Directions: Each quiz should be completed in 20 minutes. Please grade yourself harshly.

Quiz 1

1. Evaluate
$$
\lim_{x \to 2} \frac{x^{10} - 2^{10}}{x^5 - 2^5}
$$
 [10 pts]
Solution:
$$
\lim_{x \to 2} \frac{x^{10} - 2^{10}}{x^5 - 2^5} = \lim_{x \to 2} \frac{(x - 2)(x^9 + 2x^8 + \dots + 2^9)}{(x - 2)(x^4 - 2x^4 + \dots + 2^4)} = \frac{10 \cdot 2^9}{5 \cdot 2^4} = 2^6
$$

2. The position of a particle is given by $p(t) = t^2$. Calculate the velocity of the particle at $t = 1.$ [10 pts]

Solution: $p'(t) = 2t$. Therefore the velocity is $p'(1) = 2$

3. Suppose that $f(x)$ is a bounded function that satisfies

$$
1 \le f(x) \le 5
$$

[10 pts]

Calculate $\lim x^2 f(x)$ $\lim_{x\to 0} x^2 f(x)$

Solution: $x^2 \le x^2 f(x) \le 5x^2$. Aplying the squeeze theorem yields $0 = \lim_{x \to 0} x^2 \le \lim_{x \to 0} x^2 f(x) \le \lim_{x \to 0} 5x^2 = 0$ 0 2 0 2 0 $=\lim_{x\to 0} x^2 \le \lim_{x\to 0} x^2 f(x) \le \lim_{x\to 0} 5x^2 = 0$. Hence $\lim_{x\to 0} x^2 f(x) = 0$ 0 $\lim_{x \to 0} x^2 f(x) = 0$.

Quiz 2

1. Compute
$$
\lim_{x \to \infty} \frac{\sqrt{5x^2 - 2}}{x + 3}
$$
 [10 pts]

Solution:
$$
\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2}}{x + 3} = \lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2/x}}{x + 3/x} = \lim_{x \to -\infty} \frac{-\sqrt{5 - \frac{2}{x}}}{1 + \frac{3}{x}} = -\sqrt{5}
$$

2. Let 1 1 $\left(x\right)$ 4 − − = *x x* $f(x) = \frac{x^2 + 1}{x^2}$. For which x is $f(x)$ discontinuous? Is the discontinuity(s) removable or not? [10 pts]

Solution: $f(x)$ is a rational function and is therefore continuous everywhere where the denominator isn't 0. In particular, $f(x)$ is not continuous at $x = 1$. Since $\lim_{x \to 1} \frac{f(x)}{x} = 4$ 1 $lim \frac{x^4 - 1}{1}$ 4 1 = − − $\overline{\rightarrow}$ ¹ χ *x* $\lim_{x\to 1} \frac{x}{x-1} = 4$, the discontinuity is removable.

3. Suppose
$$
\lim_{x \to \infty} f(x) = 5
$$
, what is $\lim_{x \to 0^+} f\left(\frac{1}{x}\right)$? [10 pts]

Solution: $\lim_{x \to \infty} f(x) = 5$ means that $f(x)$ maps large values near 5. As $x \to 0^+$, $(1/x) \to \infty$. Therefore $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = 5$ J $\left(\frac{1}{\cdot}\right)$ l ſ \rightarrow ^{0⁺} $\left\langle x\right\rangle$ $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = 5$.

Quiz 3

1. Let $f: [0, 1] \rightarrow (0, 1)$ be continuous. Show that for some $x \in [0, 1]$ $f(x) = x^2$ $[10 \text{ pts}]$

Solution: By hypothesis, $0 < f(x) < 1$. Consider the function $h(x) = f(x) - x^2$. This function is continuous, since $f(x)$ is continuous. By hypothesis, $0 < f(x) < 1$ and therefore $h(0) = f(0) - 0^2 > 0$, while $h(1) = f(1) - 1^2 < 1 - 1 = 0$. Hence the Intermediate-Value Theorem guarantees the existence of some number x such that $h(x) = 0$. But for this x, we must have $f(x) = x^2$.

