accession	of	elliptic	functions.”

To	leave	Poincaré’s	work	in	pure	mathematics	here	is	like	rising	from	a
banquet	table	after	having	just	sat	down,	but	we	must	turn	to	another	side
of	his	universality.

*		*		*

Since	the	time	of	Newton	and	his	immediate	successors	astronomy	has
generously	 supplied	mathematicians	 with	more	 problems	 than	 they	 can
solve.	 Until	 the	 late	 nineteenth	 century	 the	 weapons	 used	 by
mathematicians	 in	 their	 attack	 on	 astronomy	 were	 practically	 all
immediate	 improvements	 of	 those	 invented	 by	 Newton	 himself,	 Euler,
Lagrange,	 and	 Laplace.	 But	 all	 through	 the	 nineteenth	 century,
particularly	 since	 Cauchy’s	 development	 of	 the	 theory	 of	 functions	 of	 a
complex	 variable	 and	 the	 investigations	 of	 himself	 and	 others	 on	 the
convergence	 of	 infinite	 series,	 a	 huge	 arsenal	 of	 untried	 weapons	 had
been	accumulating	from	the	labors	of	pure	mathematicians.	To	Poincaré,
to	 whom	 analysis	 came	 as	 naturally	 as	 thinking,	 this	 vast	 pile	 of	 unused



mathematics	seemed	the	most	natural	thing	in	the	world	to	use	in	a	new
offensive	 on	 the	 outstanding	 problems	 of	 celestial	 mechanics	 and
planetary	evolution.	He	picked	and	chose	what	he	liked	out	of	the	heap,
improved	 it,	 invented	new	weapons	of	his	own,	and	assaulted	 theoretical
astronomy	 in	a	grand	fashion	 it	had	not	been	assaulted	 in	 for	a	century.
He	modernized	the	attack;	indeed	his	campaign	was	so	extremely	modern	to
the	majority	of	experts	 in	celestial	mechanics	 that	even	today,	 forty	years
or	 more	 after	 Poincaré	 opened	 his	 offensive,	 few	 have	 mastered	 his
weapons	and	some,	unable	to	bend	his	bow,	insinuate	that	it	is	worthless	in
a	practical	attack.	Nevertheless	Poincaré	is	not	without	forceful	champions
whose	 conquests	 would	 have	 been	 impossible	 to	 the	 men	 of	 the	 pre-
Poincaré	era.

Poincaré’s	 first	 (1889)	 great	 success	 in	mathematical	 astronomy	 grew
out	of	an	unsuccessful	attack	on	“the	problem	of	n	bodies.”	For	n	=	2	the
problem	was	completely	solved	by	Newton;	the	famous	“problem	of	three
bodies”	 (n	 =	 3)	 will	 be	 noticed	 later;	 when	 n	 exceeds	 3	 some	 of	 the
reductions	applicable	to	the	case	n	=	3	can	be	carried	over.

According	 to	 the	Newtonian	 law	of	gravitation	 two	particles	of	masses
m,	M	at	a	distance	D	apart	attract	one	another	with	a	force	proportional	to

	 Imagine	n	material	 particles	 distributed	 in	 any	manner	 in	 space;
the	masses,	initial	motions,	and	the	mutual	distances	of	all	the	particles	are
assumed	known	at	a	given	instant.	If	they	attract	one	another	according	to
the	Newtonian	law,	what	will	be	their	positions	and	motions	(velocities)	after	any
stated	lapse	of	time?	For	the	purposes	of	mathematical	astronomy	the	stars	in
a	cluster,	or	 in	a	galaxy,	or	 in	a	cluster	of	galaxies,	may	be	thought	of	as
material	particles	attracting	one	another	according	to	the	Newtonian	law.
The	“problem	of	n	bodies”	 thus	amounts—in	one	of	 its	 applications—to
asking	what	will	be	the	aspect	of	the	heavens	a	year	from	now,	or	a	billion
years	hence,	it	being	assumed	that	we	have	sufficient	observational	data	to
describe	 the	 general	 configuration	 now.	 The	 problem	 of	 course	 is
tremendously	 complicated	 by	 radiation—the	masses	 of	 the	 stars	 do	 not
remain	constant	for	millions	of	years;	but	a	complete,	calculable	solution
of	 the	 problem	 of	 n	 bodies	 in	 its	 Newtonian	 form	 would	 probably	 give
results	of	an	accuracy	sufficient	for	all	human	purposes—the	human	race
will	 likely	 be	 extinct	 long	 before	 radiation	 can	 introduce	 observable
inaccuracies.



This	 was	 substantially	 the	 problem	 proposed	 for	 the	 prize	 offered	 by
King	Oscar	II	of	Sweden	in	1887.	Poincaré	did	not	solve	the	problem,	but
in	 1889	 he	 was	 awarded	 the	 prize	 anyhow	 by	 a	 jury	 consisting	 of
Weierstrass,	Hermite,	and	Mittag-Leffler	 for	his	general	discussion	of	 the
differential	equations	of	dynamics	and	an	attack	on	the	problem	of	three
bodies.	 The	 last	 is	 usually	 considered	 the	most	 important	 case	 of	 the	n-
body	 problem,	 as	 the	 Earth,	Moon,	 and	 Sun	 furnish	 an	 instance	 of	 the
case	n	=	3.	In	his	report	to	Mittag-Leffler,	Weierstrass	wrote,	“You	may	tell
your	Sovereign	that	this	work	cannot	 indeed	be	considered	as	furnishing
the	complete	solution	of	the	question	proposed,	but	that	it	is	nevertheless
of	such	importance	that	its	publication	will	inaugurate	a	new	era	in	the	history
of	Celestial	Mechanics.	The	end	which	His	Majesty	had	 in	 view	 in	opening
the	 competition	may	 therefore	 be	 considered	 as	 having	 been	 attained.”
Not	 to	 be	 outdone	 by	 the	 King	 of	 Sweden,	 the	 French	 Government
followed	 up	 the	 prize	 by	 making	 Poincaré	 a	 Knight	 of	 the	 Legion	 of
Honor—a	 much	 less	 expensive	 acknowledgment	 of	 the	 young
mathematician’s	genius	than	the	King’s	2500	crowns	and	gold	medal.

As	we	have	mentioned	the	problem	of	three	bodies	we	may	now	report
one	item	from	its	fairly	recent	history;	since	the	time	of	Euler	it	has	been
considered	 one	 of	 the	 most	 difficult	 problems	 in	 the	 whole	 range	 of
mathematics.	Stated	mathematically,	 the	problem	boils	down	to	solving	a
system	of	nine	simultaneous	differential	equations	(all	linear,	each	of	the
second	order).	Lagrange	succeeded	in	reducing	this	system	to	a	simpler.
As	in	the	majority	of	physical	problems,	the	solution	is	not	to	be	expected
infinite	 terms;	 if	a	 solution	 exists	at	all	 it	will	be	given	by	 infinite	 series.	 The
solution	 will	 “exist”	 if	 these	 series	 satisfy	 the	 equations	 (formally)	 and
moreover	converge	for	certain	values	of	the	variables.	The	central	difficulty
is	 to	 prove	 the	 convergence.	 Up	 till	 1905	 various	 special	 solutions	 had
been	 found,	 but	 the	 existence	 of	 anything	 that	 could	 be	 called	 general
had	not	been	proved.

In	 1906	 and	 1909	 a	 considerable	 advance	 came	 from	 a	 rather
unexpected	 quarter—Finland,	 a	 country	 which	 sophisticated	 Europeans
even	 today	 consider	 barely	 civilized,	 especially	 for	 its	 queer	 custom	 of
paying	its	debts,	and	which	few	Americans	thought	advanced	beyond	the
Stone	Age	till	Paavo	Nurmi	ran	the	 legs	off	 the	United	States.	Excepting
only	 the	 rare	 case	 when	 all	 three	 bodies	 collide	 simultaneously,	 Karl
Frithiof	Sundman	of	Helsingfors,	utilizing	analytical	methods	due	 to	 the



Italian	 Levi-Civita	 and	 the	 French	 Painlevé,	 and	 making	 an	 ingenious
transformation	of	his	own,	proved	 the	existence	of	a	solution	in	the	sense
described	 above.	 Sundman’s	 solution	 is	 not	 adapted	 to	 numerical
computation,	 nor	 does	 it	 give	 much	 information	 regarding	 the	 actual
motion,	but	that	is	not	the	point	of	interest	here:	a	problem	which	had	not
been	 known	 to	 be	 solvable	 was	 proved	 to	 be	 so.	 Many	 had	 struggled
desperately	 to	prove	 this	much;	when	 the	proof	was	 forthcoming,	 some,
humanly	enough,	hastened	to	point	out	that	Sundman	had	done	nothing
much	 because	 he	 had	 not	 solved	 some	 problem	 other	 than	 the	 one	 he
had.	 This	 kind	 of	 criticism	 is	 as	 common	 in	 mathematics	 as	 it	 is	 in
literature	and	art,	showing	once	more	that	mathematicians	are	as	human
as	anybody.

Poincaré’s	most	original	work	in	mathematical	astronomy	was	summed
up	 in	 his	 great	 treatise	Les	 méthodes	 nouvelles	 de	 la	 mécanique	 céleste	 (New
methods	 of	 celestial	 mechanics;	 three	 volumes,	 1892,	 1893,	 1899).	 This
was	 followed	 by	 another	 three-volume	 work	 in	 1905-1910	 of	 a	 more
immediately	practical	nature,	Leçons	de	mécanique	céleste,	and	a	little	later	by
the	publication	of	his	course	of	lectures	Sur	les	figures	d’équilibre	d’une	masse
fluide	 (On	 the	 figures	 of	 equilibrium	 of	 a	 fluid	 mass),	 and	 a	 historical-
critical	book	Sur	les	hypothèses	cosmogoniques	(On	cosmological	hypotheses).

Of	the	first	of	these	works	Darboux	(seconded	by	many	others)	declares
that	 it	 did	 indeed	 start	 a	 new	 era	 in	 celestial	 mechanics	 and	 that	 it	 is
comparable	 to	 the	 Mécanique	 céleste	 of	 Laplace	 and	 the	 earlier	 work	 of
D’Alembert	 on	 the	 precession	 of	 the	 equinoxes.	 “Following	 the	 road	 in
analytical	mechanics	opened	up	by	Lagrange,”	Darboux	says,	 “.	 .	 .	 Jacobi
had	established	a	theory	which	appeared	to	be	one	of	the	most	complete
in	 dynamics.	 For	 fifty	 years	 we	 lived	 on	 the	 theorems	 of	 the	 illustrious
German	mathematician,	applying	them	and	studying	them	from	all	angles,
but	without	adding	anything	essential.	It	was	Poincaré	who	first	shattered
these	 rigid	 frames	 in	 which	 the	 theory	 seemed	 to	 be	 encased	 and
contrived	 for	 it	 vistas	 and	 new	 windows	 on	 the	 external	 world.	 He
introduced	or	used,	in	the	study	of	dynamical	problems,	different	notions:
the	first,	which	had	been	given	before	and	which,	moreover,	is	applicable
not	 solely	 to	 mechanics,	 is	 that	 of	 variational	 equations,	 namely,	 linear
differential	 equations	 that	 determine	 solutions	 of	 a	 problem	 infinitely
near	 to	 a	 given	 solution;	 the	 second,	 that	 of	 integral	 invariants,	 which
belong	entirely	to	him	and	play	a	capital	part	in	these	researches.	Further



fundamental	 notions	 were	 added	 to	 these,	 notably	 those	 concerning	 so-
called	 ‘periodic’	 solutions,	 for	which	 the	bodies	whose	motion	 is	 studied
return	 after	 a	 certain	 time	 to	 their	 initial	 positions	 and	 original	 relative
velocities.”

The	 last	 started	a	whole	department	of	mathematics,	 the	 investigation
of	periodic	orbits:	given	a	system	of	planets,	or	of	stars,	say,	with	a	complete
specification	of	the	initial	positions	and	relative	velocities	of	all	members
of	 the	 system	 at	 a	 stated	 epoch,	 it	 is	 required	 to	 determine	 under	 what
conditions	the	system	will	return	to	its	initial	state	at	some	later	epoch,	and
hence	 continue	 to	 repeat	 the	 cycle	 of	 its	 motions	 indefinitely.	 For
example,	 is	 the	 solar	 system	of	 this	 recurrent	 type,	or	 if	not,	would	 it	be
were	 it	 isolated	 and	 not	 subject	 to	 perturbations	 by	 external	 bodies?
Needless	to	say	the	general	problem	has	not	yet	been	solved	completely.

Much	of	Poincaré’s	work	in	his	astronomical	researches	was	qualitative
rather	than	quantitative,	as	befitted	an	intuitionist,	and	this	characteristic
led	 him,	 as	 it	 had	 Riemann,	 to	 the	 study	 of	 analysis	 situs.	 On	 this	 he
published	 six	 famous	 memoirs	 which	 revolutionized	 the	 subject	 as	 it
existed	in	his	day.	The	work	on	analysis	situs	in	its	turn	was	freely	applied
to	the	mathematics	of	astronomy.

We	have	already	alluded	to	Poincaré’s	work	on	the	problem	of	rotating
fluid	bodies—of	obvious	 importance	 in	 cosmogony,	 one	brand	of	which
assumes	 that	 the	 planets	 were	 once	 sufficiently	 like	 such	 bodies	 to	 be
treated	 as	 if	 they	 actually	 were	 without	 patent	 absurdity.	 Whether	 they
were	 or	 not	 is	 of	 no	 importance	 for	 the	 mathematics	 of	 the	 situation,
which	is	of	interest	in	itself.	A	few	extracts	from	Poincaré’s	own	summary
will	 indicate	 more	 clearly	 than	 any	 paraphrase	 the	 nature	 of	 what	 he
mathematicized	about	in	this	difficult	subject.

“Let	 us	 imagine	 a	 [rotating]	 fluid	 body	 contracting	 by	 cooling,	 but
slowly	 enough	 to	 remain	 homogeneous	 and	 for	 the	 rotation	 to	 be	 the
same	in	all	its	parts.

“At	 first,	 very	 approximately	 a	 sphere,	 the	 figure	 of	 this	 mass	 will
become	an	ellipsoid	of	revolution	which	will	flatten	more	and	more,	then,
at	 a	 certain	moment,	 it	 will	 be	 transformed	 into	 an	 ellipsoid	 with	 three
unequal	 axes.	 Later,	 the	 figure	 will	 cease	 to	 be	 an	 ellipsoid	 and	 will
become	pear-shaped	until	at	last	the	mass,	hollowing	out	more	and	more
at	its	‘waist,’	will	separate	into	two	distinct	and	unequal	bodies.



“The	 preceding	 hypothesis	 certainly	 can	 not	 be	 applied	 to	 the	 solar
system.	Some	astronomers	have	 thought	 that	 it	might	be	 true	for	certain
double	stars	and	that	double	stars	of	the	type	of	Beta	Lyrae	might	present
transitional	forms	analogous	to	those	we	have	spoken	of.”

He	 then	 goes	 on	 to	 suggest	 an	 application	 to	 Saturn’s	 rings,	 and	 he
claims	 to	 have	 proved	 that	 the	 rings	 can	 be	 stable	 only	 if	 their	 density
exceeds	1/16	that	of	Saturn.	It	may	be	remarked	that	these	questions	were
not	considered	as	fully	settled	as	late	as	1935.	In	particular	a	more	drastic
mathematical	attack	on	poor	old	Saturn	seemed	to	show	that	he	had	not
been	completely	vanquished	by	the	great	mathematicians,	including	Clerk
Maxwell,	who	have	been	firing	away	at	him	off	and	on	for	the	past	seventy
years.

