Cross Product And Associativity

Given three vectors \vec{a} , \vec{b} , \vec{c} , is the triple product $(\vec{a} \times \vec{b}) \times \vec{c}$ the same vector as $\vec{a} \times (\vec{b} \times \vec{c})$? To answer this question without performing a tedious computation, it would be helpful to derive a simpler formula for the expression $(\vec{a} \times \vec{b}) \times \vec{c}$. To that end, observe that the vector $(\vec{a} \times \vec{b}) \times \vec{c}$ is orthogonal to both $(\vec{a} \times \vec{b})$ and \vec{c} . Now, each vector that is perpendicular to $(\vec{a} \times \vec{b})$ can be expressed as $s\vec{a} + t\vec{b}$, where s and t are scalars (Why?). To determine the values of s and t that make $s\vec{a} + t\vec{b}$ perpendicular to \vec{c} , we solve the equation

$$\vec{c} \cdot \left(s\vec{a} + t\vec{b}\right) = 0$$

Solving for s in the above equation yields $s = -\frac{\vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}}t$. Thus, any vector of the form $-\frac{\vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}}t\vec{a} + t\vec{b} = \left(\vec{b} - \frac{\vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}}\vec{a}\right)t$ is orthogonal to $(\vec{a} \times \vec{b})$ and \vec{c} . Setting $t = (\vec{c} \cdot \vec{a})r$, for some scalar r wields

for some scalar r, yields

$$(\vec{a} \times \vec{b}) \times \vec{c} = [(\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a}] r$$
.

In fact, it can be shown from the properties of multilinear maps (introduced later on in the course as optional reading material) that r = 1. Hence,

$$(\vec{a} \times \vec{b}) \times \vec{c} = [(\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a}].$$

Now let's compute $\vec{a} \times (\vec{b} \times \vec{c})$:

$$\vec{a} \times (\vec{b} \times \vec{c}) = -\left[(\vec{b} \times \vec{c}) \times \vec{a} \right] = -\left[(\vec{a} \cdot \vec{b}) \vec{c} - (\vec{a} \cdot \vec{c}) \vec{b} \right] = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}.$$

Hence $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if $(\vec{c} \cdot \vec{b})\vec{a} = (\vec{a} \cdot \vec{b})\vec{c}$. Thus, the cross product is **not** commutative whenever $(\vec{c} \cdot \vec{b}) \neq 0$, $(\vec{a} \cdot \vec{b}) \neq 0$, and the vectors \vec{a} and \vec{c} are linearly independent.