Single and Multivariate Taylor Series

Just as polygons may be viewed as building blocks of 2-D geometry, polynomials can be used in
the manner of Lego pieces to construct many differentiable functions. In particular, according to
the Weierstrass approximation theorem, any continuous function f :[a,b] — R can be uniformly

approximated to any degree of accuracy by a polynomial function. When this function is also
infinitely differentiable and satisfies ‘ o (x)‘ < M for some number M and for all x in the closed

interval [a, b], we may use Taylor polynomials to achieve the desired approximation.'

Single-Variable Taylor Theorem

Suppose f :[—a,a] — R is continuously differentiable n + 1 times. We would like to find a

polynomial of degree n that “looks like” the function f near x = 0.
It seems reasonable that this polynomial, p, will resemble f if

£ =p0), f'O)=p'©), f'0)=p"0),.. f"(0)=p"(0).
Thus, if p(x)=a, +a,x+a,x’ +a,x’ +...+a,x", we would expect to find that
fO)=a,=p0), f'0)=a,=p'0), f'0)=2a,=p"(0),..., f”(0)=nla,=p" (0).

In particular,
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It therefore appears that a polynomial of the form

f'O O O s 70,

PO =0+, 2! 3) !

is a good approximation to f near 0.
Similarly, if ¢ € [~a,a], the polynomial

g0 =@+ Do)+

" " (n)
I £ 2('6) (x—c)* +—f 3!(0) (x—c)’ +...+—f n!(C) (x=0o)"

appears to be a good approximation of f near c.
But, intuition aside, how good is this approximation really? The answer is the content of Taylor’s
theorem:

' Not all continuous or even infinitely differentiable functions of the form f :U < R — R can be approximated
by polynomials. Weierstrass theorem requires U to be compact (i.e. closed and bounded).



Theorem: Let f : R — Rben + 1 times continuously differentiable. Let
a " a " a (n)

degree Taylor polynomlal of f centered atx = a. Then for be R, the error E )= f(b)—pb)
)

(x a)" be the nth

b— nt
is given by E,(b) = _[ ( ———f """ (t)dt . Furthermore,

M =max \ £ (z)\,
tela,b]
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Proof: We will show that f(b) = fo‘(a)(b —a)' + E (b).By the fundamental
i!

i=0
theorem of calculus, f(b) = f(a) = Ib f'(®)dt . Using integration by parts with u = f'(¢) and

dv =1, we see that

b b b b ap
Lf'(t)dt =u| —Lvdu =—(b-0)f'() —L—(b—t)f"(t)dt (1)

where we used the fact that — (b —¢) is an anti-derivative of 1.
Or, after simplifying (1),

[ rwar=r@w-ay+[ G- @d 2)

Integrating by parts again, we get

[ rwode=pao-a+ D o-ar [ O 3
Continuing in this fashion, we see that
. 0] n
[ rod=3 200 —a [ OO @
Thus,
n (i) —
f(b):Z%(b J (b t) f('”l)(t)dt (5)

1)

It follows that E (b) = f(b)— p(b) = J.h(b_—‘ £ ()dt as desired.
a n

Finally, to estimate the error £, (b) , observe that for 7 € [a,b], |b — t| < |b — a| .



Thus,

n+l

|b—a

n!

—a n

J‘ (b f("+1)(t)dt J‘|b_ '

As a consequence of Taylor’s theorem, it follows that for x near a,
(&)
z f ( ) —a)'+E, (x), where E, (x) = J. (x f ™V (#)dt is a continuous function

of x (Why?).

Example: Let f(x)=e"".If fis approximated by a 5 degree Taylor polynomial centered
at x = 1, estimate the error when this polynomial is used to approximate the value of f(1.5).

Solution: We wish to estimate |E5 (1.5)| . By Taylor’s theorem, we know that
J (1 5—

. 2

E,(1.5) = 507 po g <1271 15— <0.0036.

‘ e )‘ 2°5) 5' < 2°5!

In other words, the estimation is accurate up to two decimal places.
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Multivariate Taylor Theorem

Suppose that f : R™ — R has continuous mixed partials up to the (n + 1)th order. We would

like to find a polynomial in m variables that is a “good” approximation to f near x =a € R".