*		*		*

Once	more	 we	must	 leave	 the	 banquet	 having	 barely	 tasted	 anything
and	pass	on	to	Poincaré’s	voluminous	work	in	mathematical	physics.	Here
his	luck	was	not	so	good.	To	have	cashed	in	on	his	magnificent	talents	he
should	have	been	born	thirty	years	later	or	have	lived	twenty	years	longer.
He	had	the	misfortune	to	be	in	his	prime	just	when	physics	had	reached
one	of	its	recurrent	periods	of	senility,	and	he	was	so	thoroughly	saturated
with	nineteenth	century	theories	when	physics	began	to	recover	its	youth
—after	Planck,	in	1900,	and	Einstein,	in	1905,	had	performed	the	difficult
and	delicate	operation	of	endowing	the	decrepit	roué	with	its	first	pair	of
new	glands—that	he	had	barely	time	to	digest	the	miracle	before	his	death
in	1912.	All	his	mature	life	Poincaré	seemed	to	absorb	knowledge	through
his	pores	without	a	conscious	effort.	Like	Cayley,	he	was	not	only	a	prolific
creator	 but	 also	 a	 profoundly	 erudite	 scholar.	 His	 range	 was	 probably
wider	 than	 ever	 Cayley’s,	 for	 Cayley	 never	 professed	 to	 be	 able	 to
understand	 everything	 that	 was	 going	 on	 in	 applied	 mathematics.	 This
unique	 erudition	 may	 have	 been	 a	 disadvantage	 when	 it	 came	 to	 a
question	of	living	science	as	opposed	to	classical.

Everything	 that	 boiled	 up	 in	 the	melting	 pots	 of	 physics	 was	 grasped
instantly	as	it	appeared	by	Poincaré	and	made	the	topic	of	several	purely
mathematical	 investigations.	 When	 wireless	 telegraphy	 was	 invented	 he
seized	on	the	new	thing	and	worked	out	its	mathematics.



While	 others	were	 either	 ignoring	Einstein’s	 early	work	on	 the	 (special)
theory	of	relativity	or	passing	it	by	as	a	mere	curiosity,	Poincaré	was	already
busy	 with	 its	 mathematics,	 and	 he	 was	 the	 first	 scientific	 man	 of	 high
standing	to	tell	the	world	what	had	arrived	and	urge	it	to	watch	Einstein	as
probably	 the	 most	 significant	 phenomenon	 of	 the	 new	 era	 which	 he
foresaw	but	could	not	himself	usher	in.	It	was	the	same	with	Planck’s	early
form	 of	 the	 quantum	 theory.	 Opinions	 differ,	 of	 course;	 but	 at	 this
distance	it	is	beginning	to	look	as	if	mathematical	physics	did	for	Poincaré
what	Ceres	did	for	Gauss;	and	although	Poincaré	accomplished	enough	in
mathematical	 physics	 to	make	half	 a	 dozen	 great	 reputations,	 it	 was	 not
the	trade	to	which	he	had	been	born	and	science	would	have	got	more	out
of	him	 if	 he	had	 stuck	 to	pure	mathematics—his	 astronomical	work	was
nothing	else.	But	 science	got	enough,	and	a	man	of	Poincaré’s	genius	 is
entitled	to	his	hobbies.

*		*		*

We	pass	on	now	to	the	last	phase	of	Poincaré’s	universality	for	which	we
have	space:	his	interest	in	the	rationale	of	mathematical	creation.	In	1902
and	 1904	 the	 Swiss	 mathematical	 periodical	 L’Enseignement	Mathématique
undertook	 an	 enquiry	 into	 the	 working	 habits	 of	 mathematicians.
Questionnaires	were	issued	to	a	number	of	mathematicians,	of	whom	over
a	hundred	replied.	The	answers	to	the	questions	and	an	analysis	of	general
trends	were	published	in	final	form	in	1912.IV	Anyone	wishing	to	look	into
the	 “psychology”	 of	 mathematicians	 will	 find	 much	 of	 interest	 in	 this
unique	work	and	many	confirmations	of	the	views	at	which	Poincaré	had
arrived	 independently	 before	 he	 saw	 the	 results	 of	 the	 questionnaire.	 A
few	 points	 of	 general	 interest	 may	 be	 noted	 before	 we	 quote	 from
Poincaré.

The	early	 interest	 in	mathematics	of	 those	who	were	 to	become	great
mathematicians	 has	 been	 frequently	 exemplified	 in	 preceding	 chapters.
To	 the	question	 “At	what	period	 .	 .	 .	 and	under	what	 circumstances	did
mathematics	seize	you?”	93	replies	to	the	first	part	were	received:	35	said
before	the	age	of	ten;	43	said	eleven	to	fifteen;	11	said	sixteen	to	eighteen;
3	said	nineteen	to	twenty;	and	the	lone	laggard	said	twenty	six.

Again,	anyone	with	mathematical	friends	will	have	noticed	that	some	of
them	 like	 to	 work	 early	 in	 the	morning	 (I	 know	 one	 very	 distinguished



mathematician	 who	 begins	 his	 day’s	 work	 at	 the	 inhuman	 hour	 of	 five
a.m.),	 while	 others	 do	 nothing	 till	 after	 dark.	 The	 replies	 on	 this	 point
indicated	 a	 curious	 trend—possibly	 significant,	 although	 there	 are
numerous	 exceptions:	 mathematicians	 of	 the	 northern	 races	 prefer	 to
work	at	night,	while	 the	Latins	 favor	 the	morning.	Among	night-workers
prolonged	concentration	often	brings	on	insomnia	as	they	grow	older	and
they	 change—reluctantly—to	 the	morning.	 Felix	 Klein,	 who	worked	 day
and	 night	 as	 a	 young	 man,	 once	 indicated	 a	 possible	 way	 out	 of	 this
difficulty.	 One	 of	 his	 American	 students	 complained	 that	 he	 could	 not
sleep	 for	 thinking	 of	 his	mathematics.	 “Can’t	 sleep,	 eh?”	 Klein	 snorted.
“What’s	 chloral	 for?”	 However,	 this	 remedy	 is	 not	 to	 be	 recommended
indiscriminately;	it	probably	had	something	to	do	with	Klein’s	own	tragic
breakdown.

Probably	the	most	significant	of	the	replies	were	those	received	on	the
topic	 of	 inspiration	 versus	 drudgery	 as	 the	 source	 of	 mathematical
discoveries.	 The	 conclusion	 is	 that	 “Mathematical	 discoveries,	 small	 or
great	 .	 .	 .	 are	 never	 born	 of	 spontaneous	 generation.	 They	 always
presuppose	 a	 soil	 seeded	with	preliminary	 knowledge	 and	well	 prepared
by	labor,	both	conscious	and	subconscious.”

Those	 who,	 like	 Thomas	 Alva	 Edison,	 have	 declared	 that	 genius	 is
ninety	nine	per	 cent	perspiration	and	only	one	per	 cent	 inspiration,	 are
not	contradicted	by	 those	who	would	reverse	 the	 figures.	Both	are	right;
one	man	remembers	the	drudgery	while	another	forgets	it	all	in	the	thrill
of	 apparently	 sudden	 discovery	 but	 both,	 when	 they	 analyze	 their
impressions,	 admit	 that	 without	 drudgery	 and	 a	 flash	 of	 “inspiration”
discoveries	are	not	made.	 If	drudgery	alone	sufficed,	how	 is	 it	 that	many
gluttons	for	hard	work	who	seem	to	know	everything	about	some	branch
of	 science,	 while	 excellent	 critics	 and	 commentators,	 never	 themselves
make	 even	 a	 small	 discovery?	 On	 the	 other	 hand,	 those	 who	 believe	 in
“inspiration”	 as	 the	 sole	 factor	 in	 discovery	 or	 invention—scientific	 or
literary—may	find	it	instructive	to	look	at	an	early	draft	of	any	of	Shelley’s
“completely	spontaneous”	poems	(so	far	as	these	have	been	preserved	and
reproduced),	or	 the	 successive	 versions	of	 any	of	 the	greater	novels	 that
Balzac	inflicted	on	his	maddened	printer.

Poincaré	 stated	 his	 views	 on	 mathematical	 discovery	 in	 an	 essay	 first
published	in	1908	and	reproduced	in	his	Science	et	Méthode.	The	genesis	of
mathematical	 discovery,	 he	 says,	 is	 a	 problem	 which	 should	 interest



psychologists	 intensely,	 for	 it	 is	 the	 activity	 in	 which	 the	 human	 mind
seems	to	borrow	least	from	the	external	world,	and	by	understanding	the
process	 of	 mathematical	 thinking	 we	 may	 hope	 to	 reach	 what	 is	 most
essential	in	the	human	mind.

How	does	it	happen,	Poincaré	asks,	that	there	are	persons	who	do	not
understand	 mathematics?	 “This	 should	 surprise	 us,	 or	 rather	 it	 would
surprise	 us	 if	 we	were	 not	 so	 accustomed	 to	 it.”	 If	mathematics	 is	 based
only	on	the	rules	of	logic,	such	as	all	normal	minds	accept,	and	which	only
a	 lunatic	would	deny	(according	to	Poincaré),	how	is	 it	 that	so	many	are
mathematically	 impermeable?	 To	 which	 it	 may	 be	 answered	 that	 no
exhaustive	 set	of	experiments	 substantiating	mathematical	 incompetence
as	 the	 normal	 human	mode	 has	 yet	 been	 published.	 “And	 further,”	 he
asks,	“how	is	error	possible	in	mathematics?”	Ask	Alexander	Pope:	“To	err
is	human,”	which	is	as	unsatisfactory	a	solution	as	any	other.	The	chemistry
of	 the	 digestive	 system	may	 have	 something	 to	 do	 with	 it,	 but	 Poincaré
prefers	 a	 more	 subtle	 explanation—one	 which	 could	 not	 be	 tested	 by
feeding	the	“vile	body”	hasheesh	and	alcohol.

“The	answer	seems	to	me	evident,”	he	declares.	Logic	has	very	little	to
do	with	discovery	or	invention,	and	memory	plays	tricks.	Memory	however
is	 not	 so	 important	 as	 it	 might	 be.	 His	 own	memory,	 he	 says	 without	 a
blush,	 is	 bad:	 “Why	 then	 does	 it	 not	 desert	 me	 in	 a	 difficult	 piece	 of
mathematical	reasoning	where	most	chess	players	[Whose	“memories”	he
assumes	to	be	excellent]	would	be	 lost?	Evidently	because	 it	 is	guided	by
the	general	course	of	the	reasoning.	A	mathematical	proof	is	not	a	mere
juxtaposition	of	 syllogisms;	 it	 is	 syllogisms	arranged	 in	 a	 certain	 order,	 and
the	order	is	more	important	than	the	elements	themselves.”	If	he	has	the
“intuition”	of	 this	order,	memory	 is	at	a	discount,	 for	each	 syllogism	will
take	its	place	automatically	in	the	sequence.

Mathematical	creation	however	does	not	consist	merely	in	making	new
combinations	 of	 things	 already	 known;	 “anyone	 could	 do	 that,	 but	 the
combinations	 thus	made	would	be	 infinite	 in	number	and	most	of	 them
entirely	devoid	of	interest.	To	create	consists	precisely	in	avoiding	useless
combinations	and	in	making	those	which	are	useful	and	which	constitute
only	a	small	minority.	Invention	is	discernment,	selection.”	But	has	not	all
this	been	said	thousands	of	times	before?	What	artist	does	not	know	that
selection—an	intangible—is	one	of	the	secrets	of	success?	We	are	exactly
where	we	were	before	the	investigation	began.



To	conclude	this	part	of	Poincaré’s	observations	it	may	be	pointed	out
that	much	of	what	he	says	is	based	on	an	assumption	which	may	indeed	be
true	but	 for	which	there	 is	not	a	particle	of	scientific	evidence.	To	put	 it
bluntly	 he	 assumes	 that	 the	majority	 of	 human	beings	 are	mathematical
imbeciles.	 Granting	 him	 this,	 we	 need	 not	 even	 then	 accept	 his	 purely
romantic	 theories.	 They	 belong	 to	 inspirational	 literature	 and	 not	 to
science.	 Passing	 to	 something	 less	 controversial	 we	 shall	 now	 quote	 the
famous	passage	 in	which	Poincaré	describes	how	one	of	his	own	greatest
“inspirations”	 came	 to	 him.	 It	 is	 meant	 to	 substantiate	 his	 theory	 of
mathematical	creation.	Whether	it	does	or	not	may	be	left	to	the	reader.

He	first	points	out	that	the	technical	terms	need	not	be	understood	in
order	to	follow	his	narrative:	“What	is	of	interest	to	the	psychologist	is	not
the	theorem	but	the	circumstances.

“For	 fifteen	 days	 I	 struggled	 to	 prove	 that	 no	 functions	 analogous	 to	 those	 I	 have	 since
called	Fuchsianfunctions	 could	exist;	 I	was	 then	 very	 ignorant.	Every	day	 I	 sat	down	at	my	work
table	where	I	 spent	an	hour	or	 two;	 I	 tried	a	great	number	of	combinations	and	arrived	at	no
result.	One	evening,	contrary	 to	my	custom,	I	 took	black	coffee;	 I	could	not	go	to	sleep;	 ideas
swarmed	up	in	clouds;	I	sensed	them	clashing	until,	to	put	it	so,	a	pair	would	hook	together	to
form	a	 stable	 combination.	By	morning	 I	had	 established	 the	 existence	of	 a	 class	 of	 Fuchsian
functions,	those	derived	from	the	hypergeometric	series.	I	had	only	to	write	up	the	results,	which
took	me	a	few	hours.

“Next	 I	 wished	 to	 represent	 these	 functions	 by	 the	 quotient	 of	 two	 series;	 this	 idea	 was
perfectly	conscious	and	 thought	out;	analogy	with	elliptic	 functions	guided	me.	 I	asked	myself
what	must	be	the	properties	of	 these	series	 if	 they	existed,	and	without	difficulty	I	constructed
the	series	which	I	called	thetafuchsian.

“I	then	left	Caen,	where	I	was	living	at	the	time,	to	participate	in	a	geological	trip	sponsored
by	 the	 School	 of	 Mines.	 The	 exigencies	 of	 travel	 made	 me	 forget	 my	 mathematical	 labors;
reaching	Coutances	we	took	a	bus	for	some	excursion	or	another.	The	instant	I	put	my	foot	on
the	step	the	idea	came	to	me,	apparently	with	nothing	whatever	in	my	previous	thoughts	having
prepared	me	for	it,	that	the	transformations	which	I	had	used	to	define	Fuchsian	functions	were
identical	with	 those	of	non-Euclidean	geometry.	 I	 did	not	make	 the	 verification;	 I	 should	not
have	had	the	time,	because	once	in	the	bus	I	resumed	an	interrupted	conversation;	but	I	felt	an
instant	and	complete	certainty.	On	returning	to	Caen	I	verified	the	result	at	my	leisure	to	satisfy
my	conscience.

“I	 then	 undertook	 the	 study	 of	 certain	 arithmetical	 questions	 without	 much	 apparent
success	 and	without	 suspecting	 that	 such	matters	 could	have	 the	 slightest	 connection	with	my
previous	studies.	Disgusted	at	my	lack	of	success,	I	went	to	spend	a	few	days	at	the	seaside	and
thought	of	something	else.	One	day,	while	walking	along	the	cliffs,	the	idea	came	to	me,	again
with	 the	 same	 characteristics	 of	 brevity,	 suddenness,	 and	 immediate	 certainty,	 that	 the
transformations	of	indefinite	ternary	quadratic	forms	were	identical	with	those	of	non-Euclidean
geometry.

