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Single and Multivariate Taylor Series  
 

Just as polygons may be viewed as building blocks of 2-D geometry, polynomials can be used in 

the manner of Lego pieces to construct many differentiable functions. In particular, according to 

the Weierstrass approximation theorem, any continuous function Rbaf →],[: can be uniformly 

approximated to any degree of accuracy by a polynomial function. When this function is also 

infinitely differentiable and satisfies Mxf n ≤)()( for some number M and for all x in the closed 

interval [a, b], we may use Taylor polynomials to achieve the desired approximation.
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Single-Variable Taylor Theorem 
 

Suppose Raaf →− ],[:  is continuously differentiable n + 1 times. We would like to find a 

polynomial of degree n that “looks like” the function f near x = 0.  

It seems reasonable that this polynomial, p, will resemble f if  
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It therefore appears that a polynomial of the form 
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is a good approximation to f near 0. 

Similarly, if ],[ aac −∈ , the polynomial  
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appears to be a good approximation of f near c. 

But, intuition aside, how good is this approximation really? The answer is the content of Taylor’s 

theorem: 

                                                 
1
 Not all continuous or even infinitely differentiable functions of the form RRUf →⊆: can be approximated 

by polynomials. Weierstrass theorem requires U to be compact (i.e. closed and bounded). 
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Theorem: Let RRf →: be n + 1 times continuously differentiable. Let 
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where we used the fact that )( tb −−  is an anti-derivative of 1. 

Or, after simplifying (1), 
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Integrating by parts again, we get 
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Continuing in this fashion, we see that  
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Thus,  
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Finally, to estimate the error )(bEn , observe that for ],[ bat ∈ , abtb −≤− . 
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As a consequence of Taylor’s theorem, it follows that for x near a, 
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Example: Let 1)( −= xexf . If f is approximated by a 5
th

 degree Taylor polynomial centered 

at x = 1, estimate the error when this polynomial is used to approximate the value of f(1.5). 

 

Solution: We wish to estimate )5.1(5E . By Taylor’s theorem, we know that 
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In other words, the estimation is accurate up to two decimal places. 

 

Multivariate Taylor Theorem 

 

Suppose that RRf m →:  has continuous mixed partials up to the (n  + 1)th order. We would 

like to find a polynomial in m variables that is a “good” approximation to f near x = a m
R∈ . 

We can reduce this problem to the single-variable case by defining RRg →:  by 

))(()( axtaftg −+= . That is, for any fixed x, we can parameterize a path )()( axtatl −+= and 

compose it with the function f. Since g(0) = f(a) and g(1) = f(x), the nth order Taylor 

approximation of the multivariate function f(x) about x = a must be the same as the nth degree 

Taylor approximation of g(1) about t = 0. In particular, 
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Therefore, we’ll succeed in our endeavor to represent f as an nth order Taylor polynomial as 

soon as we are able to compute )0()(kg  in terms of f. Let’s see if we can deduce a pattern: 

By the chain rule, 
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Where (1) can be written more compactly as 
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Where f∇  is evaluated at )()( axtatl −+= . 
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Observe that each of the ))(( axta
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same form as (2). In particular, 
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Where, again, 
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Therefore, 
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Or, 
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By labeling )()( axtatl −+=  with u in expression (6), we get 
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Notice that (7) resembles the square of a sum of m terms (i.e. ∑∑∑
= ==

=






 m

i

m

j

ij

m

i

i AAA
1 1

2

1

). To make 

further use of this analogy, denote by ∞
mC  the space of all functions on m variables that have 

continuous mixed partials of every order. Define ∞∞ → mm CCT :  by qaxqT ∇•−= )()( .  In other 

words, since we regard x as fixed, we may think of q as a function of some variable u = 

),...,( 1 muu . Observe that T is a linear transformation from the space ∞
mC  to itself.
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We will have more to say about the error )1(nE  later on. For now, let us try to re-express (8) free 

from the functions ϕ  and T. With a slight abuse of notation, we may represent T by 
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With this notation, kT becomes 
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 To verify this, pick any two functions f, h in 

∞
mC  and any real scalar c. Then 
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3
 By hypothesis, the function f with which we are currently dealing has continuous mixed partials up to the (n+1)th 

order. Therefore, strictly speaking, f is not in the domain of T. However, we will pay a heavy price if we insist on 

being too rigorous here. 
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In other words, the nth degree Taylor polynomial of f may be written simply as 
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To finally apply the analogy that exists between function composition and scalar multiplication, 

notice that we can rewrite (11) as 

 

),...,(
...

))...((...)( 1

1 1
11

11 m

ii

km

i

m

i

iiii

k
uu

uu

f
axaxfT

kk

kk ∂∂

∂
−−=∑ ∑

= =

    (13) 

 

By the equality of mixed partials, (13) behaves just like an ordinary kth power of a sum of m real 

numbers. 

 

 

Computing Powers of T 

 
In this section, we would like to fully exploit the analogy between the powers of the linear 
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For those of you who know a little bit of combinatorics, 
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Where the sum is taken over all non-negative integer valued vectors ),...,,( 21 miii , the sum of 

whose coordinates equals to k. 
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Now we are ready to solve a few examples: 

 

Example: Let yxeyxf +=),( . Compute the second-order Taylor polynomial ),(2 yxP , about 
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Example: Let )(),( xySinyxf = . Compute the second-order Taylor polynomial ),(2 yxP  

about (x, y) = )2/,1( π . 
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Another form of the error function 

 
Recall that for a function RRg →:  that is n + 1 times continuously differentiable, 
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)('

)('

)()(

)()(

)(

)(

1

1

cq

cE

aqbq

aEbE

bq

bE nnnn =
−

−
=         (1) 

 

Where a < 1c < b. 

Applying the generalized mean-value theorem again, we see that 

 

)(''

)(''

)(')('

)(')('

)('

)('

2

2

1

1

1

1

cq

cE

aqcq

aEcE

cq

cE nnnn =
−

−
=        (2) 
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Where a < 2c < 1c < b. 

Continuing in this fashion, we see that 

 

)!1(

)(

)(

)(

)(

)( 1

)1(

1

)1(

1

)1(

+
== +

+

+
+

+
+

n

cg

cq

cE

bq

bE n

n

n

n

n

n

nn         (3) 

 

Where a < 1+nc <…< 2c < 1c < b 

 

Thus, after multiplying equation (3) by q(b) and re-naming 1+nc  by c, we get the desired result. 

            ▼ 

 

The theorem above implies that for RRf m →:  and RRg →:  given by g(t) = f(a + t(x – a)), 

)1(nE  is the same as 
)!1(

)()1(

+

+

n

cg
n

 for some c in the interval (0, 1). In terms of the function f, this is 

the same as 

0

)!1(

)())(( 1

xu

n

n

ufax

=

+

+

∇•−
where )(0 axcax −+= . 


