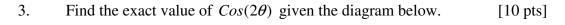
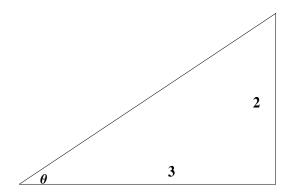
NAME:

Math 125 Exam 4

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. Note that you must do at least 10 problems correctly to get 100. Write neatly and legibly in the space provided. SHOW YOUR WORK!


Core Problems


1. Let
$$f(x) = 4Sin(\pi x + \frac{\pi}{2})$$
.

a) What is the amplitude of f?	[1 pt]

c) Graph one full cycle (period) of f. Be sure to label the points where f attains its max/min as well as any points where f intersects the x-axis. [8 pts]

2. Find the exact value of
$$Cos(\frac{\pi}{8})$$
. Do not use your calculator. [10 pts]

4. Find the exact value of each expression, if possible. Otherwise indicate that a solution does not exist. Recall that the domains of the restricted Sin(x), Cos(x), and Tan(x), are respectively $[\frac{-\pi}{2}, \frac{\pi}{2}]$, $[0, \pi]$, and $(\frac{-\pi}{2}, \frac{\pi}{2})$

a)
$$Sin^{-1}(Sin(\frac{\pi}{7}))$$
 [2 pts]

b)
$$Cos^{-1}(Cos(\frac{8\pi}{7}))$$
 [2 pts]

c)
$$Tan^{-1}(Tan(\frac{\pi}{2}))$$
 [2 pts]

d)
$$Tan(Sin^{-1}(\frac{1}{\sqrt{2}}))$$
 [2 pts]

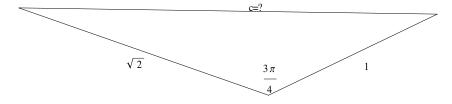
e)
$$Cos(Cos^{-1}(\frac{1}{9}))$$
 [2 pts]

5. Verify the following identity (Hint: Express the left hand side as difference of two squares)

 $Sin^{4}(\phi) - Cos^{4}(\phi) = 1 - 2Cos^{2}(\phi)$ [10 pts]

6. Assuming x > 0 use a triangle to write $Sec(Sin^{-1}\frac{x}{2})$ algebraically. [10 pts]

7. Hermann Hoth's 4th Panzer army is moving southwards from Orel against Russian defensive fortifications. As part of an elite Pre-Calculus squad, you are in command of a Russian Anti-Tank artillery located in Strong Point A. Suddenly, you see a German Panzer in position C. Your forward observer at position B reports that his line of sight to the Panzer is at an angle of 75° relative to the line segment AB. The line of sight from the artillery to the Panzer relative to the line segment AB is also 75° .


a) By observing that $75^\circ = 30^\circ + 45^\circ$, find the exact value of $Sin(75^\circ)$ [2 pts]

b) If the distance between the forward observer and artillery is 100 meters, what is the distance between the artillery and the Panzer? [6 pts] Use part (a) to obtain the exact distance. (Remember Comrade, there is no retreat. You must not FAIL!) [2 pts]

8. a) Solve the trigonometric equation $1 - Sin(x) = 2Cos^2(x)$ for all x in the interval $[0,2\pi)$. [5 pts]

b) Solve the trigonometric equation Sin(2x) = Cos(x) for all x in the interval $[0,2\pi)$. [5 pts]

9. Given the following triangle, find the value of c. [10 pts]

10. Given $Sin(\alpha) = \frac{12}{13}$, α in quadrant I and $tan(\beta) = \frac{3}{4}$, β in quadrant III, Find $Cos(\alpha + \beta)$ [10 pts]

Extra-Credit

11. a) Prove the theorem of Cosines. Namely, prove that if a, b, and c are the sides of a triangle and if θ is an angle between a and b then $c^2 = a^2 + b^2 - 2abCos(\theta)$ [10 pts]

b) Recall that $e^{i\theta} = Cos(\theta) + iSin(\theta)$ where $i = \sqrt{-1}$. Use this identity to derive a formula for $Cos(\alpha + \beta)$ and $Sin(\alpha + \beta)$ in terms of $Cos(\alpha)$, $Cos(\beta)$ $Sin(\alpha)$, and $Sin(\beta)$ [10 pts]