Solutions to Hand-In Assignment 4

1. Let G be an open subset of (M, d) and F be a closed subset of (M, d). Prove or disprove: G\F is an open subset of (M, d). [10 pts]

Solution: The set $G \setminus F = \{x \in M : x \in G \text{ and } x \notin F\}$ can also be written as $G \cap F^c$, which is the intersection of two open sets. Hence $G \setminus F$ is an open subset of (M, d).

2. Let $G = \{(x, y) \in \mathbb{R}^2 : x \neq y\}$. Prove that G is an open subset of \mathbb{R}^2 .

[10 pts] **Solution:** Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = x - y. This function is a polynomial in two variables (and even a linear map) and is therefore continuous. Notice that the set G can be expressed as the intersection $\{(x, y) \in \mathbb{R}^2: f(x, y) < 0\} \cup \{(x, y) \in \mathbb{R}^2: f(x, y) > 0\} =$ $f^{-1}(-\infty, 0) \cup f^{-1}(0, \infty)$. This is a union of open sets which must be open.

3. Suppose that E is a nowhere dense subset of (M, d). Prove or disprove: E^{*c*} is everywhere dense in M. [10 pts]

Solution: If E is nowhere dense, then in particular $E^{\circ} = \emptyset$. This implies that the intersection of E^{*c*} with any neighborhood in M is nonempty. Thus every element of M is either a point of E^{*c*} or a cluster point (i.e. limit point) of E^{*c*}. Thus $\overline{E^{c}} = M$ and therefore E^{*c*} is dense in M.

4. Let \diamond be a set constructed out of the interval [0, 1] as follows:

Step 1: Partition the interval into 5 parts of equal length and remove every other (open) part. Thus, you obtain the set $I_1 = [0, 1/5] \cup [2/5, 3/5] \cup [4/5, 1]$

Step 2: Partition each of the interval segments of I₁ further into 5 parts of equal length and remove every other (open) part. Thus, you obtain the set I₂ = $[0, 1/25] \cup [2/25, 3/25] \cup [4/25, 1/5] \cup \cup [2/5, 11/25] \cup [12/25, 13/25] \cup [14/25, 3/5] \cup \cup [4/5, 21/25] \cup [22/25, 23/25] \cup [24/25, 1]$

Step n: Partition each of the interval segments of I_{n-1} into 5 parts of equal length and remove every other (open) part to obtain I_n .

Set $\diamond = \bigcap_{n=1}^{\infty} \mathbf{I}_n$.	
a) Is \diamond closed as a subset of \mathbb{R} ?	[2 pts]

Solution: The complement of \diamond is a union of open intervals. Therefore \diamond is a closed set.

b) Is \diamond countable or uncountable?	[2 pts]
Solution: \diamond is uncountable	
c) Is \diamond dense, nowhere dense, or neither?	[2 pts]
Solution: \diamond is nowhere dense.	
d) Is \diamond perfect?	[2 pts]

Solution: \diamond is perfect.

e) What is the "length" (i.e measure) of \diamond ? [2 pts]

Solution: The length of \diamond is 1 - length of \diamond^c . Where the complement is taken relative to the interval [0, 1]. Thus, it is $1 - \sum_{n=1}^{\infty} 2 \frac{3^{n-1}}{5^n} = 1 - \frac{2}{5} \frac{1}{1-3/5} = 1 - 1 = 0.$

f) The elements of \diamond can be most easily described in terms of some base p decimal expansion. What p should we choose? In terms of the decimal expansion base p, how would you decide whether x is an element of \diamond ? [10 pts]

Solution: In each step of the construction of \diamond , the intervals are partitioned into 5 equal parts. This suggests that the elements of \diamond are easiest to describe in base 5. By inspecting the constructed intervals in each step, it is easily seen that x is an element of \diamond if and only if x can be written in base 5 as x = 0. $(2a_1)(2a_2) \dots (2a_n) \dots$ where each $a_n = 0, 1$, or 2.

g) Construct a Cantor-like function for \diamond . [5 pts]

Solution: Define $f: \diamond \to [0, 1]$ by $f(x) = \sum_{n=1}^{\infty} \frac{a_n}{3^{n'}}$ whenever $x = \sum_{n=1}^{\infty} \frac{2a_n}{5^n}$ (where each $a_n = 0, 1, \text{ or } 2$.