We can reduce this problem to the single-variable case by defining g : R — R by

g()= f(a+t(x—a)). Thatis, for any fixed x, we can parameterize a path /() = a+t(x—a)and
compose it with the function f. Since g(0) = f(a) and g(1) = f(x), the nth order Taylor

approximation of the multivariate function f(x) about x = a must be the same as the nth degree
Taylor approximation of g(1) about t = 0. In particular,

80, 8Dy, (n)(o)l” +E ().
1! 2! n!

f(x)=g)=¢g0)+>——

l)l‘l

Where E, (1) = jol(t_—' g™V ()t .
n

Therefore, we’ll succeed in our endeavor to represent f as an nth order Taylor polynomial as
soon as we are able to compute g’ (0) in terms of f. Let’s see if we can deduce a pattern:
By the chain rule,

g'(1) :i(f(a+t(x—a)): (x, —al)ai(a +1(x—a))+..+(x, —am)ai(a +t(x—a)). (1)
dt ox )

1 m

Where (1) can be written more compactly as



(x—a)eVf (2)
Where Vf isevaluated at [(t) =a+t(x—a).

Similarly,

g'H= i{(xl —al)ai(a +t(x—a))+..+(x, —am)al(a+t(x—a))} =
dt ox ox

1 m

AR _ N _
(x, al)dt[axl (a+1t(x a))}+...+(xm am)dt[axm (a+1t(x a))] 3)

Observe that each of the aai(a +t(x—a)) is a function of one variable t that comes about as a

l

.. . ) ) o)
result of composition of a multivariate function of m variables (namely ai(x1 ses X, )) and a
X.

1

of

d
path function (namely /() = a +t(x—a) ). Thus, E[a_ (a+t(x— a))} can be written in the
X

same form as (2). In particular,

d|of Jof
— = — = — [ ] V _—
7 [axi (a+1t(x a))} (x—a) ax, @)
. of .
Where, again, Va— is evaluated at [(t) =a+t(x—a)
X
Therefore,
" = af
g (t>=2(xi—ai>{(x—a)-va—}. 5)
i=1 x,‘
Or,

N B m B m B azf 3 a
8 (t)_;(x,‘ a,‘)|:jgl(~xj aj)axja_xi (a+t(x a))i|—

33 ), —a) =L@t itr-a) ©)

pur e ox ;0x,

By labeling /(t) = a +t(x —a) with u in expression (6), we get
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Notice that (7) resembles the square of a sum of m terms (i.e. [z Aij = ZZA./' A, ). To make

i=1 i=l j=1

further use of this analogy, denote by C. the space of all functions on m variables that have
continuous mixed partials of every order. Define 7:C, — C,’ by T(q) = (x—a)®Vq. In other
words, since we regard x as fixed, we may think of q as a function of some variable u =
(#,,...,u, ) . Observe that T is a linear transformation from the space C, to itself.” Let

¢:C~ — R be defined by ¢(q) = g(a) . Since, by (2), g'(t) =(x—a)® Vf , it follows that

g'(0) = (x—a)* Vf(a) = p(T(f)) > Similarly, by (5),

g"(0)= ;(xi -a, ){(x— aye V(aa—)j;(a)ﬂ =(x—a)e {V(; (x, -, )aa—i(a)j}

(x—a)e V((x —a)e Vf(a)) =@(T(T(f))) = @(T*(f)). More generally, it can be shown by
induction that g™ (0) = @(T* (f)).

It follows that,

Fx)= iwwn M ®)

We will have more to say about the error E, (1) later on. For now, let us try to re-express (8) free
from the functions ¢ and T. With a slight abuse of notation, we may represent T by

(x—a)'V:(xl—al)i+...+(xm—am)i. ®
ou, ou,,
With this notation, 7* becomes
. d 2 Y
(x—a)eV) =| (x, —a)—+..+(x, —a,)— (10)
ou, ou,

2 To verify this, pick any two functions f, h in C :; and any real scalar c. Then
T(g+ch)y=(x—a)®*V(g+ch)=(x—a)®*(Vg+cVh)=(x—a)®Vg+c(x—a)®Vh=
T(q)+cT(h).

