
HW. # 5 
 

Homework problems are taken from “Principles of Mathematical Analysis” by W. 
Rudin and “Real Analysis” by N. L. Carothers. The problems are color coded to indicate 
level of difficulty. The color green indicates an elementary problem, which you should 
be able to solve effortlessly. Yellow means that the problem is somewhat harder. Red 
indicates that the problem is hard. You should attempt the hard problems especially. 
 
Unless the contrary is explicitly stated, all numbers that are mentioned in these 
exercises are understood to be real. 
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6. Investigate the behavior (convergence or divergence) of ∑ n
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8. If ∑ n
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9. Find the radius of convergence of each of the following power series: 
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10. Suppose that the coefficients of the power series n

n
za∑ are integers, infinitely 

many of which are distinct from zero. Prove that the radius of convergence is at 
most 1. 
 

11. Suppose 0>
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12. Suppose 0>
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13. If { }
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s  is a complex sequence, define its arithmetic means 
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(a) If ss
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(b) Construct a sequence { }
n

s , which does not converge, although 0lim =
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σ . Assume that 
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converse of (a), but under the additional assumption that 0→
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(e) Derive the last conclusion from a weaker hypothesis: Assume ∞<M , 
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Fix 0>ε  and associate with each n the integer m that satisfies 
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