“On	 returning	 to	 Caen,	 I	 reflected	 on	 this	 result	 and	 deduced	 its	 consequences;	 the
example	 of	 quadratic	 forms	 showed	 me	 that	 there	 were	 Fuchsian	 groups	 other	 than	 those
corresponding	 to	 the	 hypergeometric	 series;	 I	 saw	 that	 I	 could	 apply	 to	 them	 the	 theory	 of



thetafuchsian	functions,	and	hence	that	there	existed	thetafuchsian	functions	other	than	those
derived	from	the	hypergeometric	series,	the	only	ones	I	had	known	up	till	then.	Naturally	I	set
myself	the	task	of	constructing	all	these	functions.	I	conducted	a	systematic	siege	and,	one	after
another,	 carried	 all	 the	 outworks;	 there	 was	 however	 one	 which	 still	 held	 out	 and	 whose	 fall
would	bring	about	that	of	the	whole	position.	But	all	my	efforts	served	only	to	make	me	better
acquainted	 with	 the	 difficulty,	 which	 in	 itself	 was	 something.	 All	 this	 work	 was	 perfectly
conscious.

“At	 this	point	 I	 left	 for	Mont-Valérien,	where	I	was	 to	discharge	my	military	 service.	 I	had
therefore	very	different	preoccupations.	One	day,	while	crossing	the	boulevard,	the	solution	of
the	difficulty	which	had	stopped	me	appeared	to	me	all	of	a	sudden.	I	did	not	seek	to	go	into	it
immediately,	and	it	was	only	after	my	service	that	I	resumed	the	question.	I	had	all	the	elements,
and	had	only	 to	assemble	and	order	 them.	So	I	wrote	out	my	definitive	memoir	at	one	stroke
and	with	no	difficulty.”

*		*		*

Many	other	examples	of	this	sort	of	thing	could	be	given	from	his	own
work,	 he	 says,	 and	 from	 that	 of	 other	 mathematicians	 as	 reported	 in
L’Enseignement	 Mathématique.	 From	 his	 experiences	 he	 believes	 that	 this
semblance	 of	 “sudden	 illumination	 [is]	 a	manifest	 sign	 of	 previous	 long
subconscious	 work,”	 and	 he	 proceeds	 to	 elaborate	 his	 theory	 of	 the
subconscious	mind	and	its	part	in	mathematical	creation.	Conscious	work
is	necessary	as	a	sort	of	trigger	to	fire	off	the	accumulated	dynamite	which
the	subconscious	has	been	excreting—he	does	not	put	it	so,	but	what	he
says	 amounts	 to	 the	 same.	 But	 what	 is	 gained	 in	 the	 way	 of	 rational
explanation	 if,	 following	 Poincaré,	 we	 foist	 off	 on	 the	 “subconscious
mind,”	or	the	“subliminal	self,”	the	very	activities	which	it	is	our	object	to
understand?	Instead	of	endowing	this	mysterious	agent	with	a	hypothetical
tact	 enabling	 it	 to	 discriminate	 between	 the	 “exceedingly	 numerous”
possible	 combinations	 presented	 (how,	 Poincaré	 does	 not	 say)	 for	 its
inspection,	 and	 calmly	 saying	 that	 the	 “subconscious”	 rejects	 all	 but	 the
“useful”	 combinations	 because	 it	 has	 a	 feeling	 for	 symmetry	 and	beauty,
sounds	 suspiciously	 like	 solving	 the	 initial	 problem	 by	 giving	 it	 a	 more
impressive	 name.	 Perhaps	 this	 is	 exactly	 what	 Poincaré	 intended,	 for	 he
once	defined	mathematics	as	the	art	of	giving	the	same	name	to	different
things;	so	here	he	may	be	rounding	out	the	symmetry	of	his	view	by	giving
different	names	to	the	same	thing.	It	seems	strange	that	a	man	who	could
have	 been	 satisfied	 with	 such	 a	 “psychology”	 of	 mathematical	 invention
was	 the	 complete	 skeptic	 in	 religious	 matters	 that	 Poincaré	 was.	 After
Poincaré’s	brilliant	lapse	into	psychology	skeptics	may	well	despair	of	ever
disbelieving	anything.



*		*		*

During	 the	 first	 decade	 of	 the	 twentieth	 century	 Poincaré’s	 fame
increased	rapidly	and	he	came	to	be	looked	upon,	especially	in	France,	as
an	oracle	on	all	things	mathematical.	His	pronouncements	on	all	manner
of	 questions,	 from	 politics	 to	 ethics,	 were	 usually	 direct	 and	 brief,	 and
were	accepted	as	final	by	the	majority.	As	almost	invariably	happens	after	a
great	man’s	extinction,	Poincaré’s	dazzling	reputation	during	his	lifetime
passed	 through	 a	 period	 of	 partial	 eclipse	 in	 the	 decade	 following	 his
death.	 But	 his	 intuition	 for	 what	 was	 likely	 to	 be	 of	 interest	 to	 a	 later
generation	 is	 already	 justifying	 itself.	 To	 take	 but	 one	 instance	 of	many,
Poincaré	was	a	vigorous	opponent	of	the	theory	that	all	mathematics	can
be	 rewritten	 in	 terms	 of	 the	 most	 elementary	 notions	 of	 classical	 logic;
something	more	 than	 logic,	 he	 believed,	 makes	 mathematics	 what	 it	 is.
Although	he	did	not	go	quite	so	 far	as	 the	current	 intuitionist	 school	he
seems	 to	 have	 believed,	 as	 that	 school	 does,	 that	 at	 least	 some
mathematical	notions	precede	logic,	and	if	one	is	to	be	derived	from	the
other	 it	 is	 logic	which	must	come	out	of	mathematics,	not	 the	other	way
about.	Whether	this	is	to	be	the	ultimate	creed	remains	to	be	seen,	but	at
present	 it	 appears	 as	 if	 the	 theory	 which	 Poincaré	 assailed	 with	 all	 the
irony	at	his	command	is	not	the	final	one,	whatever	may	be	its	merits.

Except	for	a	distressing	illness	during	his	last	four	years	Poincaré’s	busy
life	was	 tranquil	 and	happy.	Honors	were	 showered	upon	him	by	all	 the
leading	learned	societies	of	the	world,	and	in	1906,	at	the	age	of	fifty	two,
he	 achieved	 the	 highest	 distinction	 possible	 to	 a	 French	 scientist,	 the
Presidency	of	 the	Academy	of	Sciences.	None	of	all	 this	 inflated	his	ego,
for	Poincaré	was	truly	humble	and	unaffectedly	simple.	He	knew	of	course
that	he	was	without	a	close	rival	in	the	days	of	his	maturity,	but	he	could
also	say	without	a	trace	of	affectation	that	he	knew	nothing	compared	to
what	 is	 to	 be	 known.	He	 was	 happily	married	 and	 had	 a	 son	 and	 three
daughters	 in	 whom	 he	 took	 much	 pleasure,	 especially	 when	 they	 were
children.	His	 wife	 was	 a	 great-granddaughter	 of	 Étienne	Geoffroy	 Saint-
Hilaire,	 remembered	 as	 the	 antagonist	 of	 that	 pugnacious	 comparative
anatomist	Cuvier.	One	of	Poincaré’s	passions	was	symphonic	music.

At	 the	 International	 Mathematical	 Congress	 of	 1908,	 held	 at	 Rome,
Poincaré	 was	 prevented	 by	 illness	 from	 reading	 his	 stimulating	 (if
premature)	address	on	The	Future	 of	Mathematical	Physics.	His	 trouble	was



hypertrophy	 of	 the	 prostate,	 which	 was	 relieved	 by	 the	 Italian	 surgeons,
and	it	was	thought	that	he	was	permanently	cured.	On	his	return	to	Paris
he	resumed	his	work	as	energetically	as	ever.	But	in	1911	he	began	to	have
presentiments	 that	 he	 might	 not	 live	 long,	 and	 on	 December	 9	 wrote
asking	 the	editor	of	a	mathematical	 journal	whether	he	would	accept	an
unfinished	memoir—contrary	 to	 the	usual	 custom—on	a	problem	which
Poincaré	considered	of	the	highest	importance:	“.	.	.	at	my	age,	I	may	not
be	 able	 to	 solve	 it,	 and	 the	 results	 obtained,	 susceptible	 of	 putting
researchers	 on	 a	 new	 and	 unexpected	 path,	 seem	 to	 me	 too	 full	 of
promise,	 in	 spite	 of	 the	 deceptions	 they	 have	 caused	me,	 that	 I	 should
resign	myself	to	sacrificing	them	.	.	.”	He	had	spent	the	better	part	of	two
fruitless	years	trying	to	overcome	his	difficulties.

A	proof	of	the	theorem	which	he	conjectured	would	have	enabled	him
to	make	a	striking	advance	in	the	problem	of	three	bodies;	in	particular	it
would	have	permitted	him	to	prove	the	existence	of	an	infinity	of	periodic
solutions	 in	 cases	 more	 general	 than	 those	 hitherto	 considered.	 The
desired	 proof	 was	 given	 shortly	 after	 the	 publication	 of	 Poincaré’s
“unfinished	 symphony”	 by	 a	 young	 American	 mathematician,	 George
David	Birkhoff	(1884-).

In	 the	 spring	 of	 1912	 Poincaré	 fell	 ill	 again	 and	underwent	 a	 second
operation	on	July	9.	The	operation	was	successful,	but	on	July	17	he	died
very	suddenly	from	an	embolism	while	dressing.	He	was	in	the	fifty	ninth
year	of	his	 age	and	at	 the	height	of	his	powers—“the	 living	brain	of	 the
rational	sciences,”	in	the	words	of	Painlevé.

I.	This	famous	question	of	the	“piriform	body,”	of	considerable	importance	in	cosmogony,	was
apparently	 settled	 in	 1905	 by	Liapounoff,	 whose	 conclusion	was	 confirmed	 in	 1915	 by	 Sir	 James
Jeans:	they	found	that	the	motion	is	unstable.	Few	have	had	the	courage	to	check	the	calculations.
After	 1915	Leon	Lichtenstein,	 a	 fellow-countryman	of	Liapounoff,	made	 a	 general	 attack	on	 the
problem	of	rotating	fluid	masses.	The	problem	seems	to	be	unlucky;	both	L’s	had	violent	deaths.

II.	 “There	 is	 no	 royal	 road	 to	Geometry,”	 as	Menaechmus	 is	 said	 to	 have	 told	 Alexander	 the
Great	when	the	latter	wished	to	conquer	geometry	in	a	hurry.

III.	Poincaré	called	some	of	his	functions	“Fuchsian,”	after	the	German	mathematician	Lazarus
Fuchs	(1833-1902)	one	of	the	creators	of	the	modern	theory	of	differential	equations,	for	reasons
that	 need	 not	 be	 gone	 into	 here.	 Others	 he	 called	 “Kleinian”	 after	 Felix	 Klein—in	 ironic
acknowledgment	of	disputed	priority.

IV.	Enquête	de	“L’Enseignement	Mathématique”	 sur	 la	méthode	de	 travail	des	mathématiciens.	Available
either	in	the	periodical	or	in	book	form	(8	+	137	pp.)	by	Gauthier-Villars,	Paris.



CHAPTER	TWENTY	NINE

Paradise	Lost?

CANTOR

Mathematics,	like	all	other	subjects,	has	now	to	take	its	turn	under	the	microscope	and	reveal	to	the	world	any
weaknesses	there	may	be	in	its	foundations.

—F.	W.	WESTAWAY

THE	 CONTROVERSIAL	 TOPIC	 of	 Mengenlehre	 (theory	 of	 sets,	 or	 classes,
particularly	of	infinite	sets)	created	in	1874-1895	by	Georg	Cantor	(1845-
1918)	may	well	be	taken,	out	of	its	chronological	order,	as	the	conclusion
of	the	whole	story.	This	topic	typifies	for	mathematics	the	general	collapse
of	 those	 principles	 which	 the	 prescient	 seers	 of	 the	 nineteenth	 century,
foreseeing	everything	but	the	grand	débâcle,	believed	to	be	fundamentally
sound	in	all	things	from	physical	science	to	democratic	government.

If	“collapse”	is	perhaps	too	strong	to	describe	the	transition	the	world	is
doing	its	best	to	enjoy,	it	is	nevertheless	true	that	the	evolution	of	scientific
ideas	 is	 now	 proceeding	 so	 vertiginously	 that	 evolution	 is	 barely
distinguishable	from	revolution.

Without	the	errors	of	the	past	as	a	deep-seated	focus	of	disturbance	the
present	upheaval	 in	physical	 science	would	perhaps	not	have	happened;
but	 to	 credit	 our	 predecessors	with	 all	 the	 inspiration	 for	what	 our	 own
generation	 is	 doing,	 is	 to	 give	 them	more	 than	 their	 due.	 This	 point	 is
worth	a	moment’s	consideration,	as	some	may	be	tempted	to	say	that	the
corresponding	 “revolution”	 in	mathematical	 thinking,	 whose	 beginnings
are	now	plainly	apparent,	is	merely	an	echo	of	Zeno	and	other	doubters	of
ancient	Greece.

The	 difficulties	 of	 Pythagoras	 over	 the	 square	 root	 of	 2	 and	 the
paradoxes	of	Zeno	on	continuity	 (or	 “infinite	divisibility”)	 are—so	 far	 as
we	 know—the	 origins	 of	 our	 present	 mathematical	 schism.
Mathematicians	 today	 who	 pay	 any	 attention	 to	 the	 philosophy	 (or



foundations)	of	their	subject	are	split	into	at	least	two	factions,	apparently
beyond	present	hope	of	reconciliation,	over	 the	validity	of	 the	reasoning
used	 in	mathematical	analysis,	and	 this	disagreement	can	be	 traced	back
through	the	centuries	 to	the	Middle	Ages	and	thence	to	ancient	Greece.
All	 sides	 have	 had	 their	 representatives	 in	 all	 ages	 of	 mathematical
thought,	whether	that	thought	was	disguised	in	provocative	paradoxes,	as
with	Zeno,	or	in	logical	subtleties,	as	with	some	of	the	most	exasperating
logicians	of	 the	Middle	Ages.	The	root	of	 these	differences	 is	 commonly
accepted	 by	 mathematicians	 as	 being	 a	 matter	 of	 temperament:	 any
attempt	 to	 convert	 an	 analyst	 like	 Weierstrass	 to	 the	 skepticism	 of	 a
doubter	 like	 Kronecker	 is	 bound	 to	 be	 as	 futile	 as	 trying	 to	 convert	 a
Christian	fundamentalist	to	rabid	atheism.

A	 few	 dated	 quotations	 from	 leaders	 in	 the	 dispute	 may	 serve	 as	 a
stimulant—or	 sedative,	 according	 to	 taste—for	 our	 enthusiasm	 over	 the
singular	intellectual	career	of	Georg	Cantor,	whose	“positive	theory	of	the
infinite”	 precipitated,	 in	 our	 own	 generation,	 the	 fiercest	 frog-mouse
battle	(as	Einstein	once	called	it)	in	history	over	the	validity	of	traditional
mathematical	reasoning.