? By hypothesis, the function f with which we are currently dealing has continuous mixed partials up to the (n+1)th

order. Therefore, strictly speaking, f is not in the domain of T. However, we will pay a heavy price if we insist on
being too rigorous here.



k
Where T*(f () = ((x—a)# V) f(u) = ((xl —a1)£+...+<xm —am)aij £ (11)

1 u

m

In other words, the nth degree Taylor polynomial of f may be written simply as

(12)

n _ .V k
Pn(xl,....,xm)zz((x a) - )" f @)

To finally apply the analogy that exists between function composition and scalar multiplication,
notice that we can rewrite (11) as

T* (f)= i'"i(’xil _ail)“'(xik —a, )a—f

(778 (13)
=l =l auik ...aul.l

By the equality of mixed partials, (13) behaves just like an ordinary kth power of a sum of m real
numbers.

Computing Powers of T

In this section, we would like to fully exploit the analogy between the powers of the linear
transformation T and powers of ordinary sums of numbers. If f: R™ — R has all of its mixed
partials up to the (n + 1)th order defined in an open ball Bj(a)and if all of the (n +1)th order

mixed partials are continuous at x = a, how might we compute ((x—a)® V) (f) ? To answer this
question, start with the case m = 2. For simplicity of notation, we’ll denote

x—a=(x,—a,,x,—a,) by (h,h,). With this notation, (x—a)®V becomes (A, 9 +h J

ou, ou, )
Using your knowledge about the powers of sums, observe that
0 0 of of
hy—+h,—)(f)=h=—+h,——; 1
(y ou,  ou, ) =h ou,  du, &
(h i+h i)z(f)=hza2f+2hh o’ f +hzazf- 2)
"Ou, ’ou, ! ou,’ Y2 Ouou, ou,”
B 8 3 a3f 2 83f 2 83f 3 a’;f
(hy—+h,—)*(f)=h +3h,"h +3hh +h . 3
"Ou, ’ou, / : ou,’ : zaulzauz v ou,du,” ? ou,’ )

For those of you who know a little bit of combinatorics,



0 kY . .. akf
(hy—+h —) (f)= T — )
ou, ZOU " Qu, o,
k !
Where = kt .
i ik —=10)!
. 0 0 0
Similarly, for m > 2, (x—a)eV=(0h —+h,—+...+h, —).
ou, ou, ou,,
By the multinomial theorem,
(—a)o V) ()= 3 ‘ e — 0
- = . . . L i i i 5
v\ D i) ou,"du,”..ou, ™ ©)
iy +ip +.. 4, =k

Where the sum is taken over all non-negative integer valued vectors (i,,i,,...,7, ), the sum of

whose coordinates equals to k.
Finally, recall that the kth term in the nth order multivariate Taylor expansion is

o () |
k!

other words,

o (f) _ 1 k Wb i o' f
T_E Z (l.l iz lm}i‘htha . (al’a2’ ,a)

L , Ul
L A A I/ll au2 au
iy iy iy =k

Now we are ready to solve a few examples:

Example: Let f(x,y)=e"". Compute the second-order Taylor polynomial P,(x,y), about
the point (x, y) = (0, 0).

u+v

Solution: First, re-define f in terms of a new variable: f(u,v)=e

(f )

. We wish to compute

o1 () + o () + L where p(g(u.) = ¢(0.0). Now, ¢(T°(f) = f(0.0)= ¢’ =1;

PT(f)) = (x. ) VF(0,0) = x af L0+ af L0 =x+y;

0 0 ,0° f > f 8 f
T () =(x—+y—)(f(0,0) = 0,0) + 2xy 0,0 0,0) =
(T (f)) (xau+yav) (£(0,0)) az( )+ aMav( )+y =5(0,0)
X +2xy+y°.
X2 +2xy+y° (x+y)? .
Thus, P (x,y)=1+x+y+————=1+(x+y)+—— (Looks familiar?)

2



Example: Let f(x,y)= Sin(xy).Compute the second-order Taylor polynomial P, (x,y)
about (x,y) = (1,7/2).

