NAME:

Summer 2019 Math 351 Exam 1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. True, False, or incoherent a) If A is a bounded subset of the real numbers, then $sup(A)$ is a real number. [2 pts]

b) The field of complex numbers can be made into an ordered set. [2 pts]

c) Every ordered set that has the least upper bound property also has the greatest lower bound property. [2 pts]

d) Suppose that $x = 0.101001000100001...$ is an infinite expansion in base 10. Then x has another representation in base 10. [2 pts]

e) No number in (0, 1) has more than two decimal expansions in base p.

[2 pts]

2. True, False, or incoherent a) A finite Cartesian product of countable sets is always countable. $[2 \text{ pts}]$

b) A countable Cartesian product of countable sets is countable. [2 pts]

c) The cardinality of the power set $P(\mathbb{R})$ is bigger than card(A), where A is the set of all functions $f: \mathbb{R} \to \{0, 1\}$ [2 pts]

d) Every infinite set has a proper subset of the same cardinality. [2 pts] e) Every irrational number is a root of some polynomial with integer coefficients. [2 pts]

- 3. True, False, or incoherent a) If *d* and *p* are metric functions on M, then so is $\sigma = \sqrt{d+p}$. [2 pts]
	- b) If R is equipped with the discrete metric, then diam $(0, 4) = 4$. $[2 \text{ pts}]$
	- c) $\{1/n\}$ is a Cauchy sequence. [2 pts]
	- d) Every Cauchy sequence is convergent. [2 pts]

e) Equivalent metrics preserve Cauchy sequences. That is, if d and p are equivalent on M and $\{x_n\}$ is a sequence in M, then $\{x_n\}$ is Cauchy under the metric d if and only if $\{x_n\}$ is Cauchy under the metric p. [2 pts]

- 4. True, False, or incoherent a) An infinite intersection of open sets is never open. [2 pts]
	- b) All sets are either open or closed. [2 pts]

c) If $\mathbb R$ is equipped with the discrete metric, the set $(0, 1)$ is closed. [2 pts]

d) Let F be a subset of R, then the set of all limit points of F, F_{regular} , under the regular metric is the same as F_d – the set of all limit points of F under the metric $x - y$ $x - y$ $d(x, y)$ $+|x \overline{}$ $=$ 1 $(x, y) = \frac{|x - y|}{|x - y|}$. [2 pts]

e) No convergent sequence has more than one limit point.

[2 pts]

- 5. True, False, or incoherent a) An open set cannot have any limit points. [2 pts] b) A closed set must contain the limits of all of its sequences. [2 pts] c) If $cl(A) = A$, then A must be closed. [2 pts] d) In an arbitrary metric space, any nonempty open set can be written as an (at most) countable union of disjoint open balls. [2 pts]
	- e) There exist metric spaces in which finite sets are not closed. [2 pts]
- 6. Which of the following are metric functions on $(0, \infty)$? Write simply metric or not metric.

a)
$$
d(x, y) = \left| \frac{1}{x^4} - \frac{1}{y^4} \right|
$$
 [2 pts]

b)
$$
d(x, y) = |x-3y|
$$
 [2 pts]

c)
$$
d(x, y) = \sqrt{|x-y|} + \frac{|x-y|}{1+|x-y|}
$$
 [2 pts]

d)
$$
d(x, y) = \tan^{-1}|x - y|
$$
 [2 pts]

e) $d(x, y) = \min\left\{x - y\right\}^{3/4}, 2\right\}$ [2 pts] 7. Let $0 < \alpha < 1$. Show that if x and y are positive real numbers, then $|x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}$. [Hint: $d(x, y) = |x - y|^{\alpha}$ defines a metric on R] [10 pts]

- 8. Let $M = (0, \infty)$ be supplied with the metric function $d(x, y) = |\tan^{-1} x - \tan^{-1} y|$ and let $\{n\}_{n=1}^{\infty}$ $n_{n=1}^{\infty}$ be a sequence of positive integers.
	- a) Is the sequence $\{n\}_{n=1}^{\infty}$ $n\}_{n=1}^{\infty}$ a Cauchy sequence in (M, d)? Justify your answer.

[6 pts]

b) Does the sequence $\{n\}_{n=1}^{\infty}$ $n\}_{n=1}^{\infty}$ converge in (M, d)? [4 pts] 9. Let (M, d) be a metric space. Prove that an open ball of (M, d) is always an open set of (M, d) [10 pts]

10. Decide whether the set $\bigcup_{n=1}^{\infty} [4n, 4n+1]$ $\bigcup_{n=1}^{\infty}$ [4*n*, 4*n*+1] is closed, open, or neither as a subset of R. Justify your answer. [10 pts] 11. Prove Cantor's theorem. In other words, show that for any set A, the power set $P(A)$ always has larger cardinality than A. [10 pts]

12. Let $p \ge 2$ be a fixed integer, and let $0 \le x \le 1$. If x has a finite-length base p decimal expansion, that is, if $x = a_1 / p + ... + a_n / p^n$ with $a_n \neq 0$, prove that x has precisely *two* base p decimal expansions. Otherwise, show that the base p decimal expansion for x is unique. [10 pts]

13. Generalize Young's inequality. In other words, show that for any vector $(p_1, p_2, ..., p_n)$ of positive numbers satisfying $\frac{1}{p_1} + \frac{1}{p_2}$ $\frac{1}{p_2} + \cdots + \frac{1}{p_r}$ $\frac{1}{p_n} =$ and positive real numbers $a_1, a_2, ... a_n$, one has $a_1 a_2 ... a_n \leq \frac{a_1 p}{n}$ $rac{1}{p_1}$ + $rac{a_2 p}{p_2}$ $\frac{2^{p_2}}{p_2} + \cdots + \frac{a_n^p}{p_n}$ \overline{p} . [10 pts]