In	1831	Gauss	expressed	his	“horror	of	the	actual	infinite”	as	follows.	“I
protest	 against	 the	 use	 of	 infinite	 magnitude	 as	 something	 completed,
which	 is	 never	 permissible	 in	 mathematics.	 Infinity	 is	 merely	 a	 way	 of
speaking,	 the	 true	meaning	 being	 a	 limit	 which	 certain	 ratios	 approach
indefinitely	 close,	 while	 others	 are	 permitted	 to	 increase	 without
restriction.”

Thus,	 if	 x	 denotes	 a	 real	 number,	 the	 fraction	 1/x	 diminishes	 as	 x
increases,	and	we	can	find	a	value	of	x	such	that	1/x	differs	from	zero	by
any	preassigned	 amount	 (other	 than	 zero)	which	may	 be	 as	 small	 as	we
please,	and	as	x	continues	to	increase,	the	difference	remains	less	than	this
preassigned	amount;	the	 limit	of	1/x,	 “as	x	 tends	to	 infinity,”	 is	zero.	The
symbol	of	infinity	is	∞;	the	assertion	1/∞	=	0	is	nonsensical	for	two	reasons:
“division	by	infinity”	is	an	operation	which	is	undefined,	and	hence	has	no
meaning;	 the	 second	 reason	 was	 stated	 by	 Gauss.	 Similarly	 1/0	 =	 ∞	 is
meaningless.

Cantor	 agrees	 and	 disagrees	 with	 Gauss.	 Writing	 in	 1886	 on	 the
problem	of	the	actual	(what	Gauss	called	completed)	infinite,	Cantor	says
that	 “in	 spite	 of	 the	 essential	 difference	 between	 the	 concepts	 of	 the
potential	 and	 the	 actual	 ’infinite/	 the	 former	 meaning	 a	 variable	 finite



magnitude	 increasing	beyond	 all	 finite	 limits	 (like	x	 in	 l/x	 above),	while
the	latter	is	a	fixed,	constant	magnitude	lying	beyond	all	finite	magnitudes,
it	happens	only	too	often	that	they	are	confused.”

Cantor	goes	on	to	state	that	misuse	of	the	infinite	in	mathematics	had
justly	 inspired	 a	 horror	 of	 the	 infinite	 among	 careful	mathematicians	 of
his	 day,	 precisely	 as	 it	 did	 in	 Gauss.	 Nevertheless	 he	maintains	 that	 the
resulting	“uncritical	rejection	of	the	legitimate	actual	infinite	is	no	lesser	a
violation	 of	 the	 nature	 of	 things	 [whatever	 that	 may	 be—it	 does	 not
appear	 to	 have	 been	 revealed	 to	 mankind	 as	 a	 whole],	 which	 must	 be
taken	 as	 they	 are”—however	 that	 may	 be.	 Cantor	 thus	 definitely	 aligns
himself	with	the	great	theologians	of	the	Middle	Ages,	of	whom	he	was	a
deep	student	and	an	ardent	admirer.

Absolute	certainties	and	complete	solutions	of	age-old	problems	always
go	 down	 better	 if	 well	 salted	 before	 swallowing.	 Here	 is	 what	 Bertrand
Russell	 had	 to	 say	 in	 1901	 about	 Cantor’s	 Promethean	 attack	 on	 the
infinite.

“Zeno	was	concerned	with	three	problems.	.	.	.	These	are	the	problem
of	the	 infinitesimal,	 the	 infinite,	and	continuity.	 .	 .	 .	From	his	day	to	our
own,	 the	 finest	 intellects	 of	 each	 generation	 in	 turn	 attacked	 these
problems,	 but	 achieved,	 broadly	 speaking,	 nothing.	 .	 .	 .	 Weierstrass,
Dedekind,	 and	 Cantor	 .	 .	 .	 have	 completely	 solved	 them.	 Their
solutions	 .	 .	 .	 are	 so	 clear	 as	 to	 leave	 no	 longer	 the	 slightest	 doubt	 of
difficulty.	This	achievement	is	probably	the	greatest	of	which	the	age	can
boast.	.	.	.	The	problem	of	the	infinitesimal	was	solved	by	Weierstrass,	the
solution	 of	 the	 other	 two	 was	 begun	 by	 Dedekind	 and	 definitely
accomplished	by	Cantor.”I

The	enthusiasm	of	this	passage	warms	us	even	today,	although	we	know
that	 Russell	 in	 the	 second	 edition	 (1924)	 of	 his	 and	 A.	 N.	Whitehead’s
Principia	 Mathematica	 admitted	 that	 all	 was	 not	 well	 with	 the	 Dedekind
“cut”	(see	Chapter	27),	which	is	 the	spinal	cord	of	analysis.	Nor	is	 it	well
today.	 More	 is	 done	 for	 or	 against	 a	 particular	 creed	 in	 science	 or
mathematics	in	a	decade	than	was	accomplished	in	a	century	of	antiquity,
the	 Middle	 Ages,	 or	 the	 late	 renaissance.	 More	 good	 minds	 attack	 an
outstanding	 scientific	 or	 mathematical	 problem	 today	 than	 ever	 before,
and	finality	has	become	the	private	property	of	fundamentalists.	Not	one
of	 the	 finalities	 in	Russell’s	 remarks	of	1901	has	 survived.	A	quarter	of	 a
century	 ago	 those	 who	 were	 unable	 to	 see	 the	 great	 light	 which	 the



prophets	 assured	 them	 was	 blazing	 overhead	 like	 the	 noonday	 sun	 in	 a
midnight	sky	were	called	merely	stupid.	Today	for	every	competent	expert
on	 the	 side	of	 the	prophets	 there	 is	 an	 equally	 competent	 and	opposite
expert	 against	 them.	 If	 there	 is	 stupidity	 anywhere	 it	 is	 so	 evenly
distributed	that	it	has	ceased	to	be	a	mark	of	distinction.	We	are	entering	a
new	era,	one	of	doubt	and	decent	humility.

On	the	doubtful	side	about	the	same	time	(1905)	we	find	Poincaré.	“I
have	spoken	.	.	.	of	our	need	to	return	continually	to	the	first	principles	of
our	 science,	 and	 of	 the	 advantages	 of	 this	 for	 the	 study	 of	 the	 human
mind.	This	need	has	 inspired	two	enterprises	which	have	assumed	a	very
prominent	 place	 in	 the	 most	 recent	 development	 of	 mathematics.	 The
first	 is	 Cantorism.	 .	 .	 .	 Cantor	 introduced	 into	 science	 a	 new	 way	 of
considering	 the	mathematical	 infinite	 .	 .	 .	but	 it	has	come	about	 that	we
have	encountered	certain	paradoxes,	certain	apparent	contradictions	that
would	have	delighted	Zeno	the	Eleatic	and	the	school	of	Megara.	So	each
must	seek	the	remedy.	I	for	my	part—and	I	am	not	alone—think	that	the
important	thing	is	never	to	introduce	entities	not	completely	definable	in
a	finite	number	of	words.	Whatever	be	the	cure	adopted,	we	may	promise
ourselves	the	joy	of	the	physician	called	in	to	treat	a	beautiful	pathologic
case.”

A	 few	years	 later	Poincaré’s	 interest	 in	pathology	 for	 its	own	sake	had
abated	somewhat.	At	the	International	Mathematical	Congress	of	1908	at
Rome,	 the	 satiated	 physician	 delivered	 himself	 of	 this	 prognosis:	 “Later
generations	 will	 regard	 Mengenlehre	 as	 a	 disease	 from	 which	 one	 has
recovered.”

It	was	Cantor’s	greatest	merit	to	have	discovered	in	spite	of	himself	and
against	 his	 own	 wishes	 in	 the	 matter	 that	 the	 “body	 mathematic”	 is
profoundly	diseased	and	that	the	sickness	with	which	Zeno	infected	it	has
not	 yet	 been	 alleviated.	His	 disturbing	discovery	 is	 a	 curious	 echo	of	his
own	 intellectual	 life.	 We	 shall	 first	 glance	 at	 the	 facts	 of	 his	 material
existence,	 not	 of	 much	 interest	 in	 themselves,	 perhaps,	 but	 singularly
illuminative	in	their	later	aspects	of	his	theory.

*		*		*

Of	pure	Jewish	descent	on	both	sides,	Georg	Ferdinand	Ludwig	Philipp
Cantor	 was	 the	 first	 child	 of	 the	 prosperous	merchant	Georg	Waldemar



Cantor	 and	 his	 artistic	 wife	 Maria	 Böhm.	 The	 father	 was	 born	 in
Copenhagen,	Denmark,	 but	migrated	 as	 a	 young	man	 to	 St.	 Petersburg,
Russia,	 where	 the	 mathematician	 Georg	 Cantor	 was	 born	 on	 March	 3,
1845.	Pulmonary	disease	caused	the	father	to	move	in	1856	to	Frankfurt,
Germany,	where	he	lived	in	comfortable	retirement	till	his	death	in	1863.
From	 this	 curious	 medley	 of	 nationalities	 it	 is	 possible	 for	 several
fatherlands	to	claim	Cantor	as	their	son.	Cantor	himself	favored	Germany,
but	it	cannot	be	said	that	Germany	favored	him	very	cordially.

Georg	had	a	brother	Constantin,	who	became	a	German	army	officer
(very	few	Jews	ever	did),	and	a	sister,	Sophie	Nobiling.	The	brother	was	a
fine	pianist;	 the	sister	an	accomplished	designer.	Georg’s	pent-up	artistic
nature	 found	 its	 turbulent	 outlet	 in	 mathematics	 and	 philosophy,	 both
classical	and	scholastic.	The	marked	artistic	temperaments	of	the	children
were	 inherited	 from	 their	 mother,	 whose	 grandfather	 was	 a	 musical
conductor,	one	of	whose	brothers,	living	in	Vienna,	taught	the	celebrated
violinist	 Joachim.	A	brother	of	Maria	Cantor	was	a	musician,	and	one	of
her	 nieces	 a	 painter.	 If	 it	 is	 true,	 as	 claimed	 by	 the	 psychological
proponents	of	drab	mediocrity,	that	normality	and	phlegmatic	stability	are
equivalent,	all	this	artistic	brilliance	in	his	family	may	have	been	the	root
of	Cantor’s	instability.

The	 family	 were	 Christians,	 the	 father	 having	 been	 converted	 to
Protestantism;	 the	 mother	 was	 born	 a	 Roman	 Catholic.	 Like	 his
archenemy	Kronecker,	Cantor	favored	the	Protestant	side	and	acquired	a
singular	 taste	 for	 the	 endless	 hairsplitting	 of	medieval	 theology.	Had	he
not	become	a	mathematician	it	is	quite	possible	that	he	would	have	left	his
mark	on	philosophy	or	theology.	As	an	item	of	interest	that	may	be	noted
in	this	connection,	Cantor’s	theory	of	the	infinite	was	eagerly	pounced	on
by	 the	 Jesuits,	 whose	 keen	 logical	 minds	 detected	 in	 the	 mathematical
imagery	 beyond	 their	 theological	 comprehension	 indubitable	 proofs	 of
the	existence	of	God	and	 the	 self-consistency	of	 the	Holy	Trinity	with	 its
three-in-one,	 one-in-three,	 co-equal	 and	 co-eternal.	 Mathematics	 has
strutted	 to	some	pretty	queer	 tunes	 in	 the	past	2500	years,	but	 this	 takes
the	 cake.	 It	 is	 only	 fair	 to	 say	 that	 Cantor,	 who	 had	 a	 sharp	 wit	 and	 a
sharper	tongue	when	he	was	angered,	ridiculed	the	pretentious	absurdity
of	 such	 “proofs,”	 devout	 Christian	 and	 expert	 theologian	 though	 he
himself	was.



Cantor’s	 school	 career	 was	 like	 that	 of	 most	 highly	 gifted
mathematicians—an	 early	 recognition	 (before	 the	 age	 of	 fifteen)	 of	 his
greatest	talent	and	an	absorbing	interest	in	mathematical	studies.	His	first
instruction	 was	 under	 a	 private	 tutor,	 followed	 by	 a	 course	 in	 an
elementary	school	in	St.	Petersburg.	When	the	family	moved	to	Germany,
Cantor	 first	 attended	 private	 schools	 at	 Frankfurt	 and	 the	 Darmstadt
nonclassical	 school,	 entering	 the	Wiesbaden	 Gymnasium	 in	 1860	 at	 the
age	of	fifteen.

Georg	 was	 determined	 to	 become	 a	 mathematician,	 but	 his	 practical
father,	 recognizing	 the	 boy’s	 mathematical	 ability,	 obstinately	 tried	 to
force	 him	 into	 engineering	 as	 a	 more	 promising	 bread-and-butter
profession.	On	 the	occasion	of	Cantor’s	 confirmation	 in	 1860	his	 father
wrote	 to	 him	 expressing	 the	 high	 hopes	 he	 and	 all	 Georg’s	 numerous
aunts,	uncles,	and	cousins	 in	Germany,	Denmark,	and	Russia	had	placed
on	 the	 gifted	 boy:	 “They	 expect	 from	 you	 nothing	 less	 than	 that	 you
become	a	Theodor	Schaeffer	and	later,	perhaps,	if	God	so	wills,	a	shining
star	 in	 the	 engineering	 firmament.”	 When	 will	 parents	 recognize	 the
presumptuous	stupidity	of	trying	to	make	a	cart	horse	out	of	a	born	racer?

The	pious	appeal	to	God	which	was	intended	to	blackjack	the	sensitive,
religious	boy	of	fifteen	into	submission	in	1860	would	today	(thank	God!)
rebound	 like	 a	 tennis	 ball	 from	 the	 harder	 heads	 of	 our	 own	 younger
generation.	But	it	hit	Cantor	pretty	hard.	In	fact	it	knocked	him	out	cold.
Loving	his	father	devotedly	and	being	of	a	deeply	religious	nature,	young
Cantor	 could	not	 see	 that	 the	old	man	was	merely	 rationalizing	his	own
absurd	ambition.	Thus	began	the	first	warping	of	Georg	Cantor’s	acutely
sensitive	mind.	 Instead	of	 rebelling,	 as	 a	 gifted	boy	 today	might	do	with
some	hope	of	success,	Georg	submitted	till	it	became	apparent	even	to	the
obstinate	 father	 that	 he	 was	 wrecking	 his	 son’s	 disposition.	 But	 in	 the
process	 of	 trying	 to	 please	 his	 father	 against	 the	 promptings	 of	 his	 own
instincts	 Georg	 Cantor	 sowed	 the	 seeds	 of	 the	 self-distrust	 which	 was	 to
make	 him	 an	 easy	 victim	 for	 Kronecker’s	 vicious	 attack	 in	 later	 life	 and
cause	him	to	doubt	the	value	of	his	work.	Had	Cantor	been	brought	up	as
an	 independent	 human	 being	 he	 would	 never	 have	 acquired	 the	 timid
deference	to	men	of	established	reputation	which	made	his	life	wretched.

The	 father	 gave	 in	 when	 the	mischief	 was	 already	 done.	 On	 Georg’s
completion	of	his	 school	course	with	distinction	at	 the	age	of	 seventeen,
he	 was	 permitted	 by	 “dear	 papa”	 to	 seek	 a	 university	 career	 in



mathematics.	 “My	dear	papa!”	Georg	writes	 in	his	boyish	gratitude:	 “You
can	 realize	 for	 yourself	 how	 greatly	 your	 letter	 delighted	me.	 The	 letter
fixes	my	future.	 .	 .	 .	Now	I	am	happy	when	I	see	that	it	will	not	displease
you	if	I	follow	my	feelings	in	the	choice.	I	hope	you	will	live	to	find	joy	in
me,	dear	father;	since	my	soul,	my	whole	being,	lives	in	my	vocation;	what
a	man	desires	 to	do,	and	 that	 to	which	an	 inner	compulsion	drives	him,
that	will	he	accomplish!”	Papa	no	doubt	deserves	a	vote	of	thanks,	even	if
Georg’s	gratitude	is	a	shade	too	servile	for	a	modern	taste.