Solution: Just like you did before, re-define the function in terms of a new variable:
f(u,v) = Sin(uv) . Before we go on, it would be helpful to have all the mixed partials up to the
second order computed and evaluated at the point (1,7/2):

0-order partials
f,z/2)=Sin(x/2)=1

1-order partials

U vy = vCosn) so L1212y =T Cos(x12) =0
du ou 2

ai(u,v) =uCos(uv) so ai(l,f[/Z) =Cos(r/2)=0
v v

2-order partials

2 2 ) ,
31/[]: (u,v) = —v2Sin(uv) so ?ht{ 1,7/2)= —(%j Sin(z/2) = —(%]
: 2
aava]; (u,v) = Cos(uv) — uvSin(uv) so svaj; (1,7/2) = Cos(z/2) _(%jSm(”/z) _ _%
: 2
guav (u,v) = Cos(uv) —uvSin(uv) so guaj; (LLzw/2)=Cos(x/2)— [%jSin(ﬂM) _ _%

2 2
(—;v{ (u,v) = —u’Sin(uv) so (—;v{

(,7/2) ==Sin(x/2) =—1
Now, @T°(f)=f,z/2)=1;
of of
PT(fN)= =Ly =7/ eVf (712 = (x=DZ-(L72/2)+ (y=7/2) 5 (. 7/2) =
u
(x—1)-0+(y—7/2)-0=0;

2’ f 2’ f 0’ f
e (La/2)+2(x-1)(y—-7x/2) o (La/2)+(y—7/2)* =3 (Lz/2)=

e(T*(f) =(x-1)*
2
—gj (x—l)2—2%(x—1)(y—7r/2)—(y—7[/2)2

2
(72[) x=D’+x(x-D)(y-7m/2)+(y-7/2)’

2

Thus, P, (x,y)=1-



Another form of the error function

Recall that for a function g : R — R that is n + 1 times continuously differentiable,

4\ (n+1)
B )= [ 2= 8" (@)

¢V (t)dt . We will now show that E, (b) =
(n+1)!
This form of the error will be useful in the next chapter.

for some ¢ € (a, b).

Lemma (Generalized Mean-Value Theorem): Let f,g:[a,b] © R — R be continuous on

[a, b] and differentiable on (a, b). If, in addition, g’(t) # 0 on (a, b) then SB) = f(a) = S for
gb)—gla) g'(o)

some scalar c in (a, b).
Proof: Let H :[a,b] © R — R be defined by H(t) = (f(b) — f(a))g(t) — (g(b) — g(a))f(t).
Then H is continuous on [a, b] and differentiable on (a, b). Thus, by the mean-value theorem,

H)-H(a) . But H(a) = H(b) so H’(¢) = 0. In

there exists a scalar ¢ in (a, b) such that H'(c) =

particular, 0 = H’(c) = (f(b) — f(a))g’(c) — (g(b) — g(a))f’(c), from which the statement of the
lemma follows.
v

Theorem: Let g: R — R ben + 1 times continuously differentiable in an open interval I
with t = a as its center. Then the nth order Taylor approximation error atb € I, E, (b), may be

g (n+l) (C)

(b—a)"" forsomec e (a,b) e I
n+1)!

represented in the form

Proof: Let g(t) = (t—a)"". Then q is continuous on [a, b] and differentiable on (a, b).
Furthermore, ¢,4q',q'",...,q" are never O on the interval (a, b). If p, (t)is the nth degree Taylor
polynomial of g, then E, () = g(¢) — p, (¢), is continuous on [a, b] and differentiable on (a, b) (as
are E '.E ",..,E"). Notice that g(a) =¢q'(a) =...= ¢" (a) =0. Similarly,

E (a)=E,/'(a)=..=E fl"’ (a) = 0. Therefore, by the generalized mean-value theorem,

E,(b) _E,(b)=E,(a) _E,'(c,)

' ey
qb)  qb)-qla)  q'(c))
Where a< ¢,<b.
Applying the generalized mean-value theorem again, we see that
E,'(c) _E,(¢)-E,'(@ _E,"(c,) .

q'(c,) q'(c,)—q'(a) q''(c,)
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Where a< ¢, < ¢,<b.
Continuing in this fashion, we see that

En (b) _ Er(L”Jrl) (CIHI ) _ g (b (CIHI )
qb)  q""V(c,,) (n+D!

3)

Where a<c,,,<...< ¢,< ¢,<b

n+l

Thus, after multiplying equation (3) by q(b) and re-naming ¢, ,, by ¢, we get the desired result.

v

n+l

The theorem above implies that for f: R” — R and g: R — R given by g(t) = f(a + t(x — a)),

(n+1)
E, (1) is the same as g(—l()c') for some c in the interval (0, 1). In terms of the function f, this is
n+1)!
(x=a)e V)" f(w)|
the same as (n+1)! where x, =a+c(x—a).

Uu=xg

10



