Cross Product And Associativity

Given three vectors \vec{a} , \vec{b} , \vec{c} , \vec{b} , \vec{c} , is the triple product $(\vec{a} \times \vec{b}) \times \vec{c}$ $\times b$ $\times \vec{c}$ the same vector as $\vec{a} \times (\vec{b} \times \vec{c})$ \times (b \times \vec{c})? To answer this question without performing a tedious computation, it would be helpful to derive a simpler formula for the expression $(\vec{a} \times \vec{b}) \times \vec{c}$ $\times b$ $\times \vec{c}$. To that end, observe that the vector $(\vec{a} \times \vec{b}) \times \vec{c}$ $(\times \vec{b}) \times \vec{c}$ is orthogonal to both $(\vec{a} \times \vec{b})$ $\begin{array}{c} \n\mu \wedge \nu \\
\vdots\n\end{array}$ $\times \vec{b}$ and \vec{c} . Now, each vector that is perpendicular to $(\vec{a} \times \vec{b})$ $\begin{array}{cc} 0 & \text{if } \\ \text{if } \\ \text{if } \\ \end{array}$ $(\times \vec{b})$ can be expressed as $s\vec{a}+t\vec{b}$ $rac{u}{r}$ $+$ tb, where s and t are scalars (Why?). To determine the values of s and t that make \vec{r} $\vec{a} + t\vec{b}$ perpendicular to \vec{c} , we solve the equation

$$
\vec{c} \cdot (s\vec{a} + t\vec{b}) = 0.
$$

Solving for s in the above equation yields $s = -\frac{c \cdot b}{\vec{c} \cdot \vec{a}}t$ $s = -\frac{\vec{c} \cdot \vec{b}}{\vec{a} \cdot \vec{b}}$ \overline{r} ⋅ $=-\frac{\vec{c}\cdot\vec{b}}{2\vec{a}}t$. Thus, any vector of the form $-\frac{c \cdot b}{\vec{c} \cdot \vec{a}} t \vec{a} + t \vec{b} = \left| \vec{b} - \frac{c \cdot b}{\vec{c} \cdot \vec{a}} \vec{a} \right| t$ $t\vec{a} + t\vec{b} = \left(\vec{b} - \frac{\vec{c} \cdot \vec{b}}{2}\right)$ $\vec{c} \cdot \vec{a}$ $\vec{c} \cdot \vec{b}$ $\overline{}$ J \backslash $\overline{}$ l ſ ⋅ $+i\vec{b} = \left(\vec{b} - \frac{\vec{c} \cdot \vec{c}}{\vec{c}}\right)$ ⋅ $-\frac{\vec{c}}{4}$ \rightarrow $rac{c}{\rightarrow}$ $rac{c}{\rightarrow}$ \vec{r} \vec{c} \vec{b} $rac{c}{\rightarrow}$ $rac{c}{\rightarrow}$ \overrightarrow{r} is orthogonal to $(\vec{a} \times \vec{b})$ \overrightarrow{r} $(\times \vec{b})$ and \vec{c} . Setting $t = (\vec{c} \cdot \vec{a})r$ $=(\vec{c}\cdot\vec{a})r$,

for some scalar r, yields

$$
(\vec{a} \times \vec{b}) \times \vec{c} = [(\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a}] r.
$$

In fact, it can be shown from the properties of multilinear maps (introduced later on in the course as optional reading material) that $r = 1$. Hence,

$$
(\vec{a} \times \vec{b}) \times \vec{c} = [(\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a}].
$$

Now let's compute $\vec{a} \times (\vec{b} \times \vec{c})$: \times $(b \times \vec{c})$:

$$
\vec{a}\times(\vec{b}\times\vec{c}) = -[(\vec{b}\times\vec{c})\times\vec{a}] = -[(\vec{a}\cdot\vec{b})\vec{c} - (\vec{a}\cdot\vec{c})\vec{b}] = (\vec{a}\cdot\vec{c})\vec{b} - (\vec{a}\cdot\vec{b})\vec{c}.
$$

Hence $(\vec{a} \times \vec{b}) \times \vec{c}$ $(\times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ $\times(\vec{b}\times\vec{c})$ if and only if $(\vec{c}\cdot\vec{b})\vec{a}$ $\cdot \vec{b} \, \vec{a} = (\vec{a} \cdot \vec{b}) \vec{c}$ $\cdot b \vec{k}$. Thus, the cross product is **not** commutative whenever $(\vec{c} \cdot \vec{b}) \neq 0$, µ נ
⊣ י $, (\vec{a} \cdot \vec{b}) \neq 0$ $\begin{array}{c} \cdot y & \text{if } \\ \hline \end{array}$ $\left(\begin{array}{c} 7 \\ 4 \end{array} \right)$, and the vectors \vec{a} and \vec{c} are linearly independent.