Cantor	began	his	university	 studies	at	Zurich	 in	1862,	but	migrated	to
the	University	of	Berlin	the	following	year,	on	the	death	of	his	father.	At
Berlin	 he	 specialized	 in	mathematics,	 philosophy,	 and	 physics.	 The	 first
two	divided	his	interests	about	equally;	for	physics	he	never	had	any	sure
feeling.	In	mathematics	his	instructors	were	Kummer,	Weierstrass,	and	his
future	 enemy	 Kronecker.	 Following	 the	 usual	 German	 custom,	 Cantor
spent	 a	 short	 time	 at	 another	 university,	 and	 was	 in	 residence	 for	 one
semester	of	1866	at	Göttingen.

With	Kummer	and	Kronecker	at	Berlin	 the	mathematical	 atmosphere
was	highly	charged	with	arithmetic.	Cantor	made	a	profound	study	of	the
Disquisitiones	Arithmeticae	of	Gauss	and	wrote	his	dissertation,	accepted	for
the	Ph.D.	degree	in	1867,	on	a	difficult	point	which	Gauss	had	left	aside
concerning	the	solution	in	integers	x,	y,	z	of	the	indeterminate	equation

ax2	+	by2	+	cz2	=	0,

where	a,	b,	c	are	any	given	integers.	This	was	a	fine	piece	of	work,	but	it
is	 safe	 to	 say	 that	 no	 mathematician	 who	 read	 it	 anticipated	 that	 the
conservative	author	of	twenty	two	was	to	become	one	of	the	most	radical
originators	in	the	history	of	mathematics.	Talent	no	doubt	is	plain	enough
in	this	first	attempt,	but	genius—no.	There	is	not	a	single	hint	of	the	great
originator	in	this	severely	classical	dissertation.

The	like	may	be	said	for	all	of	Cantor’s	earliest	work	published	before
he	 was	 twenty	 nine.	 It	 was	 excellent,	 but	might	 have	 been	 done	 by	 any
brilliant	man	who	had	thoroughly	absorbed,	as	Cantor	had,	 the	doctrine
of	rigorous	proof	 from	Gauss	and	Weierstrass.	Cantor’s	 first	 love	was	 the
Gaussian	theory	of	numbers,	to	which	he	was	attracted	by	the	hard,	sharp,
clear	 perfection	 of	 the	 proofs.	 From	 this,	 under	 the	 influence	 of	 the



Weierstrassians,	 he	 presently	 branched	 off	 into	 rigorous	 analysis,
particularly	in	the	theory	of	trigonometric	series	(Fourier	series).

The	subtle	difficulties	of	this	theory	(where	questions	of	convergence	of
infinite	 series	 are	 less	 easily	 approachable	 than	 in	 the	 theory	 of	 power
series)	seem	to	have	inspired	Cantor	to	go	deeper	for	the	foundations	of
analysis	than	any	of	his	contemporaries	had	cared	to	look,	and	he	was	led
to	 his	 grand	 attack	 on	 the	 mathematics	 and	 philosophy	 of	 the	 infinite
itself,	which	is	at	the	bottom	of	all	questions	concerning	continuity,	limits,
and	 convergence.	 Just	 before	 he	 was	 thirty,	 Cantor	 published	 his	 first
revolutionary	paper	(in	Crelle’s	Journal)	on	the	theory	of	infinite	sets.	This
will	 be	 described	 presently.	 The	 unexpected	 and	 paradoxical	 result
concerning	 the	 set	of	all	 algebraic	numbers	which	Cantor	 established	 in
this	 paper	 and	 the	 complete	 novelty	 of	 the	 methods	 employed
immediately	 marked	 the	 young	 author	 as	 a	 creative	 mathematician	 of
extraordinary	originality.	Whether	all	agreed	 that	 the	new	methods	were
sound	or	not	 is	 beside	 the	point;	 it	 was	 universally	 admitted	 that	 a	man
had	arrived	with	something	fundamentally	new	in	mathematics.	He	should
have	been	given	an	influential	position	at	once.

*		*		*

Cantor’s	material	 career	 was	 that	 of	 any	 of	 the	 less	 eminent	 German
professors	 of	 mathematics.	 He	 never	 achieved	 his	 ambition	 of	 a
professorship	 at	 Berlin,	 possibly	 the	 highest	 German	 distinction	 during
the	period	of	Cantor’s	greatest	and	most	original	productivity	(1874-1884,
age	twenty	nine	to	thirty	nine).	All	his	active	professional	career	was	spent
at	 the	University	of	Halle,	a	distinctly	 third-rate	 institution,	where	he	was
appointed	Privatdozent	 (a	 lecturer	 who	 lives	 by	 what	 fees	 he	 can	 collect
from	his	students)	in	1869	at	the	age	of	twenty	four.	In	1872	he	was	made
assistant	 professor	 and	 in	 1879—before	 the	 criticism	 of	 his	 work	 had
begun	to	assume	the	complexion	of	a	malicious	personal	attack	on	himself
—he	was	appointed	full	professor.	His	earliest	teaching	experience	was	in
a	 girls’	 school	 in	 Berlin.	 For	 this	 curiously	 inappropriate	 task	 he	 had
qualified	 himself	 by	 listening	 to	 dreary	 lectures	 on	 pedagogy	 by	 an
uninspired	mathematical	 mediocrity	 before	 securing	 his	 state	 license	 to
teach	children.	More	social	waste.



Rightly	or	wrongly,	Cantor	blamed	Kronecker	 for	his	 failure	 to	obtain
the	 coveted	 position	 at	 Berlin.	 When	 two	 academic	 specialists	 disagree
violently	 on	 purely	 scientific	 matters,	 they	 have	 a	 choice,	 if	 discretion
seems	 the	 better	 part	 of	 valor,	 of	 laughing	 their	 hatreds	 off	 and	 not
making	a	fuss	about	them,	or	of	acting	in	any	of	the	number	of	belligerent
ways	 that	 other	 people	 resort	 to	 when	 confronted	 with	 situations	 of
antagonism.	 One	 way	 is	 to	 go	 at	 the	 other	 in	 an	 efficient,	 underhand
manner,	which	often	enables	one	to	gain	his	spiteful	end	under	the	guise
of	 sincere	 friendship.	 Nothing	 of	 the	 sort	 here!	 When	 Cantor	 and
Kronecker	fell	out,	they	disagreed	all	over,	threw	reserve	to	the	dogs,	and
did	everything	but	 slit	 the	other’s	 throat.	Perhaps	after	all	 this	 is	a	more
decent	 way	 of	 fighting—if	 men	 must	 fight—than	 the	 sanctimonious
hypocrisy	of	the	other.	The	object	of	any	war	is	to	destroy	the	enemy,	and
being	sentimental	or	chivalrous	about	the	unpleasant	business	is	the	mark
of	 an	 incompetent	 fighter.	 Kronecker	 was	 one	 of	 the	 most	 competent
warriors	 in	 the	 history	 of	 scientific	 controversy;	 Cantor,	 one	 of	 the	 least
competent.	 Kronecker	 won.	 But,	 as	 will	 appear	 later,	 Kronecker’s	 bitter
animosity	 toward	 Cantor	 was	 not	 wholly	 personal	 but	 at	 least	 partly
scientific	and	disinterested.

The	year	1874	which	saw	the	appearance	of	Cantor’s	first	revolutionary
paper	 on	 the	 theory	 of	 sets	 was	 also	 that	 of	 his	marriage,	 at	 the	 age	 of
twenty	nine,	 to	Vally	Guttmann.	Two	sons	and	four	daughters	were	born
of	 this	 marriage.	 None	 of	 the	 children	 inherited	 their	 father’s
mathematical	ability.

On	 their	 honeymoon	 at	 Interlaken	 the	 young	 couple	 saw	 a	 lot	 of
Dedekind,	perhaps	the	one	first-rate	mathematician	of	the	time	who	made
a	 serious	 and	 sympathetic	 attempt	 to	 understand	 Cantor’s	 subversive
doctrine.

Himself	 somewhat	 of	 a	 persona	 non	 grata	 to	 the	 leading	 German
overlords	of	mathematics	in	the	last	quarter	of	the	nineteenth	century,	the
profoundly	 original	 Dedekind	 was	 in	 a	 position	 to	 sympathize	 with	 the
scientifically	 disreputable	 Cantor.	 It	 is	 sometimes	 imagined	 by	 outsiders
that	 originality	 is	 always	 assured	 of	 a	 cordial	 welcome	 in	 science.	 The
history	 of	 mathematics	 contradicts	 this	 happy	 fantasy:	 the	 way	 of	 the
transgressor	 in	a	well	established	science	 is	 likely	 to	be	as	hard	as	 it	 is	 in
any	 other	 field	 of	 human	 conservatism,	 even	 when	 the	 transgressor	 is



admitted	 to	 have	 found	 something	 valuable	 by	 overstepping	 the	 narrow
bounds	of	bigoted	orthodoxy.

Both	Dedekind	and	Cantor	got	what	they	might	have	expected	had	they
paused	to	consider	before	striking	out	in	new	directions.	Dedekind	spent
his	 entire	 working	 life	 in	 mediocre	 positions;	 the	 claim—now	 that
Dedekind’s	work	is	recognized	as	one	of	the	most	important	contributions
to	mathematics	 that	Germany	has	 ever	made—that	Dedekind	preferred	 to
stay	 in	 obscure	 holes	 while	 men	 who	 were	 in	 no	 sense	 his	 intellectual
superiors	shone	like	tin	plates	in	the	glory	of	public	and	academic	esteem,
strikes	observers	who	are	 themselves	“Aryans”	but	not	Germans	as	highly
diluted	eyewash.

The	 ideal	 of	 German	 scholarship	 in	 the	 nineteenth	 century	 was	 the
lofty	one	of	a	thoroughly	coordinated	“safety	first,”	and	perhaps	rightly	it
showed	an	extreme	Gaussian	caution	toward	radical	originality—the	new
thing	might	 conceivably	 be	 not	 quite	 right.	 After	 all	 an	 honestly	 edited
encyclopaedia	 is	 in	 general	 a	more	 reliable	 source	of	 information	 about
the	 soaring	 habits	 of	 skylarks	 than	 a	 poem,	 say	 Shelley’s,	 on	 the	 same
topic.

In	 such	an	 atmosphere	of	 cloying	 alleged	 fact,	Cantor’s	 theory	of	 the
infinite—one	 of	 the	 most	 disturbingly	 original	 contributions	 to
mathematics	 in	 the	 past	 2500	 years—felt	 about	 as	 much	 freedom	 as	 a
skylark	trying	to	soar	up	through	an	atmosphere	of	cold	glue.	Even	if	the
theory	 was	 totally	 wrong—and	 there	 are	 some	 who	 believe	 it	 cannot	 be
salvaged	 in	 any	 shape	 resembling	 the	 thing	 Cantor	 thought	 he	 had
launched—it	 deserved	 something	 better	 than	 the	 brickbats	 which	 were
hurled	at	it	chiefly	because	it	was	new	and	unbaptized	in	the	holy	name	of
orthodox	mathematics.

*		*		*

The	 pathbreaking	 paper	 of	 1874	 undertook	 to	 establish	 a	 totally
unexpected	 and	 highly	 paradoxical	 property	 of	 the	 set	 of	 all	 algebraic
numbers.	 Although	 such	 numbers	 have	 been	 frequently	 described	 in
preceding	 chapters,	 we	 shall	 state	 once	more	what	 they	 are,	 in	 order	 to
bring	out	clearly	the	nature	of	the	astounding	fact	which	Cantor	proved—
in	saying	“proved”	we	deliberately	 ignore	 for	 the	present	all	doubts	as	 to
the	soundness	of	the	reasoning	used	by	Cantor.



If	 r	 satisfies	 an	 algebraic	 equation	 of	 degree	 n	 with	 rational	 integer
(common	whole	number)	coefficients,	and	if	r	 satisfies	no	such	equation
of	degree	less	than	n,	then	r	is	an	algebraic	number	of	degree	n.

This	 can	 be	 generalized.	 For	 it	 is	 easy	 to	 prove	 that	 any	 root	 of	 an
equation	of	the	type

c0xn	+	c1xn–1	+	.	.	.	+	cn–1x	+	cn	=	0,

in	which	the	c’s	are	any	given	algebraic	numbers	(as	defined	above),	is	itself
an	algebraic	number.	For	example,	according	to	this	theorem,	all	roots	of

are	 algebraic	 numbers,	 since	 the	 coefficients	 are.	 (The	 first	 coefficient
satisfies	x2	−2x	+	10	=	0,	the	second,	x2	-	4x−	421	=0,	the	third,	x3	−90	=	0,	of
the	respective	degrees	2,	2,	3.)

Imagine	(if	you	can)	the	set	of	all	algebraic	numbers.	Among	these	will
be	all	the	positive	rational	integers	1,	2,	3,	.	.	.,	since	any	one	of	them,	say
n,	satisfies	an	algebraic	equation,	x—n	=	0,	in	which	the	coefficients	(l,	and
—n)	 are	 rational	 integers.	 But	 in	 addition	 to	 these	 the	 set	 of	 all	 algebraic
numbers	 will	 include	 all	 roots	 of	 all	 quadratic	 equations	 with	 rational
integer	 coefficients,	 and	 all	 roots	 of	 all	 cubic	 equations	 with	 rational
integer	coefficients,	and	so	on,	indefinitely.	Is	it	not	intuitively	evident	 that
the	set	of	all	algebraic	numbers	will	contain	infinitely	more	members	than	its
sub-set	 of	 the	 rational	 integers	 1,	 2,	 3,	 .	 .	 .?	 It	might	 indeed	be	 so,	 but	 it
happens	to	be	false.

Cantor	proved	that	the	set	of	all	rational	 integers	1,	2,	3,	 .	 .	 .	contains
precisely	 as	 many	 members	 as	 the	 “infinitely	 more	 inclusive”	 set	 of	 all
algebraic	numbers.

A	 proof	 of	 this	 paradoxical	 statement	 cannot	 be	 given	 here,	 but	 the
kind	 of	 device—that	 of	 “one-to-one	 correspondence”—upon	 which	 the
proof	 is	based	can	easily	be	made	 intelligible.	This	 should	 induce	 in	 the
philosophical	mind	an	understanding	of	what	a	cardinal	number	 is.	Before
describing	 this	 simple	but	 somewhat	elusive	 concept	 it	will	be	helpful	 to
glance	 at	 an	 expression	 of	 opinion	 on	 this	 and	 other	 definitions	 of
Cantor’s	 theory	 which	 emphasizes	 a	 distinction	 between	 the	 attitudes	 of
some	 mathematicians	 and	 many	 philosophers	 toward	 all	 questions
regarding	“number”	or	“magnitude.”