2. Prove using a $\delta - \varepsilon$ argument that $\lim_{x \to -3} (2x + 1) = -5$ $\lim_{x \to -3} (2x + 1) = [10 \text{ pts}]$

Solution: Notice that $-5 = 2(-3) + 1$. Therefore $|2x+1-(2(-3)+1)| = |2(x+3)|$. In particular, $|2x+1-(-5)| < \varepsilon$ whenever 2 $0 < x + 3 < \delta(\varepsilon) = \frac{\varepsilon}{2}$

3. Prove using a $\delta - \varepsilon$ argument that $\lim_{x \to \infty} (x^2 - 2x) = -1$ 1 $\lim_{x \to 1} (x^2 - 2x) = -$ [10 pts]

Solution: Notice that $-1 = 1^2 - 2(1)$. Therefore $|x^2 - 2x - (1^2 - 2(1))| = |x^2 - 1 - 2(x - 1)| = |x - 1||x + 1 - 2| = |x - 1||x - 1| = |x - 1|^2.$ Theretofore $|x^2 - 2x + 1| \le \varepsilon$ whenever $0 \le |x - 1| \le \delta(\varepsilon) = \sqrt{\varepsilon}$.

Quiz 4

1. Let
$$
f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

\n- (a) Determine whether
$$
f'(0)
$$
 exists.
\n- [5 pts]
\n- [5 pts]
\n- [5 pts]
\n

Solution:

(a)
$$
f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 Sin(\frac{1}{h}) - 0}{h} = \lim_{h \to 0} hSin(\frac{1}{h}) = 0
$$
, where the last

limit has been computed with the squeeze theorem. Hence the derivative $f'(0)$ exists and equals 0.

(b) f is continuous at 0, because it is differentiable at 0. Recall that differentiability implies continuity, but not visa versa.

2. (a) Let $f(x) = x^{1/5}$. Use the definition of the derivative to compute $f'(x)$. [5 pts] (b) For what x is *f* differentiable? [5 pts]

Solution:

(a)
$$
f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{y \to x} \frac{y^{1/5} - x^{1/5}}{y - x} = \lim_{y \to x} \frac{y^{1/5} - x^{1/5}}{(y^{1/5})^5 - (x^{1/5})^5}
$$

$$
= \lim_{y \to x} \frac{(y^{1/5} - x^{1/5})}{(y^{1/5} - x^{1/5})([y^{1/5}]^4 + [y^{1/5}]^3[x^{1/5}] + \dots + [x^{1/5}]^4)} = \frac{1}{5[x^{1/5}]^4} = \frac{1}{5x^{4/5}} = \frac{1}{5}x^{1/5 - 1}
$$

(b) The derivative exists provided $x = 0$.

3. Let $f(x) = 2x^3 - x + 7$. Find the equation of the tangent line at the point $x = 1$.

Solution: $f'(x) = 6x^2 - 1$ so $f'(1) = 5$. The equation $y - f(1) = f'(1)(x - 1)$ identifies the line tangent to the curve at the point $(1, f(1))$. Therefore $y - 8 = 5(x - 1)$ is the desired equation.

4. Does the equation $\sqrt[3]{x} = 1 - x$ have a solution in (0, 1)? Justify your answer

 $[10 \text{ pts}]$

[10 pts]

Solution: Set $f(x) = \sqrt[3]{x} - (1 - x)$ and observe that *f* is continuous on [0, 1]. Notice that $f(0) = -1 < 0$, while $f(1) = 1 > 0$. Therefore, by the Intermediate Value Theorem, $f(x) = 0$ for some $x \in (0, 1)$. For this $x, \sqrt[3]{x} - (1 - x) = 0$ or, equivalently, $\sqrt[3]{x} = 1 - x$.