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Directions: Each quiz should be completed in 20 minutes. Please grade yourself harshly. 

 

Quiz 1 
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2. The position of a particle is given by 2)( ttp = . Calculate the velocity of the particle at  

t =1.         [10 pts] 

 

Solution: ttp 2)(' = . Therefore the velocity is 2)1(' =p  

 

 

3. Suppose that f(x) is a bounded function that satisfies  
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Solution: 
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Quiz 2 

 

1. Compute 
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2. Let 
1

1
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−
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x
xf . For which x is f(x) discontinuous? Is the discontinuity(s) removable 

or not?         [10 pts] 

 

Solution: f (x) is a rational function and is therefore continuous everywhere where the 

denominator isn’t 0. In particular, f (x) is not continuous at x = 1. Since 4
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Quiz 3 

 
1. Let f: [0, 1] → (0, 1) be continuous. Show that for some x ∈[0, 1] 2)( xxf =  

[10 pts] 

 

Solution: By hypothesis, 0 < f (x) < 1. Consider the function 2)()( xxfxh −= . This  

function is continuous, since f (x) is continuous. By hypothesis, 0 < f (x) < 1 and therefore 

00)0()0( 2
>−= fh , while 0111)1()1( 2

=−<−= fh . Hence the Intermediate-Value 

Theorem guarantees the existence of some number x such that 0)( =xh . But for this x, we 

must have 2)( xxf = . 

 

2. Prove using a εδ −  argument that 5)12(lim
3
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x
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   [10 pts] 

 

Solution: Notice that –5 = 2(-3) + 1. Therefore |)3(2|)1)3(2(12 +=+−−+ xx . In particular, 

ε<−−+ |)5(12| x  whenever 
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3. Prove using a εδ −  argument that 1)2(lim 2
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Solution: Notice that –1 = )1(212
− . Therefore  
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Theretofore ε<+− |12| 2 xx  whenever εεδ =<−< )(|1|0 x . 
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Quiz 4 

 

1. Let 
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(a) Determine whether )0('f  exists.      [5 pts]  

(b) Is f continuous at x = 0? How do you know?     [5 pts] 

 

Solution:  
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limit has been computed with the squeeze theorem. Hence the derivative )0('f exists and 

equals 0. 

 

 (b) f  is continuous at 0, because it is differentiable at 0. Recall that differentiability 

implies continuity, but not visa versa. 

 

 

2. (a) Let 5/1)( xxf = . Use the definition of the derivative to compute )(' xf . [5 pts]  

(b) For what x is f differentiable?       [5 pts] 

 

Solution:  
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 (b) The derivative exists provided x = 0. 

 

3. Let 72)( 3
+−= xxxf . Find the equation of the tangent line at the point x = 1.  

 

[10 pts] 

Solution: 16)(' 2
−= xxf  so 5)1(' =f . The equation )1)(1(')1( −=− xffy  identifies the 

line tangent to the curve at the point (1, f (1)). Therefore )1(58 −=− xy  is the desired equation. 

 

4. Does the equation xx −= 13  have a solution in (0, 1)? Justify your answer  

[10 pts] 
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Solution: Set )1()( 3 xxxf −−=  and observe that f is continuous on [0, 1]. Notice that 

01)0( <−=f , while 01)1( >=f . Therefore, by the Intermediate Value Theorem, 0)( =xf  for 

some x œ (0, 1). For this x, 0)1(3
=−− xx  or, equivalently, xx −= 13 . 

 