“A	 mathematician	 never	 defines	 magnitudes	 in	 themselves,	 as	 a
philosopher	would	be	tempted	to	do;	he	defines	their	equality,	their	sum
and	 their	product,	and	 these	definitions	determine,	or	 rather	constitute,
all	the	mathematical	properties	of	magnitudes.	In	a	yet	more	abstract	and
more	formal	manner	he	lays	down	symbols	and	at	the	same	time	prescribes
the	rules	according	to	which	they	must	be	combined;	these	rules	suffice	to
characterize	these	symbols	and	to	give	them	a	mathematical	value.	Briefly,
he	creates	mathematical	entities	by	means	of	arbitrary	conventions,	in	the
same	way	that	the	several	chessmen	are	defined	by	the	conventions	which
govern	their	moves	and	the	relations	between	them.”II	Not	all	 schools	of
mathe	matical	thought	would	subscribe	to	these	opinions,	but	they	suggest
at	 least	 one	 “philosophy”	 responsible	 for	 the	 following	 definition	 of
cardinal	numbers.

Note	that	the	initial	stage	in	the	definition	is	 the	description	of	“same
cardinal	number,”	 in	 the	 spirit	of	Couturat’s	opening	 remarks;	 “cardinal
number”	then	arises	phoenix-like	from	the	ashes	of	its	“sameness.”	It	is	all
a	matter	of	relations	between	concepts	not	explicitly	defined.

Two	sets	are	said	to	have	the	same	cardinal	number	when	all	the	things	in
the	sets	can	be	paired	off	one-to-one.	After	 the	pairing	there	are	to	be	no
unpaired	things	in	either	set.

Some	 examples	 will	 clarify	 this	 esoteric	 definition.	 It	 is	 one	 of	 those
trivially	obvious	and	fecund	nothings	which	are	so	profound	that	they	are
overlooked	for	thousands	of	years.	The	sets	(x,	y,	z),	(a,	b,	c)	have	the	 same
cardinal	 number	 (we	 shall	 not	 commit	 the	 blunder	 of	 saying	 “Of	 course!
Each	contains	 three	 letters”)	because	we	can	pair	off	 the	 things	x,	 y,	 z	 in	 the
first	set	with	those,	a,	b,	c	in	the	second	as	follows,	x	with	a,	y	with	b,	z	with
c,	 and	 having	 done	 so,	 find	 that	 none	 remain	 unpaired	 in	 either	 set.
Obviously	 there	 are	 other	 ways	 for	 effecting	 the	 pairing.	 Again,	 in	 a
Christian	 community	 practising	 technical	 monogamy,	 if	 twenty	 married
couples	 sit	 down	 together	 to	 dinner,	 the	 set	 of	 husbands	 will	 have	 the
same	cardinal	number	as	the	set	of	wives.

As	 another	 instance	 of	 this	 “obvious”	 sameness,	 we	 recall	 Galileo’s
example	 of	 the	 set	 of	 all	 squares	 of	 positive	 integers	 and	 the	 set	 of	 all
positive	integers:

12,	22,	32,	42,	.	.	.	,	n2,	.	.	.
1,	2,	3,	4,	.	.	.,	n,	.	.	.



The	“paradoxical”	distinction	between	this	and	the	preceding	examples
is	 apparent.	 If	 all	 the	 wives	 retire	 to	 the	 drawing	 room,	 leaving	 their
spouses	 to	 sip	port	 and	 tell	 stories,	 there	will	be	precisely	 twenty	human
beings	sitting	at	the	table,	just	half	as	many	as	there	were	before.	But	if	all
the	squares	desert	the	natural	numbers,	there	are	just	as	many	left	as	there
were	before.	Dislike	it	or	not	as	we	may	(we	should	not,	if	we	are	rational
animals),	the	crude	miracle	stares	us	in	the	face	that	a	part	of	a	set	may	have
the	 same	 cardinal	 number	 as	 the	 entire	 set.	 If	 anyone	 dislikes	 the	 “pairing”
definition	of	“same	cardinal	number,”	he	may	be	challenged	to	produce	a
comelier.	 Intuition	 (male,	 female,	 or	 mathematical)	 has	 been	 greatly
overrated.	Intuition	is	the	root	of	all	superstition.

Notice	 at	 this	 stage	 that	 a	 difficulty	 of	 the	 first	 magnitude	 has	 been
glossed.	What	 is	 a	 set,	 or	 a	 class?	 “That,”	 in	 the	 words	 of	Hamlet,	 is	 “the
question.”	 We	 shall	 return	 to	 it,	 but	 we	 shall	 not	 answer	 it.	 Whoever
succceeds	in	answering	that	innocent	question	to	the	entire	satisfaction	of
Cantor’s	 critics	 will	 quite	 likely	 dispose	 of	 the	 more	 serious	 objections
against	his	ingenious	theory	of	the	infinite	and	at	the	same	time	establish
mathematical	analysis	on	a	non-emotional	basis.	To	see	that	the	difficulty
is	 not	 trivial,	 try	 to	 imagine	 the	 set	 of	 all	 positive	 rational	 integers	 1,	 2,
S,	.	.	.	,	and	ask	yourself	whether,	with	Cantor,	you	can	hold	this	totality—
which	 is	a	“class”—in	your	mind	as	a	definite	object	of	 thought,	as	easily
apprehended	as	the	class	x,	y,	z	of	three	letters.	Cantor	requires	us	to	do
just	this	thing	in	order	to	reach	the	transfinite	numbers	which	he	created.

Proceeding	now	to	the	definition	of	“cardinal	number,”	we	introduce	a
convenient	 technical	 term:	 two	 sets	 or	 classes	 whose	 members	 can	 be
paired	off	one-to-one	(as	in	the	examples	given	previously)	are	said	to	be
similar.	How	many	 things	are	 there	 in	 the	 set	(or	class)	x,	y,f	 z?	Obviously
three.	 But	 what	 is	 “three”?	 An	 answer	 is	 contained	 in	 the	 following
definition:	“The	number	of	 things	 in	a	given	class	 is	 the	class	of	all	 classes
that	are	similar	to	the	given	class.”

This	definition	gains	nothing	 from	attempted	explanation;	 it	must	be
grasped	 as	 it	 is.	 It	 was	 proposed	 in	 1879	 by	 Gottlob	 Frege,	 and	 again
(independently)	by	Bertrand	Russell	in	1901.	One	advantage	which	it	has
over	other	definitions	of	“cardinal	number	of	a	class”	is	its	applicability	to
both	 finite	 and	 infinite	 classes.	 Those	 who	 believe	 the	 definition	 too
mystical	 for	mathematics	 can	avoid	 it	by	 following	Couturat’s	 advice	and



not	attempting	to	define	 “cardinal	number.”	However,	 that	way	also	 leads
to	difficulties.

Cantor’s	 spectacular	 result	 that	 the	 class	 of	 all	 algebraic	 numbers	 is
similar	 (in	 the	 technical	 sense	 defined	 above)	 to	 its	 sub-class	 of	 all	 the
positive	 rational	 integers	 was	 but	 the	 first	 of	 many	 wholly	 unexpected
properties	of	infinite	classes.	Granting	for	the	moment	that	his	reasoning
in	 reaching	 these	 properties	 is	 sound,	 or,	 if	 not	 unobjectionable	 in	 the
form	in	which	Cantor	left	it,	that	it	can	be	made	rigorous,	we	must	admit
its	power.

Consider	for	example	the	“existence”	of	transcendental	numbers.	In	an
earlier	chapter	we	saw	what	a	tremendous	effort	it	cost	Hermite	to	prove
the	transcendence	of	a	particular	number	of	this	kind.	Even	today	there	is
no	 general	 method	 known	 whereby	 the	 transcendence	 of	 any	 number
which	we	suspect	is	transcendental	can	be	proved;	each	new	type	requires
the	 invention	 of	 special	 and	 ingenious	 methods.	 It	 is	 suspected,	 for
example,	that	the	number	(it	is	a	constant,	although	it	looks	as	if	it	might
be	a	variable	from	its	definition)	which	is	defined	as	the	limit	of

as	n	 tends	 to	 infinity,	 is	 transcendental,	 but	 we	 cannot	 prove	 that	 it	 is.
What	is	required	is	to	show	that	this	constant	is	not	a	root	of	any	algebraic
equation	with	rational	integer	coefficients.

All	 this	 suggests	 the	question	“How	many	 transcendental	numbers	are
there?”	Are	they	more	numerous	than	the	integers,	or	the	rationals,	or	the
algebraic	 numbers	 as	 a	 whole,	 or	 are	 they	 less	 numerous?	 Since	 (by
Cantor’s	 theorem)	 the	 integers,	 the	 rationals,	 and	all	 algebraic	 numbers
are	 equally	 numerous,	 the	 question	 amounts	 to	 this:	 can	 the
transcendental	 numbers	 be	 counted	 off	 1,	 2,	 3,	 .	 .	 .?	 Is	 the	 class	 of	 all
transcendental	numbers	similar	to	the	class	of	all	positive	rational	integers?
The	answer	 is	no;	 the	transcendentals	are	 infinitely	more	numerous	 than	the
integers.

Here	we	begin	to	get	into	the	controversial	aspects	of	the	theory	of	sets.
The	 conclusion	 just	 stated	was	 like	 a	 challenge	 to	 a	man	of	Kronecker’s
temperament.	Discussing	Lindemann’s	proof	that	π	is	transcendental	(see
Chapter	24),	Kronecker	asked,	“Of	what	use	is	your	beautiful	investigation
regarding	 π?	 Why	 study	 such	 problems,	 since	 irrational	 [and	 hence



transcendental]	numbers	do	not	exist?”	We	can	imagine	the	effect	on	such
a	skepticism	of	Cantor’s	proof	that	the	transcendentals	are	infinitely	more
numerous	than	the	integers	1,	2,	3,	.	.	.	which,	according	to	Kronecker,	are
the	noblest	work	of	God	and	the	only	numbers	that	do	“exist.”

Even	 a	 summary	 of	 Cantor’s	 proof	 is	 out	 of	 the	 question	 here,	 but
something	 of	 the	 kind	 of	 reasoning	 he	 used	 can	 be	 seen	 from	 the
following	simple	considerations.	If	a	class	is	similar	(in	the	above	technical
sense)	 to	 the	 class	 of	 all	 positive	 rational	 integers,	 the	 class	 is	 said	 to	be
denumerable.	 The	 things	 in	 a	 denumerable	 class	 can	be	 counted	off	 1,	 2,
3,	.	.	.;	the	things	in	a	non-denumerable	class	can	not	be	counted	off	1,	2,
3,	 .	 .	 .	 :	 there	will	 be	more	 things	 in	 a	non-denumerable	 class	 than	 in	 a
denumerable	class.	Do	non-denumerable	classes	exist?	Cantor	proved	that
they	do.	In	fact	the	class	of	all	points	on	any	line-segment,	no	matter	how
small	 the	 segment	 is	 (provided	 it	 is	 more	 than	 a	 single	 point),	 is	 non-
denumerable.

From	 this	 we	 see	 a	 hint	 of	 why	 the	 transcendentals	 are	 non-
denumerable.	 In	 the	 chapter	 on	 Gauss	 we	 saw	 that	 any	 root	 of	 any
algebraic	 equation	 is	 representable	by	 a	point	on	 the	plane	of	Cartesian
geometry.	All	these	roots	constitute	the	set	of	all	algebraic	numbers,	which
Cantor	 proved	 to	 be	 denumerable.	 But	 if	 the	 points	 on	 a	 mere	 line-
segment	 are	 non-denumerable,	 it	 follows	 that	 all	 the	 points	 on	 the
Cartesian	plane	are	likewise	non-denumerable.	The	algebraic	numbers	are
spotted	over	the	plane	like	stars	against	a	black	sky;	the	dense	blackness	is
the	firmament	of	the	transcendentals.

The	most	remarkable	thing	about	Cantor’s	proof	is	that	it	provides	no
means	whereby	a	single	one	of	the	transcendentals	can	be	constructed.	To
Kronecker	any	such	proof	was	sheer	nonsense.	Much	milder	instances	of
“existence	 proofs”	 roused	 his	 wrath.	 One	 of	 these	 in	 particular	 is	 of
interest	 as	 it	 prophesied	 Brouwer’s	 objection	 to	 the	 full	 use	 of	 classical
(Aristotelian)	logic	in	reasoning	about	infinite	sets.

A	polynomial	axn	+	bxn–1	+	.	.	.	+	l,	in	which	the	coefficients	a,	b,	.	.	.	l	are
rational	 numbers	 is	 said	 to	 be	 irreducible	 if	 it	 cannot	 be	 factored	 into	 a
product	 of	 two	 polynomials	 both	 of	 which	 have	 rational	 number
coefficients.	Now,	 it	 is	 a	meaningful	 statement	 to	most	human	beings	 to
assert,	as	Aristotle	would,	that	a	given	polynomial	either	is	irreducible	or	is
not	irreducible.



Not	 so	 for	 Kronecker.	 Until	 some	 definite	 process,	 capable	 of	 being
carried	out	 in	a	 finite	number	of	nontentative	 steps,	 is	provided	whereby
we	can	settle	the	reducibility	of	any	given	polynomial,	we	have	no	logical
right,	according	to	Kronecker,	 to	use	the	concept	of	 irreducibility	 in	our
mathematical	 proofs.	 To	 do	 otherwise,	 according	 to	 him,	 is	 to	 court
inconsistencies	 in	our	conclusions	and,	at	best,	 the	use	of	“irreducibility”
without	 the	 process	 described,	 can	 give	 us	 only	 a	 Scotch	 verdict	 of	 “not
proven.”	All	such	non-constructive	reasoning	is—according	to	Kronecker—
illegitimate.

*		*		*

As	 Cantor’s	 reasoning	 in	 his	 theory	 of	 infinite	 classes	 is	 largely	 non-
constructive,	Kronecker	regarded	 it	as	a	dangerous	 type	of	mathematical
insanity.	 Seeing	 mathematics	 headed	 for	 the	 madhouse	 under	 Cantor’s
leadership,	 and	 being	 passionately	 devoted	 to	 what	 he	 considered	 the
truth	of	mathematics,	Kronecker	attacked	“the	positive	theory	of	infinity”
and	 its	 hypersensitive	 author	 vigorously	 and	 viciously	 with	 every	 weapon
that	came	to	his	hand,	and	the	tragic	outcome	was	that	not	the	theory	of
sets	went	to	the	asylum,	but	Cantor.	Kronecker’s	attack	broke	the	creator
of	the	theory.

In	the	spring	of	1884,	in	his	fortieth	year,	Cantor	experienced	the	first
of	those	complete	breakdowns	which	were	to	recur	with	varying	intensity
throughout	 the	 rest	 of	 his	 long	 life	 and	 drive	 him	 from	 society	 to	 the
shelter	of	 a	mental	 clinic.	His	 explosive	 temper	aggravated	his	difficulty.
Profound	fits	of	depression	humbled	himself	in	his	own	eyes	and	he	came
to	doubt	the	soundness	of	his	work.	During	one	lucid	interval	he	begged
the	 authorities	 at	 Halle	 to	 transfer	 him	 from	 his	 professorship	 of
mathematics	 to	 a	 chair	 of	 philosophy.	 Some	 of	 his	 best	 work	 on	 the
positive	theory	of	the	infinite	was	done	in	the	intervals	between	one	attack
and	 the	 next.	 On	 recovering	 from	 a	 seizure	 he	 noticed	 that	 his	 mind
became	extraordinarily	clear.

Kronecker	perhaps	has	been	blamed	too	severely	for	Cantor’s	tragedy;
his	 attack	was	but	one	of	many	 contributing	 causes.	Lack	of	 recognition
embittered	the	man	who	believed	he	had	taken	the	first—and	last—steps
toward	 a	 rational	 theory	 of	 the	 infinite	 and	 he	 brooded	 himself	 into
melancholia	 and	 irrationality.	 Kronecker	 however	 does	 appear	 to	 have



been	 largely	 responsible	 for	 Cantor’s	 failure	 to	 obtain	 the	 position	 he
craved	 in	 Berlin.	 It	 is	 usually	 considered	 not	 quite	 sporting	 for	 one
scientist	 to	deliver	 a	 savage	attack	on	 the	work	of	 a	 contemporary	 to	his
students.	 The	 disagreement	 can	 be	 handled	 objectively	 in	 scientific
papers.	Kronecker	laid	himself	out	in	1891	to	criticize	Cantor’s	work	to	his
students	at	Berlin,	and	it	became	obvious	that	there	was	no	room	for	both
under	one	roof.	As	Kronecker	was	already	in	possession,	Cantor	resigned
himself	to	staying	out	in	the	cold.

However,	 he	 was	 not	 without	 some	 comfort.	 The	 sympathetic	Mittag-
Leffler	 not	 only	 published	 some	 of	 Cantor’s	 work	 in	 his	 journal	 (Acta
Mathematica)	but	comforted	Cantor	in	his	fight	against	Kronecker.	In	one
year	 alone	Mittag-Leffler	 received	 no	 less	 than	 fifty	 two	 letters	 from	 the
suffering	Cantor.	Of	 those	who	believed	 in	Cantor’s	 theories,	 the	 genial
Hermite	was	one	of	 the	most	 enthusiastic.	His	 cordial	 acceptance	of	 the
new	doctrine	warmed	Cantor’s	modest	heart:	“The	praises	which	Hermite
pours	out	to	me	in	this	letter	.	.	.	on	the	subject	of	the	theory	of	sets	are	so
high	in	my	eyes,	so	unmerited,	that	I	should	not	care	to	publish	them	lest	I
incur	the	reproach	of	being	dazzled	by	them.”

*		*		*

With	the	opening	of	the	new	century	Cantor’s	work	gradually	came	to
be	 accepted	 as	 a	 fundamental	 contribution	 to	 all	 mathematics	 and
particularly	to	the	foundations	of	analysis.	But	unfortunately	for	the	theory
itself	 the	paradoxes	 and	antinomies	which	 still	 infect	 it	 began	 to	 appear
simultaneously.	These	may	in	the	end	be	the	greatest	contribution	which
Cantor’s	theory	is	destined	to	make	to	mathematics,	for	their	unsuspected
existence	 in	 the	 very	 rudiments	 of	 logical	 and	 mathematical	 reasoning
about	 the	 infinite	 was	 the	 direct	 inspiration	 of	 the	 present	 critical
movement	 in	 all	 deductive	 reasoning.	 Out	 of	 this	 we	 hope	 to	 derive	 a
mathematics	which	is	both	richer	and	“truer”—freer	from	inconsistency—
than	the	mathematics	of	the	pre-Cantor	era.

Cantor’s	 most	 striking	 results	 were	 obtained	 in	 the	 theory	 of	 non-
denumerable	sets,	the	simplest	example	of	which	is	the	set	of	all	points	on	a
line-segment.	Only	 one	 of	 the	 simplest	 of	 his	 conclusions	 can	 be	 stated
here.	Contrary	to	what	intuition	would	predict,	two	unequal	line-segments
contain	the	same	number	of	points.	Remembering	that	two	sets	contain	the



same	number	of	things	if,	and	only	if,	the	things	in	them	can	be	paired	off
one-to-one,	we	easily	see	the	reasonableness	of	Cantor’s	conclusion.	Place
the	unequal	segments	AB,	CD	as	in	the	figure.	The	line	OPQ	cuts	CD	in	the
point	P,	and	AB	in	Q;	P	and	Q	are	thus	paired	off.	As	OPQ	rotates	about	0,
the	point	P	 traverses	CD,	 while	Q	 simultaneously	 traverses	AB,	 and	 each
point	of	CD	has	one,	and	only	one,	“paired”	point	of	AB.

An	even	more	unexpected	result	can	be	proved.	Any	line-segment,	no
matter	 how	 small,	 contains	 as	 many	 points	 as	 an	 infinite	 straight	 line.
Further,	 the	 segment	 contains	 as	many	 points	 as	 there	 are	 in	 an	 entire
plane,	or	in	the	whole	of	three-dimensional	space,	or	in	the	whole	of	space
of	n	dimensions	(where	n	is	any	integer	greater	than	zero)	or,	finally,	in	a
space	of	a	denumerably	infinite	number	of	dimensions.

In	all	this	we	have	not	yet	attempted	to	define	a	class	or	a	set.	Possibly	(as
Russell	held	in	1912)	it	 is	not	necessary	to	do	so	in	order	to	have	a	clear
conception	of	Cantor’s	theory	or	for	that	theory	to	be	consistent	with	itself
—which	 is	 enough	 to	demand	of	 any	mathematical	 theory.	Nevertheless
present	disputes	seem	to	require	that	some	clear,	self-consistent	definition
be	given.	The	following	used	to	be	thought	satisfactory.

A	set	is	characterized	by	three	qualities:	it	contains	all	things	to	which	a
certain	 definite	 property	 (say	 redness,	 or	 volume,	 or	 taste)	 belongs;	 no
thing	not	having	this	property	belongs	to	the	set;	each	thing	in	the	set	is



recognizable	 as	 the	 same	 thing	 and	 as	different	 from	all	 other	 things	 in
the	 set—briefly,	 each	 thing	 in	 the	 set	 has	 a	 permanently	 recognizable
individuality.	The	set	itself	is	to	be	grasped	as	a	whole.	This	definition	may
be	too	drastic	for	use.	Consider,	for	example,	what	happens	to	Cantor’s	set
of	all	transcendental	numbers	under	the	third	demand.

At	this	point	we	may	glance	back	over	the	whole	history	of	mathematics
—or	 as	 much	 of	 it	 as	 is	 revealed	 by	 the	 treatises	 of	 the	 master
mathematicians	 in	 their	purely	 technical	works—and	note	 two	modes	of
expression	which	 recur	 constantly	 in	nearly	 all	mathematical	 exposition.
The	 reader	 perhaps	 has	 been	 irritated	 by	 the	 repetitious	 use	 of	 phrases
such	as	“we	can	find	a	whole	number	greater	than	2,”	or	“we	can	choose	a
number	 less	 than	 n	 and	 greater	 than	 n	 −2.”	 The	 choice	 of	 such
phraseology	 is	not	merely	 stereotyped	pedantry.	There	 is	a	reason	 for	 its
use,	and	careful	writers	mean	exactly	what	 they	say	when	they	assert	 that
“we	can	find,	etc”	They	mean	that	they	can	do	what	they	say.

In	sharp	distinction	to	this	is	the	other	phrase	which	is	reiterated	over
and	over	again	in	mathematical	writing:	“There	exists.”	For	example,	some
would	say	“there	exists	a	whole	number	greater	than	2,”	or	“there	exists	a
number	less	than	n	and	greater	than	n—	2.”	The	use	of	such	phraseology
definitely	 commits	 its	 user	 to	 the	 creed	 which	 Kronecker	 held	 to	 be
untenable,	unless,	of	course,	the	“existence”	is	proved	by	a	construction.	The
existence	 is	 not	 proved	 for	 the	 sets	 (as	 defined	 above)	 which	 appear	 in
Cantor’s	theory.

These	 two	ways	of	 speaking	divide	mathematicians	 into	 two	 types:	 the
“we	 can”	 men	 believe	 (possibly	 subconsciously)	 that	 mathematics	 is	 a
purely	human	invention;	the	“there	exists”	men	believe	that	mathematics
has	 an	 extra-human	 “existence”	 of	 its	 own,	 and	 that	 “we”	 merely	 come
upon	the	“eternal	 truths”	of	mathematics	 in	our	 journey	 through	 life,	 in
much	 the	 same	 way	 that	 a	 man	 taking	 a	 walk	 in	 a	 city	 comes	 across	 a
number	of	streets	with	whose	planning	he	had	nothing	whatever	to	do.

Theologians	 are	 “exist”	men;	 cautious	 skeptics	 for	 the	most	 part	 “we”
men.	 “There	 exist	 an	 infinity	 of	 even	 numbers,	 or	 of	 primes,”	 say	 the
advocates	of	extra-human	“existence”;	“produce	them,”	say	Kronecker	and
the	“we”	men.

That	the	distinction	is	not	trivial	can	be	seen	from	a	famous	instance	of
it	 in	 the	New	 Testament.	 Christ	 asserted	 that	 the	 Father	 “exists”;	 Philip
demanded	 “Show	 us	 the	 Father	 and	 it	 sufficeth	 us.”	 Cantor’s	 theory	 is



almost	wholly	on	the	“existence”	side.	 Is	 it	possible	 that	Cantor’s	passion
for	theology	determined	his	allegiance?	If	so,	we	shall	have	to	explain	why
Kronecker,	 also	 a	 connoisseur	 of	 Christian	 theology,	 was	 the	 rabid	 “we”
man	that	he	was.	As	in	all	such	questions	ammunition	for	either	side	can
be	filched	from	any	pocket.

A	striking	and	 important	 instance	of	 the	“existence”	way	of	 looking	at
the	 theory	 of	 sets	 is	 afforded	 by	 what	 is	 known	 as	 Zermelo’s	 postulate
(stated	in	1904).	“For	every	set	M	whose	elements	are	sets	P	(that	is,	M	is	a
set	 of	 sets,	 or	 a	 class	 of	 classes),	 the	 sets	 P	 being	 non-empty	 and	 non-
overlapping	(no	two	contain	things	in	common),	there	exists	at	least	one
set	N	which	contains	precisely	one	element	from	each	of	the	sets	P	which
constitute	M.”	Comparison	of	this	with	the	previously	stated	definition	of	a
set	(or	class)	will	show	that	the	“we”	men	would	not	consider	the	postulate
self-evident	 if	 the	 set	M	 consisted,	 say,	 of	 an	 infinity	 of	 non-overlapping
line	 segments.	 Yet	 the	 postulate	 seems	 reasonable	 enough.	 Attempts	 to
prove	 it	 have	 failed.	 It	 is	 of	 considerable	 importance	 in	 all	 questions
relating	to	continuity.

A	 word	 as	 to	 how	 this	 postulate	 came	 to	 be	 introduced	 into
mathematics	 will	 suggest	 another	 of	 the	 unsolved	 problems	 of	 Cantor’s
theory.	A	set	of	distinct,	countable	things,	like	all	the	bricks	in	a	certain	wall,
can	easily	be	ordered;	we	need	only	 count	 them	off	 1,	 2,	 3,	 .	 .	 .	 in	 any	of
dozens	of	different	ways	that	will	suggest	themselves.	But	how	would	we	go
about	ordering	all	the	points	on	a	straight	line?	They	cannot	be	counted	off
1,	2,	3,	.	.	.	.	The	task	appears	hopeless	when	we	consider	that	between	any
two	points	of	the	line	“we	can	find,”	or	“there	exists”	another	point	of	the
line.	 If	 every	 time	 we	 counted	 two	 adjacent	 bricks	 another	 sprang	 into
being	 between	 them	 in	 the	 wall	 our	 counting	 would	 become	 slightly
confused.	 Nevertheless	 the	 points	 on	 a	 straight	 line	 do	 appear	 to	 have
some	sort	of	order;	we	can	say	whether	one	point	is	to	the	right	or	the	left
of	 another,	 and	 so	 on.	 Attempts	 to	 order	 the	 points	 of	 a	 line	 have	 not
succeeded.	 Zermelo	 proposed	 his	 postulate	 as	 a	 means	 for	 making	 the
attempt	 easier,	 but	 it	 itself	 is	 not	 universally	 accepted	 as	 a	 reasonable
assumption	or	as	one	which	it	is	safe	to	use.

Cantor’s	theory	contains	a	great	deal	more	about	the	actual	infinite	and
the	 “arithmetic”	 of	 transfinite	 (infinite)	 numbers	 than	 what	 has	 been
indicated	here.	But	as	the	theory	is	still	in	the	controversial	stage,	we	may
leave	 it	with	 the	 statement	of	 a	 last	 riddle.	Does	 there	 “exist,”	or	 can	we



“construct,”	an	infinite	set	which	is	not	similar	(technical	sense	of	one-to-
one	matching)	either	 to	 the	 set	of	all	 the	positive	 rational	 integers	or	 to
the	set	of	all	points	of	a	line?	The	answer	is	unknown.

Cantor	died	in	a	mental	hospital	in	Halle	on	January	6,	1918,	at	the	age
of	seventy	three.	Honors	and	recognition	were	his	at	the	last,	and	even	the
old	 bitterness	 against	 Kronecker	 was	 forgotten.	 It	 was	 no	 doubt	 a
satisfaction	to	Cantor	to	recall	that	he	and	Kronecker	had	become	at	least
superficially	 reconciled	 some	 years	 before	 Kronecker’s	 death	 in	 1891.
Could	Cantor	have	lived	till	today	he	might	have	taken	a	just	pride	in	the
movement	toward	more	rigorous	thinking	in	all	mathematics	for	which	his
own	 efforts	 to	 found	 analysis	 (and	 the	 infinite)	 on	 a	 sound	 basis	 were
largely	responsible.

*		*		*

Looking	 back	 over	 the	 long	 struggle	 to	 make	 the	 concepts	 of	 real
number,	 continuity,	 limit,	 and	 infinity	 precise	 and	 consistently	 usable	 in
mathematics,	we	see	that	Zeno	and	Eudoxus	were	not	so	far	in	time	from
Weierstrass,	 Dedekind,	 and	 Cantor	 as	 the	 twenty	 four	 or	 twenty	 five
centuries	 which	 separate	 modern	 Germany	 from	 ancient	 Greece	 might
seem	to	imply.	There	is	no	doubt	that	we	have	a	clearer	conception	of	the
nature	of	the	difficulties	 involved	than	our	predecessors	had,	because	we
see	the	same	unsolved	problems	cropping	up	in	new	guises	and	in	fields
the	ancients	never	dreamed	of,	but	to	say	that	we	have	disposed	of	those
hoary	old	difficulties	is	a	gross	mis-statement	of	fact.	Nevertheless	the	net
score	 records	 a	 greater	 gain	 than	 any	 which	 our	 predecessors	 could
rightfully	claim.	We	are	going	deeper	than	they	ever	imagined	necessary,
and	 we	 are	 discovering	 that	 some	 of	 the	 “laws”—for	 instance	 those	 of
Aristotelian	 logic—which	 they	 accepted	 in	 their	 reasoning	 are	 better
replaced	 by	 others—pure	 conventions—in	our	 attempts	 to	 correlate	 our
experiences.	 As	 has	 already	 been	 said,	 Cantor’s	 revolutionary	 work	 gave
our	present	activity	its	initial	impulse.	But	it	was	soon	discovered—twenty
one	 years	 before	 Cantor’s	 death—that	 his	 revolution	 was	 either	 too
revolutionary	or	not	revolutionary	enough.	The	 latter	now	appears	 to	be
the	case.

The	first	shot	in	the	counter-revolution	was	fired	in	1897	by	the	Italian
mathematician	 Burali-Forti	 who	 produced	 a	 flagrant	 contradiction	 by



reasoning	 of	 the	 type	 used	 by	Cantor	 in	 his	 theory	 of	 infinite	 sets.	 This
particular	 paradox	 was	 only	 the	 first	 of	 several,	 and	 as	 it	 would	 require
lengthy	explanations	to	make	it	intelligible,	we	shall	state	instead	Russell’s
of	1908.

We	 have	 already	 mentioned	 Frege,	 who	 gave	 the	 “class	 of	 all	 classes
similar	 to	 a	 given	 class”	 definition	 of	 the	 cardinal	 number	 of	 the	 given
class.	Frege	had	spent	years	trying	to	put	the	mathematics	of	numbers	on	a
sound	 logical	 basis.	 His	 life	 work	 is	 his	 Grundgesetze	 der	 Arithmetik	 (The
Fundamental	Laws	of	Arithmetic),	of	which	the	first	volume	was	published
in	1893,	the	second	in	1903.	In	this	work	the	concept	of	sets	is	used.	There
is	 also	 a	 considerable	 use	 of	 more	 or	 less	 sarcastic	 invective	 against
previous	 writers	 on	 the	 foundations	 of	 arithmetic	 for	 their	 manifest
blunders	 and	 manifold	 stupidities.	 The	 second	 volume	 closes	 with	 the
following	acknowledgment.

“A	scientist	can	hardly	encounter	anything	more	undesirable	than	to	have	the	foundation
collapse	 just	 as	 the	 work	 is	 finished.	 I	 was	 put	 in	 this	 position	 by	 a	 letter	 from	Mr.	 Bertrand
Russell	when	the	work	was	almost	through	the	press.”

*		*		*

Russell	 had	 sent	 Frege	 his	 ingenious	 paradox	 of	 “the	 set	 of	 all	 sets
which	 are	 not	 members	 of	 themselves.”	 Is	 this	 set	 a	 member	 of	 itself?
Either	 answer	 can	 be	 puzzled	 out	 with	 a	 little	 thought	 to	 be	wrong.	 Yet
Frege	had	freely	used	“sets	of	all	sets.”

Many	ways	were	proposed	for	evading	or	eliminating	the	contradictions
which	 began	 exploding	 like	 a	 barrage	 in	 and	 over	 the	 Frege-Dedekind-
Cantor	 theory	 of	 the	 real	 numbers,	 continuity,	 and	 the	 infinite.	 Frege,
Cantor,	 and	 Dedekind	 quit	 the	 field,	 beaten	 and	 disheartened.	 Russell
proposed	his	“vicious	circle	principle”	as	a	remedy:	“Whatever	involves	all
of	a	collection	must	not	be	one	of	 the	collection”;	 later	he	put	 forth	his
“axiom	of	reducibility,”	which,	as	it	is	now	practically	abandoned,	need	not
be	described.	For	a	time	these	restoratives	were	brilliantly	effective	(except
in	 the	 opinion	 of	 the	 German	 mathematicians,	 who	 never	 swallowed
them).	 Gradually,	 as	 the	 critical	 examination	 of	 all	 mathematical
reasoning	gained	headway,	physic	was	thrown	to	the	dogs	and	a	concerted
effort	was	begun	to	find	out	what	really	ailed	the	patient	in	his	irrational
and	real	number	system	before	administering	further	nostrums.



The	present	effort	to	understand	our	difficulties	originated	in	the	work
of	 David	 Hilbert	 (1862-)	 of	 Göttingen	 in	 1899	 and	 in	 that	 of	 L.	 E.	 J.
Brouwer	 (1881-)	 of	 Amsterdam	 in	 1912.	 Both	 of	 these	 men	 and	 their
numerous	 followers	 have	 the	 common	purpose	 of	 putting	mathematical
reasoning	 on	 a	 sound	 basis,	 although	 in	 several	 respects	 their	 methods
and	philosophies	are	violently	opposed.	It	seems	unlikely	that	both	can	be
as	wholly	right	as	each	appears	to	believe	he	is.

Hilbert	 returned	 to	 Greece	 for	 the	 beginning	 of	 his	 philosophy	 of
mathematics.	 Resuming	 the	 Pythagorean	 program	 of	 a	 rigidly	 and	 fully
stated	 set	 of	 postulates	 from	 which	 a	 mathematical	 argument	 must
proceed	by	 strict	 deductive	 reasoning,	Hilbert	made	 the	program	of	 the
postulational	development	of	mathematics	more	precise	 than	 it	had	been
with	the	Greeks,	and	 in	1899	 issued	the	first	edition	of	his	classic	on	the
foundations	 of	 geometry.	 One	 demand	 which	Hilbert	made,	 and	 which
the	 Greeks	 do	 not	 seem	 to	 have	 thought	 of,	 was	 that	 the	 proposed
postulates	 for	 geometry	 shall	 be	 proved	 to	 be	 self-consistent	 (free	 of
internal,	 concealed	 contradictions).	 To	 produce	 such	 a	 proof	 for
geometry	 it	 is	 shown	 that	 any	 contradiction	 in	 the	 geometry	 developed
from	 the	 postulates	 would	 imply	 a	 contradiction	 in	 arithmetic.	 The
problem	is	thus	shoved	back	to	proving	the	consistency	of	arithmetic,	and
there	it	remains	today.

Thus	we	are	back	once	more	asking	the	sphinx	to	tell	us	what	a	number
is.	 Both	 Dedekind	 and	 Frege	 fled	 to	 the	 infinite—Dedekind	 with	 his
infinite	classes	defining	irrationals,	Frege	with	his	class	of	all	classes	similar
to	a	given	class	defining	a	cardinal	number—to	interpret	the	numbers	that
puzzled	 Pythagoras.	 Hilbert,	 too,	 would	 seek	 the	 answer	 in	 the	 infinite
which,	he	believes,	 is	necessary	 for	 an	understanding	of	 the	 finite.	He	 is
quite	 emphatic	 in	 his	 belief	 that	Cantorism	will	 ultimately	 be	 redeemed
from	the	purgatory	in	which	it	now	tosses.	“This	[Gan	tor’s	theory]	seems
to	me	the	most	admirable	fruit	of	the	mathematical	mind	and	indeed	one
of	 the	 highest	 achievements	 of	 man’s	 intellectual	 processes.”	 But	 he
admits	 that	 the	 paradoxes	 of	 Burali-Forti,	 Russell,	 and	 others	 are	 not
resolved.	However,	his	faith	surmounts	all	doubts:	“No	one	shall	expel	us
from	the	paradise	which	Cantor	has	created	for	us.”

But	at	this	moment	of	exaltation	Brouwer	appears	with	something	that
looks	suspiciously	like	a	flaming	sword	in	his	strong	right	hand.	The	chase
is	on:	Dedekind,	 in	the	role	of	Adam,	and	Cantor	disguised	as	Eve	at	his



side,	are	already	eyeing	the	gate	apprehensively	under	the	stern	regard	of
the	 uncompromising	Dutchman.	The	 postulational	method	 for	 securing
freedom	 from	 contradiction	 proposed	 by	 Hilbert	 will,	 says	 Brouwer,
accomplish	 its	 end—produce	 no	 contradictions,	 but	 “nothing	 of
mathematical	value	will	be	attained	in	this	manner;	a	false	theory	which	is
not	 stopped	 by	 a	 contradiction	 is	 none	 the	 less	 false,	 just	 as	 a	 criminal
policy	unchecked	by	a	reprimanding	court	is	none	the	less	criminal.”

The	 root	 of	 Brouwer’s	 objection	 to	 the	 “criminal	 policy”	 of	 his
opponents	 is	 something	 new—at	 least	 in	mathematics.	He	 objects	 to	 an
unrestricted	 use	 of	 Aristotelian	 logic,	 particularly	 in	 dealing	with	 infinite
sets,	and	he	maintains	that	such	logic	is	bound	to	produce	contradictions
when	applied	to	sets	which	cannot	be	definitely	constructed	in	Kronecker’s
sense	(a	rule	of	procedure	must	be	given	whereby	the	things	in	the	set	can
be	produced).	The	law	of	“excluded	middle”	(a	thing	must	have	a	certain
property	or	must	not	have	 that	property,	as	 for	example	 in	 the	assertion
that	a	number	 is	prime	or	 is	not	prime)	 is	 legitimately	usable	only	when
applied	to	finite	sets.	Aristotle	devised	his	logic	as	a	body	of	working	rules
for	finite	sets,	basing	his	method	on	human	experience	of	 finite	 sets,	and
there	 is	no	reason	whatever	 for	 supposing	 that	a	 logic	which	 is	adequate
for	the	finite	will	continue	to	produce	consistent	(not	contradictory)	results
when	applied	to	the	infinite.	This	seems	reasonable	enough	when	we	recall
that	 the	 very	 definition	 of	 an	 infinite	 set	 emphasizes	 that	 a	 part	 of	 an
infinite	set	may	contain	precisely	as	many	things	as	the	whole	set	(as	we	have
illustrated	many	 times),	 a	 situation	 which	 never	 happens	 for	 a	 finite	 set
when	 “part”	 means	 some,	 but	 not	 all	 (as	 it	 does	 in	 the	 definition	 of	 an
infinite	set).

Here	we	have	what	 some	consider	 the	 root	of	 the	 trouble	 in	Cantor’s
theory	of	the	actual	infinite.	For	the	definition	of	a	set	(as	stated	some	time
back),	by	which	all	 things	having	a	certain	quality	are	“united”	to	form	a
“set”	(or	“class”),	is	not	suitable	as	a	basis	for	the	theory	of	sets,	in	that	the
definition	 either	 is	 not	 constructive	 (in	 Kronecker’s	 sense)	 or	 assumes	 a
constructibility	which	no	mortal	can	produce.	Brouwer	claims	that	the	use
of	 the	 law	 of	 excluded	 middle	 in	 such	 a	 situation	 is	 at	 best	 merely	 a
heuristic	 guide	 to	 propositions	 which	 may	 be	 true,	 but	 which	 are	 not
necessarily	so,	even	when	they	have	been	deduced	by	a	rigid	application	of
Aristotelian	 logic,	 and	 he	 says	 that	 numerous	 false	 theories	 (including



Cantor’s)	have	been	erected	on	this	rotten	foundation	during	the	past	half
century.

Such	a	revolution	in	the	rudiments	of	mathematical	thinking	does	not
go	 unchallenged.	 Brouwer’s	 radical	 move	 to	 the	 left	 is	 speeded	 by	 an
outraged	 roar	 from	 the	 reactionary	 right.	 “What	Weyl	 and	 Brouwer	 are
doing	 [Brouwer	 is	 the	 leader,	 Weyl	 his	 companion	 in	 revolt]	 is	 mainly
following	in	the	steps	of	Kronecker,”	according	to	Hilbert,	the	champion
of	the	status	quo.	“They	are	trying	to	establish	mathematics	by	jettisoning
everything	 which	 does	 not	 suit	 them	 and	 setting	 up	 an	 embargo.	 The
effect	is	to	dismember	our	science	and	to	run	the	risk	of	losing	a	large	part
of	our	most	valuable	possessions.	Weyl	and	Brouwer	condemn	the	general
notions	 of	 irrational	 numbers,	 of	 functions—even	 of	 such	 functions	 as
occur	 in	 the	 theory	 of	 numbers—Cantor’s	 transfinite	 numbers,	 etc.,	 the
theorem	that	an	 infinite	set	of	positive	 integers	has	a	 least,	and	even	the
’law	of	excluded	middle,’	as	for	example	the	assertion:	Either	there	is	only
a	finite	number	of	primes	or	there	are	infinitely	many.	These	are	examples
of	[to	 them]	 forbidden	 theorems	and	modes	of	 reasoning.	 I	believe	 that
impotent	 as	 Kronecker	 was	 to	 abolish	 irrational	 numbers	 (Weyl	 and
Brouwer	do	permit	us	to	retain	a	torso),	no	less	impotent	will	their	efforts
prove	 today.	No!	Brouwer’s	 program	 is	 not	 a	 revolution,	 but	merely	 the
repetition	of	a	 futile	 coup	de	main	with	old	methods,	but	which	was	 then
undertaken	 with	 greater	 verve,	 yet	 failed	 utterly.	 Today	 the	 State
[mathematics]	is	thoroughly	armed	and	strengthened	through	the	labors
of	 Frege,	 Dedekind,	 and	 Cantor.	 The	 efforts	 of	 Brouwer	 and	 Weyl	 are
foredoomed	to	futility.”

To	which	 the	other	 side	 replies	by	 a	 shrug	of	 the	 shoulders	 and	goes
ahead	 with	 its	 great	 and	 fundamentally	 new	 task	 of	 reestablishing
mathematics	 (particularly	 the	 foundations	 of	 analysis)	 on	 a	 firmer	 basis
than	any	laid	down	by	the	men	of	the	past	2500	years	from	Pythagoras	to
Weierstrass.

What	 will	mathematics	 be	 like	 a	 generation	 hence	 when—we	 hope—
these	difficulties	will	have	been	cleared	up?	Only	a	prophet	or	the	seventh
son	of	a	prophet	sticks	his	head	into	the	noose	of	prediction.	But	if	there
is	any	continuity	at	all	in	the	evolution	of	mathematics—and	the	majority
of	 dispassionate	 observers	 believe	 that	 there	 is—we	 shall	 find	 that	 the
mathematics	 which	 is	 to	 come	 will	 be	 broader,	 firmer,	 and	 richer	 in
content	than	that	which	we	or	our	predecessors	have	known.



Already	the	controversies	of	the	past	third	of	a	century	have	added	new
fields—including	 totally	 new	 logics—to	 the	 vast	 domain	 of	mathematics,
and	the	new	is	being	rapidly	consolidated	and	coordinated	with	the	old.	If
we	 may	 rashly	 venture	 a	 prediction,	 what	 is	 to	 come	 will	 be	 fresher,
younger	in	every	respect,	and	closer	to	human	thought	and	human	needs
—freer	 of	 appeal	 for	 its	 justification	 to	 extra-human	 “existences”—than
what	 is	 now	 being	 vigorously	 refashioned.	 The	 spirit	 of	 mathematics	 is
eternal	youth.	As	Cantor	said,	“The	essence	of	mathematics	resides	 in	 its
freedom”;	 the	 present	 “revolution”	 is	 but	 another	 assertion	 of	 that
freedom.

*		*		*

Baffled	and	beaten	back	she	works	on	still,
Weary	and	sick	of	soul	she	works	the	more,

Sustained	by	her	indomitable	will:
The	hands	shall	fashion	and	the	brain	shall	pore

And	all	her	sorrow	shall	be	turned	to	labour,
Till	death	the	friend-foe	piercing	with	his	sabre

That	mighty	heart	of	hearts	ends	bitter	war.
—JAMES	THOMSON.

I.	Quoted	from	R.	E.	Moritz’	Memorabilia	Mathematica,	1914.	The	original	source	is	not	accessible
to	me.

II.	L.	Couturat,	Del	‘infini	mathématique,	Paris,	1896,	p.49.	With	the	caution	that	much	of	this	work
is	 now	 hopelessly	 out	 of	 date,	 it	 can	 be	 recommended	 for	 its	 clarity	 to	 the	 general	 reader.	 An
account	 of	 the	 elements	 of	 Cantorism	 by	 a	 leading	 Polish	 expert	 which	 is	 within	 the
comprehension	of	anyone	with	a	grade-school	education	and	a	 taste	 for	abstract	reasoning	 is	 the
Leçons	sur	 les	nombres	transfinis,	by	Waclaw	Sierpinski,	Paris,	1928.	The	preface	by	Borel	supplies
the	 necessary	 danger	 signal.	 The	 above	 extract	 from	 Couturat	 is	 of	 some	 historical	 interest	 in
connection	with	Hilbert’s	program.	It	anticipates	by	thirty	years	Hilbert’s	statement	of	his	formalist
creed.
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the	Sciences	(1931),	Numerology	(1933),	and	The	Search	for	Truth	(1934).

Dr.	 Bell	 died	 in	December	 1960,	 just	 before	 the	 publication	 of	 his	 latest	 book,
The	Last	Problem.
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